

USACE WATER CONTROL MANUAL FOR BOISE RIVER SYSTEM

These projects are considered authority of Section 7 for the U.S. Army Corps of Engineers. Lucky Peak Dam is operated and owned by the U.S. Army Corps of Engineers. Anderson Dam and Arrowrock Dam are operated and owned by the U.S. Bureau of Reclamation.

U.S. Army Corps of Engineers

Chief of Hydrology: John Heitstuman, P.E., D.WRE

Contact Number: 509.527.7293

Water Management Program Manager: Jonathan Roberts, P.E., PMP

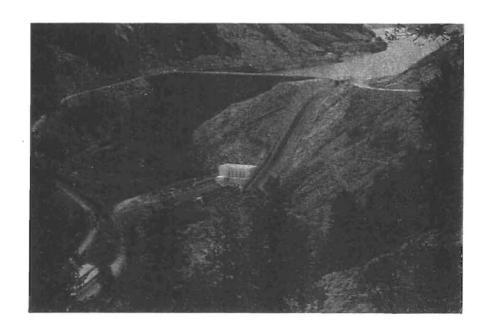
Contact Number: 509.527.7518

U.S. Bureau of Reclamation

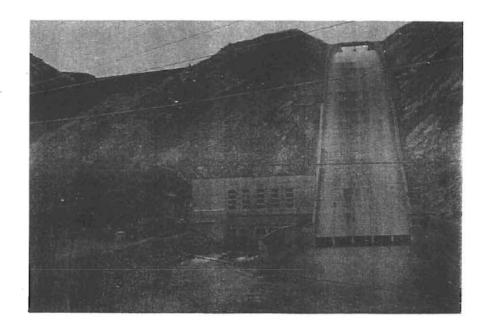
Contact Number: 208.383.2246

Water Control Manual for Boise River Reservoirs

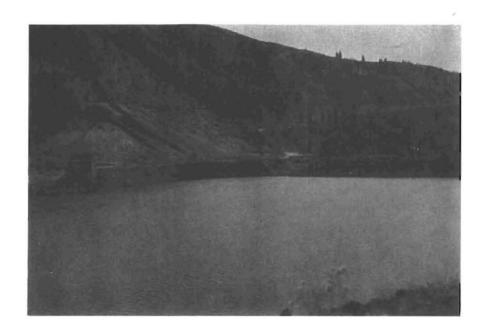
Boise River, Idaho

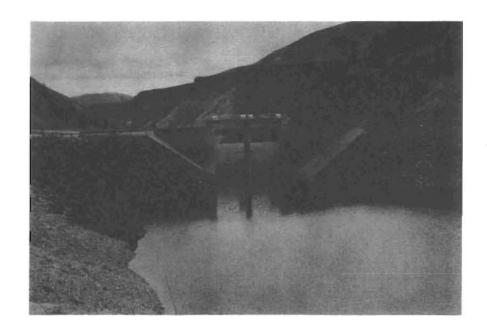

WATER CONTROL MANUAL

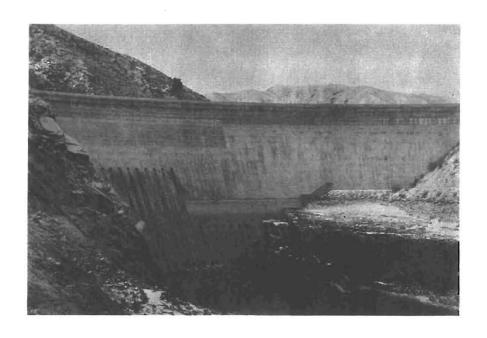
FOR 1

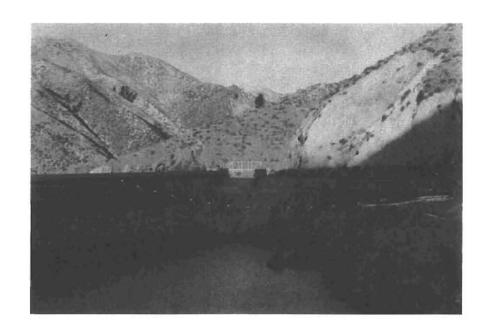

BOISE RIVER RESERVOIRS

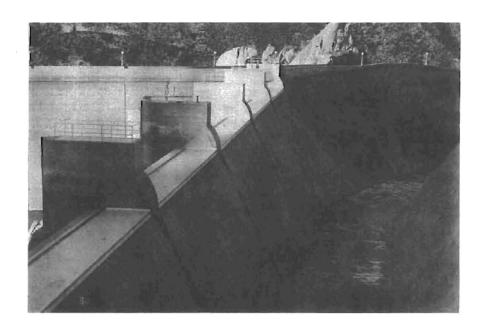
APRIL 1985

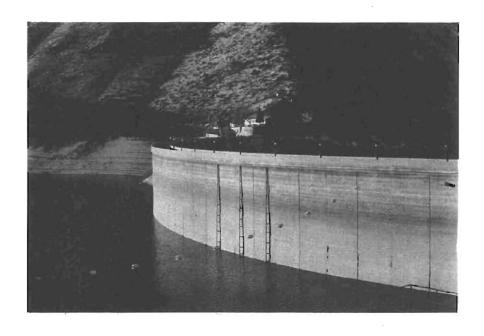

U.S. ARMY CORPS OF ENGINEERS
WALLA WALLA DISTRICT


Anderson Ranch Project: Downstream face view of dam.


Anderson Ranch Project: Powerhouse and spillway.

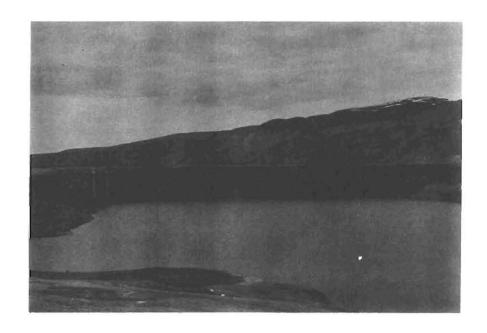

Anderson Ranch Project: Upstream view of dam showing relative locations of intake and spillway gates.

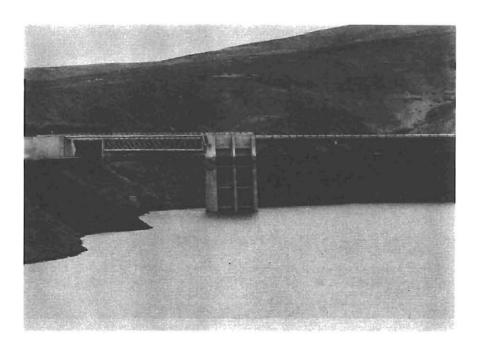

Anderson Ranch Project: Spillway radial gates.


Arrowrock Project: Downstream face of dam.


Arrowrock Project: Upstream view of spillway.

Arrowrock Project: Spillway and concrete lined side channel.


Arrowrock Project: Upstream face view illustrating the arch of the dam.


Lucky Peak Project: Downstream face view showing outlet facilities.

Lucky Peak Project: Downstream face of dam with Sandy Point recreation area in foreground.

Lucky Peak Project: Upstream face view of dam.

Lucky Peak Project: Close-up view of intake structure.

NOTICE TO USERS OF THIS MANUAL

Regulations specify that this Water Control Manual be published in looseleaf form and only those sections, or parts thereof, requiring changes will be revised and printed. Therefore, this copy should be preserved in good condition so that inserts can be made to keep the Manual current. New or changed material within the text is identified by use of asterisks.

PERTINENT DATA

ANDERSON RANCH PROJECT - A

ARROWROCK PROJECT - C

LUCKY PEAK PROJECT - E

ANDERSON RANCH PROJECT Pertinent Data

Pertinent Data GENERAL LOCATION COUNTY Elmore RIVER. South Fork of the Boise River RIVER MILE 43.5 TOWNSHIP 1 South RANGE. 8 East SECTION. SE1/2 of Section 1 LATITUDE 43°21'30" LOCATION FROM NEARBY COMMUNITIES . . 28 miles northeast of Mountain Home, 75 miles southeast of Boise BASIN DRAINAGE AREA. 980 square miles BASIN INCHES 1 basin inch = 52,267 acre-feet RESPONSIBLE AGENCY. U.S. Bureau of Reclamation STATUS...... Complete, storage began 15 December 1945 COST. \$30,000,000 (Estimate) RESERVOIR AREA (NORMAL FULL POOL) 4,741 acres LENGTH. 17 miles AVERAGE WIDTH 2,300 feet ELEVATIONS (FEET MEAN SEA LEVEL) CREST OF DAM 4,206 MAXIMUM DESIGN WATER SURFACE . . . 4,198.2 NORMAL FULL POOL 4,196 TOP OF INACTIVE POOL 4,039.6 TOP OF DEAD STORAGE POOL 3,992 STREAMBED AT DAM AXIS. 3,866 STORAGE SURCHARGE CAPACITY . . 4,196 to 4,198.2 feet MSL. 10,504 acre-feet JOINT USE CAPACITY . . 4,044 to 4,196 feet MSL.418,178 acre-feet EXCLUSIVE POWER CAPACITY 4,039.6 to 4,044 feet MSL. 5,000 acre-feet INACTIVE CAPACITY. . . 3,992 to 4,039.6 feet MSL. 41,000 acre-feet

DEAD STORAGE CAPACITY .3,866 to 3,992 feet MSL. 29,000 acre-feet

TOTAL ACTIVE CAPACITY. 4,039.6 to 4,196 feet MSL.423,178 acre-feet TOTAL LIVE CAPACITY. . 3,992 to 4,196 feet MSL.464,178 acre-feet TOTAL GROSS CAPACITY . 3,866 to 4,198.2 feet MSL. . . .503,682 acre-feet

ANDERSON RANCH PROJECT (Continued) Pertinent Data

DΛ	M
DA	[17]
	TYPE Rolled earth and rockfill
	DIMENSIONS (FEET) STRUCTURAL HEIGHT 456 HYDRAULIC HEIGHT
	ELEVATION AT CREST 4,206 feet MSL VOLUME 9,653,300 Eubic yards
SP	ILLWAY
	TYPE
	DESIGN CAPACITY
ou.	TLET WORKS
	NO., TYPE, AND CONTROL One 20-foot-diameter concrete-lined outlet tunnel with penstock to powerhouse and five 72-inch hollow jet valves. Center of intake at 4,000 feet MSL.
	DISCHARGE CAPACITY NORMAL FULL POOL (4,196 feet MSL)10,000 cfs MINIMUM POOL (4,039.6 feet MSL)7,200 cfs
POV	VERPLANT FACILITIES
	NUMBER, TYPE
HYE	DROLOGIC DATA
	REPRESENTATIVE STREAMFLOW RECORDS (ANDERSON RANCH UNREGULATED INFLOW) RECORDS (YEARS) 1943 through 1980
	NATURAL DISCHARGE SUMMARY MAXIMUM 10,072 cfs on 25 May 1956 MINIMUM less than 100 cfs on numerous occasions AVERAGE (1943 - 1980) 1 024 cfs

ARROWROCK PROJECT Pertinent Data

GEN	ERAL
	LOCATION
	STATE
	BASIN
	DRAINAGE AREA 2,230 square miles BASIN INCHES 1 basin inch = 117,867 acre-feet
	RESPONSIBLE AGENCY U.S. Bureau of Reclamation STATUS Completed in 1915. Raised 5 feet in 1937 COST
RES	ERVOIR
- 1	AREA (NORMAL FULL POOL) 3,150 acres LENGTH
1	TOP OF PARAPET WALL
STO	RAGE
9	FREEBOARD
1	TOTAL ACTIVE CAPACITY 2,974 to 3,216 feet MSL 286,600 acre-feet GOTAL GROSS CAPACITY 2,974 to 3,219.75 feet MSL 298,230 acre-feet
DAM	
	TYPE

r

ARROWROCK PROJECT (Continued) Pertinent Data

Pertinent Data
DAM (Continued) ELEVATION AT CREST 3,219.75 feet MSL VOLUME 636,000 cubic yards
SPILLWAY
TYPE
DESIGN CAPACITY
OUTLET WORKS
NO., TYPE, AND CONTROL. 25 outlets in three tiers UPPER TIER Ten 52-inch-diameter outlet tunnels at elevation 3,105 feet controlled by 58-inch-diameter balanced needle valves. LOWER TIER Ten 58-inch balanced-needle valves control three 72-inch-diameter outlets and seven 52-inch-diameter outlet tunnels at elevation 3,018 feet. Valve numbr one (72-inch tunnel) is inoperable. SLUICE OUTLETS Five 60-inch-diameter sluice outlets with 5-by-5-foot gates at elevation 2,967 feet. Sluice gate number 5
is inoperable.
NOTE: Lower tier outlets may only be used when the water surface elevation is between 3,105 and 3,018 feet. Sluice outlets may only be used when water surface elevation is below 3,018 feet MSL.
DISCHARGE CAPACITY ELEVATION (FEET MSL) 3,216 (normal full pool)10,23010 upper tier 3,1102,17010 upper tier 3,105 (centerline upper tier)7,8039 lower tier 3,020
POWERPLANT FACILITIES None installed
HYDROLOGIC DATA
REPRESENTATIVE STREAMFLOW RECORDS (ARROWROCK UNREGULATED TOTAL INFLOW) RECORDS (YEARS) 1918 through 1980
NATURAL DISCHARGE SUMMARY MAXIMUM

LUCKY PEAK PROJECT Pertinent Data

GENERAL

GENERAL
LOCATION
STATE
BASIN
DRAINAGE AREA
RESPONSIBLE AGENCY U.S. Corps of Engineers STATUS Complete, storage began 16 October 1954 COST
RESERVOIR
AREA (NORMAL FULL POOL) 2,820 acres LENGTH
ELEVATIONS (FEET MEAN SEA LEVEL) CREST OF DAM
STORAGE
SPILLWAY FREEBOARD3,055 to 3,060 feet MSL 5 feet SURCHARGE CAPACITY3,055 to 3,060 feet MSL (13,905) acre-feet JOINT USE CAPACITY2,905 to 3,055 feet MSL 264,371 acre-feet INACTIVE CAPACITY2,824 to 2,905 feet MSL28,767 acre-feet
TOTAL ACTIVE CAPACITY2,905 to 3,055 feet MSL264,371 acre-feet TOTAL CAPACITY2,824 to 3,055 feet MSL293,138 acre-feet TOTAL GROSS CAPACITY2,824 to 3,060 feet MSL307,043 acre-feet

LUCKY PEAK PROJECT (Continued) Pertinent Data

<u>DAM</u>
TYPE Rolled earth and gravel fill
DIMENSIONS (FEET) STRUCTURAL HEIGHT 340 HYDRAULIC HEIGHT 238 BASE WIDTH 1,350 CREST WIDTH
ELEVATION AT CREST 3,078 feet MSL VOLUME 5,900,000 cubic yards (estimate)
SPILLWAY
TYPE
ELEVATIONS (FEET MSL) SPILLWAY CREST 3,060 CAPACITY 3,072
DESIGN CAPACITY
OUTLET WORKS
NO., TYPE, AND CONTROL One 23-foot-diameter steel-lined tunnel with manifold. Intake invert at elevation 2,824 feet MSL.
DISCHARGE CAPACITY NORMAL FULL POOL (3,055 feet MSL)30,500 cfs MINIMUM POOL (2,905 feet MSL)17,000 cfs
POWERPLANT FACILITIES None installed
HYDROLOGIC DATA
REPRESENTATIVE STREAMFLOW RECORDS (LUCKY PEAK TOTAL UNREGULATED INFLOW) RECORDS (YEARS) 1895 through 1980
NATURAL DISCHARGE SUMMARY MAXIMUM
11 relined intake tunnel reduced hydranic Capacity

TABLE OF CONTENTS

TITLE PAGE	S (Anderson Ranch)	i ii
	S (Arrowrock)	iv
	S (Lucky Peak)	vi
	USERS OF MANUAL	viii
NOTICE TO	OSERS OF PARIONE	ix
PERTINENT	DATA (Anderson Ranch)	A
	DATA (Arrowrock)	C
	DATA (Lucky Peak)	E
TEXT OF MA	NUAL	
Paragraph	Title	Page
,	I - INTRODUCTION	
1-01.	Authorization	1-1
1-02.	Purpose and Scope	1-1
1-03.	Related Manuals and Reports	1-2
1-04.	Project Owners and Operators	1-3
1-05. 1-06.	Regulating Agencies Revisions to This Manual	1-3 1-3
1-00.	REVISIONS to INIS Manual	1-3
	II - DESCRIPTION OF PROJECTS	
2-01.	Boise River Reservoir System	2-1
2-02.	Anderson Ranch	2-1
	a. Location	2-1
	b. Project Purposes	2-1
	c. Physical Components	2-2
	(1) Dam	2-2
	(2) Spillway	2-2
	(3) Outlet Works	2-3
	(4) Powerplant Facilities	2-5
	(5) Reservoir	2-7
2-03.	(6) Public Facilities Arrowrock	2-8 2-9
Z - 03.	a. Location	2-9
	b. Project Purposes	2-9
	c. Physical Components	2-9
. *	(1) Dam	2-10
	(2) Spillway	2-10
	(3) Outlet Works	2-11
	(4) Power Facilities	2-12
	(5) Reservoir	2-13
	(6) Rublic Facilities	2_1/

<u>Title</u>	Page
II - DESCRIPTION OF PROJECTS (Continued)	
Lucky Peak a. Location b. Project Purposes c. Physical Components (1) Dam (2) Spillway (3) Outlet Works	2-15 2-15 2-15 2-15 2-15 2-16 2-16
(4) Reservoir(5) Project Lands(6) Public Facilities	2-19 2-20 2-20
 a. Locations b. Project Purposes c. Project Descriptions (1) Diversion Dam and New York Canal (2) Lake Lowell d. Public Facilities (1) Diversion Dam 	2-20 2-20 2-21 2-21 2-21 2-22 2-22 2-22
	¢-85
General Lake Lowell, Diversion Dam, and New York Canal Arrowrock Dam Anderson Ranch Lucky Peak Project Water Rights Memorandum of Agreement	3-1 3-1 3-2 3-2 3-3 3-4 3-4
IV - BASIN CHARACTERISTICS	
General Watershed Topography and Characteristics Soils and Geology Water Quality and Sediment Climate a. Temperature b. Precipitation c. Snow d. Evaporation	4-1 4-1 4-2 4-3 4-3 4-5 4-6 4-7
	Lucky Peak a. Location b. Project Purposes c. Physical Components (1) Dam (2) Spillway (3) Outlet Works (4) Reservoir (5) Project Lands (6) Public Facilities Diversion Dam, New York Canal, Lake Lowell a. Locations b. Project Descriptions (1) Diversion Dam and New York Canal (2) Lake Lowell d. Public Facilities (1) Diversion Dam (2) Lake Lowell III - HISTORY OF PROJECTS General Lake Lowell, Diversion Dam, and New York Canal Arrowrock Dam Anderson Ranch Lucky Peak Project Water Rights Memorandum of Agreement IV - BASIN CHARACTERISTICS General Watershed Topography and Characteristics Soils and Geology Water Quality and Sediment Climate a. Temperature b. Precipitation c. Snow

<u>Paragraph</u>	<u>Title</u>	<u>Page</u>
	IV - BASIN CHARACTERISTICS (Continued)	
4-06.	Runoff Characteristics	4-7
	a. Streamflow Records	4-7
	b. Lower Watershed Runoff	4-7
	c. Upper Watershed Runoff	4-7
	(1) Floods	4-10
4 07	(2) Droughts	4-12
4-07.	Boise River Channel	4-13
	a. Capacity and Conditions	4-13
	 Key Gaging Locations and Irrigation Diversions 	4-15
	c. Travel Times	4-15
4-08.	Economy and Population	4-17
4-09.	Irrigation Systems	4-18
	Trigueton Systems	. 20
	V - DATA COLLECTION AND COMMUNICATION NETWORKS	
5-01.	Data Collection	5-1
5-02.	Automated Hydromet Systems	5-1
5-03.	Use of Real-Time Data	5-4
	VI - HYDROLOGIC FORECASTS	
6 01	0	1
6-01.	General	6-1
6-02. 6-03.	Operational Forecasts Conservation Forecasts	6-1 6-2
6-03.	conservation Forecasts	0-2
	VII - WATER CONTROL PLAN	
7-01.	General Objectives	7-1
7-02.	Authorized Reservoir Uses	7-1
7-03.	Use Priorities	7-2
7-04.	Use Conflicts	7-2
7-05.	Flood Control Plan	7-3
	a. Winter Requirements	7-3
	 Spring Evacuation Requirements 	7-6
	c. Refill Requirements	7-11
	d. Constraints and Considerations	7-16
	(1) Regulation Objectives	7-16
	(2) Allocations	7-18
	(3) Reservoir Surcharges	7-19 7-10
	(4) Rule Curves	7-19

Paragraph	<u>Title</u>	Page
	VII - WATER CONTROL PLAN (Continued)	
	e. Regulation Procedures	7-20
	(1) Hydrology Branch Personnel	7-20
	(2) Central Snake Projects Personnel	7-20
	(3) Reservoir and River Operations	
	Branch Personnel	7-21
	(4) Boise River Watermaster	7-21
7-06.	Irrigation Water Supply Plan	7-23
	a. Purpose of Plan	7-23
	b. Water Rights	7-23
• •	c. Administration of Water Rights	7-24
	d. Irrigation Water Supply Periods	7-24
	e. Boise River Reservoir Storage Accrual	7-24
	f. Distribution of Irrigation Water	7-26
	g. Irrigation Responsibilities	7-27
7-07.	Maintenance Plan	7-27
7-08.	Hydroelectric Power Plan	7-29
7-09.	Recreational Plan	7-29
7-10.	Fish and Wildlife Plan	7-30
7-11.	Minimum Streamflow Maintenance	7-31
7-12.	Rate of Release Change	7-32
	VIII - EFFECT OF WATER CONTROL PLAN	
8-01.	General	8-1
8-02.	Flood Control	8-1
8-03.	Other Plans	8-2
	IX - WATER CONTROL MANAGEMENT	
9-01.	General	9-1
9-02.	United States Department of the Interior,	
	Bureau of Reclamation, Pacific Northwest	
	Region	9-1
9-03.	United States Department of Defense,	
	Department of the Army, Corps of Engineers,	
	Walla Walla District	9-5
9-04.	State of Idaho, Department of Water Resources	9-6
9-05.	State of Idaho-Water District #63	9-7
9-06.	Other Agencies	9-7
9-07.	Public Information	9-7

TABLES

Table No.		<u> </u>	age
2-1	Anderson Reservoir - Elevation Capacity (3 sheets)	T	2-1
2-2	Anderson Ranch Reservoir Recreation Areas		2-8
2-3	Arrowrock Dam - Upper Gate Elevation Discharge (3 sheets)		2-2
2-4	Arrowrock Reservoir - Elevation Capacity (4 sheets)) T	2-3
2-5	Arrowrock Reservoir Recreation Areas		2-14
2-6	Lucky Peak Dam Slide Gates - Discharge Rating (3 sheets)	Т	2-4
2-7	Lucky Peak Lake - Elevation Capacity (3 sheets)	T	2-5
4-1	Lucky Peak Water Quality		4-4
4-2	Boise Basin - Average Maximum Monthly Temperatures (5 sheets)	• Т	4-1
4-3	Boise Basin - Average Minimum Monthly Temperatures		
	(5 sheets)	Т	4-2
4-4	Boise Basin - Total Monthly Precipitation		
	(10 sheets)	Т	4-3
4-5	Boise Basin - Snow Water Content Data (13 Sheets)		4-4
4-6	Boise Basin - Total Monthly Evaporation (2 Sheets)		4-5
4-7	Average Monthly Wind Speed and Direction - Boise Airport WSFO		4-6
4-8	Key Gaging Stations - Boise River Basin		4-8
4-9	South Fork Boise River near Featherville - Runoff Volume Summary		4-7
4-10	Boise River near Twin Springs -	'	
. 20	Runoff Volume Summary (2 Sheets)	Т 4	4-8
4-11	Mores Creek above Robie Creek near Arrowrock Dam -	'	
,	Runoff Volume Summary	т 4	1-9
4-12	Lucky Peak Total Unregulated Inflow -	٠,	
,	Runoff Volume Summary (3 Sheets)	т 4	4-10
4-13	Station Runoff Contributions		1-11
7-1	Lucky Peak Release Scheduling Worksheet		,
, -	(before 1 April)	7	7-8
7-2	Lucky Peak Release Scheduling Worksheet	. '	J
, _	(after 1 April)	. 7	7-13
7-3	Operational Rule Curve (Plate 7-1) Assurances		7-1
7-4	Summary of Stewart and Bryan Decree	' '	•
7-4	Filings by Canal	T 7	1_2
7-5	Anderson Ranch Storage Water Allocations	T 7	
7-6	Arrowrock Storage Water Allocations	T 7	
7-0 7-7	Lucky Peak Storage Water Allocations	T 7	
8-1	Natural and Regulated Peak Discharges	' '	
0-1	Boise River Basin	T 8	2 _1
`	DOISE VIACI DOSIII	1 C	,-1

PLATES

Frace No.	
2-1	Boise River Basin Location Map
2-2	
2-3	Anderson Ranch Dam, Spillway Discharge Curves
2-4	
2-5	Anderson Ranch Dam, Outlet Works - Discharge Chart
2-6	
2-7	Anderson Ranch Reservoir Recreation Areas - Site Map
2-8	
2-9	
2-10	Arrowrock Reservoir Ownership Map
2-11	
2-12	
2-13	
2-14	Lucky Peak Dam, 30-inch Hollow-Jet Valve - Rating Curves
2-15	Lucky Peak Lake Recreational Sites
4-1	Boise River Basin Data Station Location Map
4-2	Boise River Basin Average Annual Precipitation
4-3	Summary Hydrographs - South Fork Boise River near
	Featherville
4-4	Summary Hydrographs - Boise River near Twin Springs
4-5	Summary Hydrographs - Mores Creek above Robie Creek,
	near Arrowrock Dam
4-6	Summary Hydrographs - Lucky Peak Lake Mean Daily Total
	Unregulated Inflow
4-7	Lucky Peak Lake Mean Daily Total Unregulated Inflow -
	Yearly Hydrographs (5 Sheets)
7-1	Operational Flood Control Rule Curves
7-2	Winter Flood Control Rule Curves
7-3	Flood Control Space Distribution Curves
7-3A	Final Fill Flood Control Requirements
7-4	Storable Volume (95% Assurance)
7-5	Flood Control Space (1% Risk)
7-6	Regional Recreation Facilities Vicinity Map
7-7	Anderson Ranch Reservoir - Usable Storage Content
	Data (2 sheets)
7-8	Arrowrock Reservoir - Total Storage Content Data
	(4 sheets)
7-9	Lucky Peak Lake - Total Storage Content Data (2 sheets)

PLATES (Continued)

Plate No.	
8-1	Annual Spring Flood Peak Discharge Frequencies - Boise River
8-2	Standard Project Flood Regulation
8-3	Summary Hydrographs - Boise River at Boise

EXHIBITS

Exhibit No.		Page
A	Runoff Volume Forecast Procedures Bureau of Reclamation (5 sheets)	A-1
	Corps of Engineers (3 sheets)	A-2
В	Lucky Peak Unregulated Inflow	ı
	Projection Data (6 sheets)	B-1
С	Memorandum of Understanding (3 sheets)	C-1

I - INTRODUCTION

1-01. <u>Authorization</u>. This Water Control Manual has been prepared pursuant to authority contained in Section 7 of ER 1110-2-240, "Engineering and Design - Reservoir Regulation," dated 22 April 1970. The format and content of this Manual are in accordance with criteria set forth in EM 1110-2-3600, dated 25 May 1959, and ETL 1110-2-251, "Engineering and Design - Preparation of Water Control Manuals," dated 14 March 1980.

In addition to OCE directives to maintain up-to-date manuals, the revision of the Boise River Regulation Manual was requested by the State of Idaho in 1974. In May 1974, the Governor of Idaho requested the Department of Water Resources to make a review of Boise River flood control management, identify problems, examine the potential of various alternatives, and present recommendations which would lead to improved operation. A report to the Governor entitled "Review of Boise River Flood Control Management" was completed in November 1974 by the Department of Water Resources. This report contained several major recommendations, with the primary one being that a new Reservoir Regulation Manual should be prepared with an appropriate supporting agreement.

- 1-02. <u>Purpose and Scope</u>. The purpose of this Manual is to present information pertinent to the regulation of the Boise River reservoir system. Criteria and information within this Manual replace the contents of the "Reservoir Regulation Manual for Boise River Reservoirs," U.S. Army Engineer District, Walla Walla, August 1956. Items discussed within this Manual are as listed below:
 - a. Description of Projects.
 - b. History of Projects.
 - c. Basin Characteristics.
 - d. Data Collection and Communication Networks.
 - e. Hydrologic Forecasts.
 - f. Water Control Plan.

- q. Effect of Water Control Plan.
- h. Water Control Management.
- 1-03. Related Manuals and Reports. The following list outlines some of the key manuals and reports which contain information and data which are or have been pertinent to the regulation and operation of the Boise River reservoirs.
- a. Standing Operating Procedures Anderson Ranch Dam and Reservoir Boise Project, Idaho; U.S. Bureau of Reclamation, 18 April 1978.
- b. Standing Operating Procedures Arrowrock Dam and Reservoir Boise Project, Idaho; U.S. Bureau of Reclamation, 20 April 1978.
- c. Operation and Maintenance Manual Lucky Peak Project; U.S. Army Engineer District, Walla Walla, 1959.
- d. Standing Operating Procedures Boise River Diversion Dam Boise Project, Idaho; U.S. Bureau of Reclamation, 20 April 1978.
- e. Standing Operating Procedures Deer Flat Embankments and Lake Lowell Reservoir Boise Project, Arrowrock Division, Idaho; U.S. Bureau of Reclamation, 12 July 1979.
- f. Reservoir Regulation Manual for Boise River Reservoirs; U.S. Army Engineer District, Walla Walla, August 1956.
- g. Review of Boise River Flood Control Management; Idaho Department of Water Resources, November 1974.
- h. Final Environmental Impact Statement Lucky Peak Dam and Lake Boise River, Idaho; U.S. Army Engineer District, Walla Walla, August 1976.
- i. Master Plan for Lucky Peak Lake; U.S. Army Engineer District, Walla Walla. Expected date of approval: 1985.
- j. Flood Emergency Subplans Identification, Operation, Repair, Notification, and Inundation Maps Lucky Peak Lake Boise River, Idaho; U.S. Army Engineer District, Walla Walla, August 1982.

- k. Final Environmental Statement and Feasibility Report Anderson Ranch Powerplant Third Unit Boise Project, Idaho; U.S. Bureau of Reclamation, 2 June 1982.
- 1. Memorandum of Agreement and Reservoir Management Plan between the Forest Service - U.S. Department of Agriculture and the Bureau of Reclamation - U.S. Department of the Interior, 1976.
- 1-04. Project Owners and Operators. The Bureau of Reclamation (Pacific Northwest Regional Office and Central Snake Projects Office) owns and operates the Anderson, Arrowrock, and Diversion Dam projects and facilities. The Bureau also owns the New York Canal and Lake Lowell projects and facilities, but the Boise Project Board of Control operates them under an operation and maintenance contract with the Bureau. The Walla Walla District Corps of Engineers owns and operates the Lucky Peak project and its facilities.
- 1-05. <u>Regulating Agencies</u>. Regulation of the Anderson, Arrowrock, and Lucky Peak projects is a joint effort between the Bureau of Reclamation, Corps of Engineers, and the Boise River Watermaster. The Boise Project Board of Control regulates the New York Canal and Lake Lowell.
- 1-06. Revisions to This Manual. The Boise River reservoirs (Anderson Ranch, Arrowrock, and Lucky Peak) are regulated jointly by the Bureau of Reclamation and the Corps of Engineers through a "Memorandum of Agreement Between the Department of the Army and the Department of the Interior for Flood Control Operation of Boise River Reservoirs," dated 20 November 1953. Within Article 7 of the 20 November 1953 Agreement, there are provisions to change or modify the operating plan and procedures if operating experience indicates revisions are needed. Salient features of the Agreement are summarized in paragraph 3-07. of this Manual on pages 3-4 and 3-5.

Since the operating criteria and procedures in the Agreement did not reflect current conditions, needs, and technology, the Bureau, Corps, and State of Idaho jointly agreed to revision of operating criteria and procedures in the Agreement through the Memorandum of Understanding shown in Exhibit C of this Manual. The Memorandum of Understanding is a supplement to the Agreement, which does not change its terms, but rather incorporates a new operating agreement under Article 7 of the 20 November 1953 agreement. The primary features of the Memorandum of Understanding

are: (1) the Boise River reservoirs will be regulated according to criteria and procedures in the Water Control Manual dated April 1985, and (2) revisions to the regulation criteria or procedures shall become effective after a Letter of Agreement for Revisions (which shall specify the nature of the revisions) is signed by authorized Bureau and Corps representatives. No formal document will be necessary for revisions to other portions of this Manual. Revisions to this Manual will be made in accordance with Article 7 of the 20 November 1953 Agreement and paragraph e. of the Memorandum of Understanding (Exhibit C).

As a continuing program, it will be necessary to review this Manual annually in order to keep it up to date.

II - DESCRIPTION OF PROJECTS

2-01. <u>Boise River Reservoir System</u>. Within the Boise River Basin, four separate Federal reservoir projects are being operated as one system, referred to as the "Boise River Reservoir System." This system is composed of three Boise River reservoirs (Anderson Ranch, Arrowrock, and Lucky Peak) and an offstream reservoir (Lake Lowell and its related facilities - Diversion Dam and the New York Canal). The three upper reservoirs have a combined gross storage capacity of approximately 1.109 million acre-feet and a usable (active) storage capacity of approximately 0.974 million acre-feet. The upper three reservoir systems are used to control Boise River water for irrigation, flood control, power generation, recreation, and fish and wildlife. The geographical locations of these projects are shown on Plate 2-1. The project descriptions given within this section cover the three Boise River reservoirs, and the Diversion Dam and Lake Lowell.

2-02. Anderson Ranch.

a. <u>Location</u>. Anderson Ranch Dam is located approximately 124 river miles above the mouth of the Boise River and is the most upstream reservoir within the system. The following tabulation outlines the location of the dam.

Anderson Ranch

Stream: South Fork of the Boise River. River Mile: 43.5 (South Fork).

Drainage Basin: Boise River.

State: Idaho. County: Elmore.

Location from nearby communities:51/4 28 miles northeast of Mt. Home. 75 miles southeast of Boise.

1/ Approximate road mileage.

- b. <u>Project Purposes</u>. Anderson Ranch is a multipurpose project which controls water from the 980-square-mile drainage area above the dam. The project provides irrigation water, flood control, power generation, and recreation. It also provides a permanent dead storage pool for the preservation and propagation of fish and wildlife and silt control. Refer to Section VII WATER CONTROL PLAN for the system use priorities and regulation plans.
- c. <u>Physical Components</u>. The following paragraphs discuss in general terms the physical components of the Anderson Ranch project (both structural and the reservoir). More detailed information on these items is available in the Standing Operating Procedures Anderson Ranch Dam, Boise Project, Idaho, Pacific Northwest Region, Bureau of Reclamation. Plate 2-2 shows the general plan and sections for Anderson Ranch Dam.

- (1) <u>Dam</u>. Anderson Ranch Dam is a rolled earth and rockfill embankment. The dam has a structural height of 456 feet, a hydraulic height of 330 feet, and a crest length of 1,350 feet. Crest width is 40 feet and provides an area for a gravel roadway across the dam. Base width of the dam is 2,650 feet. The upstream face of the dam is on a 1V on 3H slope from the crest elevation of 4206 down to elevation 4092, a 1V on 3.5H slope down to a 50-foot berm at elevation 3960, and a slope of 1V on 3.5H to the base from 3960 to 3870. The downstream face is a 1V on 2H slope from the crest to elevation 4092, 1V on 2.25H slope to elevation 3960, then 1V on 8H slope to the base. Both faces are covered with protective riprap. Material volume of the dam is approximately 9.653 million cubic yards.
- (2) <u>Spillway</u>. The spillway is located on the south or left abutment of the dam. It is a gated, concrete-lined open channel or chute approximately 1,100 feet long and 53 feet wide at the top and 100 feet wide at the bottom. The lower end of the chute is supported on a reinforced concrete structure in which the outlet pipes and valves are installed. The crest elevation of the spillway is at 4174 and the lower end of the chute is at elevation 3885.

Discharge over the spillway is regulated with two 25-footwide by 22-foot-high radial gates. These gates are made of a structural steel framework, two radial supporting arms, and face plates to cover the upstream sides. The downstream sides of the gates are covered by steel plates to improve the appearance and to prevent trash from collecting on the beams. The arms rotate on pin bearings supported by brackets on the structure sidewalls. Gate hoists installed on the spillway structure operating deck and hoisting cables are used to raise and lower the gates. The tops of the radial gates (in place) are at elevation 4196. The design capacity of the two gates is 20,000 cfs at the full-open position (bottom of gates at 4198). Plate 2-3 shows Anderson Ranch Dam spillway discharge curves.

An ice-prevention air system maintains an ice-free area about 10 feet wide in front of the spillway radial gates during freezing weather and thus prevents ice pressure against the gates. Two electric-motor-driven air compressors and a distribution piping system are used to supply air bubbles which lift warmer water from the lower reservoir depths during the winter. The warmer water reaching the surface then provides the ice-free area.

A spillway stilling basin is located directly below the spillway. It is made of reinforced concrete and is 100 feet wide and 219 feet long. The stilling basin floor elevation is 3830 and has a dentated sill near the upstream end and downstream end (elevation 3860). Capacity of the stilling basin is 30,000 cfs to accommodate full releases from the spill-way (20,000 cfs) and the 10,000-cfs outlet works. Tailwater elevation at 30,000-cfs discharge is 3873.70.

- (3) <u>Outlet Works</u>. The outlet works are designed for maximum discharge of 10,000 cfs at a normal reservoir pool elevation of 4196 and a maximum discharge of 7,200 cfs at a minimum pool elevation of 4039.6. The outlet works consist of the following:
 - (a) Trashrack-protected sloping intake structure.
- (b) Outlet tunnel (concrete-lined tunnel and a plate steel penstock).
- (c) Penstock manifold with turbine branch penstock openings and outlet pipes.

A trashrack-protected sloping intake structure is located northeast of the spillway structure. The intake structure consists of a concrete slab, fixed-wheel gate, gate rails, hydraulic gate hoist, and a protective trashrack. The structure extends from elevation 3970 to 4211.42 and has a 1V on 1.5H slope. A 15.25-foot-wide by 30-foot-high fixed-wheel gate (bulkhead) is installed on the intake structure to close the outlet tunnel during periods of maintenance repairs. This bulkhead is normally only raised or lowered under balanced-head conditions. During periods of low reservoir heads (100 feet or less - elevation 4100) the bulkhead may be used to regulate flow into the outlet tunnel. The bulkhead is a flat, structural steel leaf with 10 fixed wheels on each side of the leaf to carry the bulkhead load on rails. The bulkhead operates in an inclined slot leading from the top of the intake structure to the outlet tunnel. Lateral movement of the bulkhead is limited by means of two guide rollers on each side of the leaf which bear against guide plates on each side of the bulkhead slot. The bulkhead is raised and lowered with an oil-pressure-operated hydraulic hoist mounted at the top of the bulkhead slot and is connected to the bulkhead by removable bulkhead stem sections 15 feet long and 6.75 inches in diameter. Each bulkhead stem section is supported at the upper end by a carriage having wheels that operate on rails near the center of the bulkhead slot. The bulkhead weighs approximately 257,000 pounds and can be moved between elevations 4000 and 4185.5. A protective trashrack encloses the intake structure and bulkhead equipment.

The outlet tunnel consists of a 20-foot-diameter concrete-lined tunnel and a 15-foot-diameter plate-steel penstock. Refer to Plate 2-2, General Plan and Sections. The outlet tunnel is approximately 1,500 feet in length and extends from the intake structure to the tunnel portal. The 15-foot-diameter penstock is about 830 feet in length and extends downstream from the tunnel plug to the tunnel portal where it is connected to the penstock manifold. From the tunnel plug to the tunnel portal, the penstock is supported by support rings bearing on concrete pads on both sides of the penstock. Beginning at elevation 4000 (centerline of the intake tunnel on the intake structure), the tunnel has an initial slope of 0.450, then a slope of 0.2251, and a final slope of 0.0068 to the tunnel plug. The outlet tunnel invert at the intake structure is at elevation 3992. From the tunnel plug the 15-foot-diameter penstock has a slope of 0.0068 to the tunnel portal.

The penstock manifold, turbine branch penstocks, and outlet pipes beyond the penstock portal are embedded in concrete. (Refer to Plate 2-4). Three 90-inch-inside-diameter, plate-steel turbine branch penstocks (power penstocks) branch off on 33-foot centers from the manifold (centerline at elevation 3870) and lead into the powerplant. The manifold is reduced in size (transitions) beyond the turbine branch penstocks intakes to supply five 72-inch, plate-steel outlet pipes. The centerline elevation of each of the outlet pipes is 3872 and the pipes are set on 20-foot centers.

Flow from the outlet pipes is controlled by a 72-inch, hollow-jet valve installed on the end of each pipe. The hollow-jet valve is attached to the flange of the outlet pipe which extends beyond the concrete-embedded portion into the valve chamber. The valve chamber is provided with stoplog grooves on the stilling basin end so that, with the installation of stoplogs, a valve may be taken out of service while the remaining outlets may be discharging. Each valve control is located directly above the valve on the operating floor and consists of a motor-driven reduction unit driving the valve operating shaft. Each valve is designed to regulate the discharge of water through the outlet pipe from zero to a maximum of 2,500 cfs. Maximum discharge of all five outlet pipes together is limited to 10,000 cfs. Plate 2-5 shows Anderson Ranch Dam outlet works discharge rating chart.

One 72-inch, ring-follower gate is installed in each of the outlet pipes ahead of and used as an emergency and guard gate for the hollow-jet regulating valve. The ring-follower gates are normally in the full-open or full-closed position and are not designed to regulate the flow of water through the outlet pipes. These gates are hydraulically actuated and are designed to be normally opened and closed under balanced-head conditions; however, the design allows for emergency closure of the gates with unrestricted flow through the outlet pipe.

- (4) <u>Powerplant Facilities</u>. Anderson Ranch Dam was designed for a total of three generating units. Presently, two units are installed and operating and the third unit installation is planned for the future. (Refer to Plate 2-6). The powerplant facilities consist of the following:
 - (a) Power penstocks.
 - (b) Butterfly valves.
 - (c) Draft-tube bulkheads.(d) Hydraulic turbines.
 - (e) Generators.
 - (f) Transformers.
 - (g) Transmission lines.

Three power penstocks are connected to the penstock manifold previously described in the outlet works. Each of the three power penstocks is plate steel and has an inside diameter of 90 inches. Two of the three penstocks are waterways for the two existing generating units; the third penstock is presently capped. The centerline of the power penstocks is at elevation 3873 and the penstocks are set on 33-foot centers.

A 100-inch butterfly valve is installed in each of the two operating penstocks and is used as a shutoff valve at the inlet of the hydraulic turbine scroll case. The butterfly valve may be closed in emergencies and is normally closed when its unit is to remain shut down for a prolonged period or to permit unwatering the scroll case prior to inspecting or servicing of the unit. Opening or closing the valve is effected by rotating the horizontally pivoted valve leaf through 90 degrees by means of a piston in a hydraulic cylinder. Each valve is equipped with two bypass lines to equalize the water pressure on the two sides of the leaf before it is opened.

Draft-tube bulkheads, approximately 10 feet wide by 7 feet high, are provided for sealing of the turbine draft-tube openings when a turbine is shut down and unwatering of the draft tube is required. The bulkheads are lowered and raised by a 2-ton, hand-operated, twin-lift chain hoist suspended on a movable hoist frame.

Two vertical-shaft (Francis reaction type, 277 rpm) hydraulic turbines (centerline elevation 3873) are presently installed and operating at the powerplant. Each turbine has 20 movable wicket gates to control the supply of water to the turbine runner. The number of gates and the number of vanes or water passages in the runner are coordinated in a manner to ensure that the turbine will operate without objectionable vibration. Each turbine has a rated capacity of 18,500 horsepower at full-gate opening when operating under a net effective head of 245 feet. At heads above 245 feet, the turbine output is limited to the generator capacity by operating at restricted turbine gate openings. The point of best efficiency is obtained at 260 feet net effective head with a turbine output of approximately 17,000 horsepower. The discharge and plant factor upon which the turbines are based is 3,075 acre-feet per day, or 1,550 cfs, and a plant factor of approximately 45 percent.

A vertical-shaft generator is connected to each of the two existing turbines. Each generator is rated 20,000 kilowatts, 100-percent power factor, 3 phase, 60 cycles, 6,900 volts, and 277 rpm. The maximum possible output of the initial two-unit installation was 30,000 kilowatts at rated head (245 feet) and a power factor of 1.0 and 15,000 kilowatts at minimum head (170 feet). Installed capacity of the plant is 40,000 kilowatts (20,000 kilowatts for each unit). A powerhouse structure encloses the generators and the related operating equipment.

Each generator is connected through 6,900-volt cables to an outdoor-type, self-cooled, step-up transformer bank installed in the switchyard. The switchyard, located adjacent to the powerplant, uses a single bus connected to the outgoing 115,000-volt transmission line through a gang-operated disconnecting switch. Each transformer bank is connected to the bus through a single 115,000-volt oil circuit breaker. Anderson Ranch powerplant was designed to be operated manually from the main control board and no remote control or automatic reclosing of oil circuit breakers is provided. Therefore, it is necessary for the plant to be attended at all times.

(5) <u>Reservoir</u>. The reservoir pool level behind the Anderson Ranch Dam normally fluctuates between pool elevations of 4039.6 and 4196 (156.4 feet). The following tabulation outlines key reservoir elevations and capacity allocations:

Anderson Ranch Reservoir

Reservoir Element Elevation Crest of dam	
excavation	
Storage Element Elevation Range Allocation Freeboard 4198.2 to 4206 7.8 Feet Surcharge 4196 to 4198.2 10,504 AF Joint Use 4044 to 4196 418,178 AF Exclusive power 4039.6 to 4044 5,000 AF Inactive 3992 to 4039.6 41,000 AF Dead 3866 to 3992 29,000 AF Total active 4039.6 to 4196 423,178 AF Total live 3992 to 4196 464,178 AF Total gross 3866 to 4198.2 503,682 AF	1

Table 2-1, Page T 2-1, lists the elevation-capacity data for Anderson Reservoir.

The reservoir at normal full pool elevation 4196 is an impoundment over a mile wide at its broadest point and 13 miles long with a surface area of 4,740 acres. Anderson Ranch Reservoir has approximately 58 miles of shoreline at normal full pool.

(6) <u>Public Facilities</u>. Recreation areas on Anderson Ranch project lands are administered by the U.S. Forest Service as part of the Boise National Forest under a Memorandum of Agreement with the U.S. Bureau of Reclamation dated 19 January 1970. Table 2-2 (below) lists recreation sites and Plate 2-7 shows the location of recreation sites on project lands adjacent to the reservoir.

TABLE 2-2 Anderson Ranch Reservoir Recreation Areas

Area	<u>Facilities</u>	<u>Activities</u>
	<u>Campgrounds</u> :	
Castle Creek	2 units, toilets	Camping, fishing, boating
Evans Creek	1 unit, toilets	Camping, fishing
Little Wilson Creek	2 units, toilets	Camping, fishing, boating
·	Boating Sites :	
Curlew Creek	Ramp, parking, water, toilet, picnic areas	Boat launching, picnic- ing, undeveloped camping
Deer Creek	Ramp, parking, water, toilet, picnic areas	Boat launching, picnic- ing, undeveloped camping
Elk Creek	Ramp, parking, toilets	Boat launching
Fall Creek	3 ramps, parking, toilets	Boat launching
Pine Airport	Ramp, parking, toilets	Boat launching, picnic- ing, undeveloped camping
Anderson Ranch Dam	<u>Points of Interest</u> : Overlook area	Sightseeing

Other Sites:

Fall Creek Lodge (commercial)

Food, water, toilets, gas

Existing facilities at Anderson Ranch recreation sites are generally primitive. None of the sites has developed water supplies. All recreation sites are accessible by road. The recreation areas from Castle Creek upstream to Curlew Creek receive the highest use. Curlew Creek is a popular site with excellent facilities.

Boat launching facilities are located at Curlew Creek, Deer Creek, Elk Creek, Fall Creek, and Pine Airport but only Elk Creek, Fall Creek, and Curlew Creek ramps are usable below normal full pool (elevation 4196). The Elk ramp has a low-water elevation of 4166. Fall Creek has three launching ramps but only two of the ramps are usable below normal full pool and have an estimated low-water elevation of 4181. The Curlew Creek ramp has a low-water elevation of 4116.

2-03. Arrowrock.

a. <u>Location</u>. Arrowrock Dam is located approximately 75 river miles upstream of the mouth of the Boise River and is approximately 49 river miles below Anderson Ranch Dam. Lucky Peak Reservoir is directly downstream of Arrowrock Dam, and during high pool periods water within Lucky Peak Reservoir is backed onto the downstream face of Arrowrock Dam. The following tabulation outlines the location of the dam.

Arrowrock Dam

Stream: Boise River. River Mile: 75.4.

Drainage Basin: Boise River.

State: Idaho.

Counties: Boise and Elmore.

Location from nearby

community: 25 miles east of Boise.51/4

1/ Approximate road mileage.

- b. <u>Project Purposes</u>. Arrowrock is a multipurpose project which controls water from the 1,230-square-mile drainage area above Arrowrock Dam and below Anderson Ranch Dam. The project further regulates releases from Anderson Ranch Dam and provides irrigation water, flood control, and recreation. Refer to Section VII WATER CONTROL PLAN for the system use priorities and regulation plans.
- c. <u>Physical Components</u>. The following paragraphs discuss in general terms the physical components of the Arrowrock project (both structural and the reservoir). More detailed information on these items is available in the Standing Operating Procedures Arrowrock Dam, Boise Project, Idaho, Pacific Northwest Region, Bureau of Reclamation. Plate 2-8 shows the general plan and sections for Arrowrock Dam.
- (1) Dam. Arrowrock Dam is a thick-arch concrete structure with an arch radius of 661.74 feet. The dam has a structural height of 350 feet, a hydraulic height of 257 feet, and a crest length of 1,150 feet. Crest width is 16 feet and provides a road across the dam. The crest elevation is at 3216 for the top of dam roadway and 3219.75 for the top of the parapet wall. Maximum base width of the dam is 223 feet. The upstream face of the dam is set on a near-vertical slope. The downstream face of the dam has a slope of 1V on 0.65H between elevations 3140 and 3170, a slope of 1V on 0.67H between elevations 3010 and 3140, a slope of 1V on 0.70H between elevations 2930 and 3010, and a slope of 1V on 0.80H between elevations 2901 and 2930. The dam contains approximately 636,000 cubic yards of concrete.

There are three operating galleries within the dam. One gallery is at elevation 3090.5 and is approximately 455 feet long. The second gallery is at elevation 3003.5 and is approximately 310 feet long. The third gallery is located at elevation 2980 and is approximately 330 feet long. Access to the three operating galleries is by three entrances to the interior of the dam and stairways within the dam.

The dam contains an internal drainage system in which there are two types of drains. These are foundation drains and collector drains. Water that is picked up from the drains in the upper elevations of the dam is passed to the downstream surface of the dam and spilled at approximately elevation 3090. Other water from drains is collected in the sump pump at operating gallery elevation 2980.

(2) <u>Spillway</u>. The spillway is located in a granite cut at the right side of the dam. It is a gated and lined side channel. The channel is trapezoidal in shape and approximately 800 feet in length. Channel sideslopes are 1V on 2H and the bottom slope begins at 0.12V on 1H and tapers to 0.03V on 1H. Water leaving the channel falls uncontrolled down the right abutment about 400 feet from the end of the dam. The crest of the spillway weir is at elevation 3210.

The effective crest of the spillway is controlled by six drum gates. Each drum gate is 62 feet long, 6 feet high, and separated by 6-foot piers. The drum gates are made of structural steel and are hydraulically operated. The gates act between elevations 3210 and 3216 and are operated only in either the low or high position since there is no stop in between. For pool elevations of 3210 or above, the spillway is used as much as possible to regulate discharges from Arrowrock. Discharges are regulated to some extent by using a combination of the drum gates in the two positions. For example, four gates may be at the 3216 position and two gates at 3210, or five gates may be at 3216 and one at 3210. The spillway capacity maximum flow at a maximum reservoir surface elevation of 3219.75 (the top of the dam parapet wall) is 40,000 cfs. Maximum operating reservoir surface, with the gates in the open position, is set at elevation 3216.

(3) <u>Outlet Works</u>. The outlet works consist of two horizontal rows of 10 discharge outlets each and five low-elevation sluice gates. The outlet works are designed for a maximum discharge of 21,800 cfs at the normal reservoir pool elevation of 3216 under emergency conditions. Maximum discharge capacity otherwise is 10,200 cfs. Outlet capacity at the minimum pool elevation of 2967 is 2,100 cfs. Plate 2-9 is an isometric drawing of the outlet layout.

The upper row of discharge outlets is located at elevation 3105 and consists of 10 outlet pipes (numbers 11 through 20), each approximately 70 feet long and set on 12.5-foot centers. Each outlet pipe is 52 inches in diameter and is lined with steel for the first 9 feet with the remainder being concrete. Ten 58-inch balanced needle valves (numbers 11 through 20) control the flow through the outlet pipes. The needle valves are hydraulically opened and closed using electric-motor-driven horizontal centrifugal pumps. Valves numbers 11, 12, 13, 14, 18, 19, and 20 must be operated in either fully opened or fully closed positions, while valves numbers 15, 16, and 17 are equipped with positive controls to limit valve openings to any desired partially open position. Flows from the upstream side of the dam travel through the valves and outlet pipes and are discharged to the open air on the downstream side of the dam. Rectangular, radially spaced bar trashracks on the upstream face of the dam protect the valves from trash.

The lower row of discharge outlets is located at elevation 3018 and consists of 10 outlet pipes (numbers 1 through 10), each approximately 130 feet long. Outlets numbers 1, 2, and 3 are 72 inches in diameter and discharge into a diversion tunnel. Outlets 4 through 10 are 52 inches in diameter and have the same arrangement as the upper outlets. All 10 outlets have 58-inch, balanced needle valves like those installed on the upper outlets. Valve and outlet number 1 are no longer operable and the outlet pipe has been plugged. Valves in the lower outlets are operated in the same manner as the upper outlets, and valves numbers 4, 5, and 6 are equipped with the positive controls. All valves are protected by trashracks.

The Bureau of Reclamation has placed restrictions on the use of the lower valves. The lower valves (elevation 3018) are not to be used when the reservoir pool is above elevation 3105 because of vibration damages which occur as a result of high heads. Not using the lower valves does limit vibration damages, but it also seriously limits discharge capabilities. Table 2-3, page T2-2, outlines valve and spillway discharge capacities for varying reservoir pool elevation conditions.

The sluice gates consist of five 60-inch-diameter tunnels, each with a 5-foot by 5-foot hydraulic-operated slide gate, trashrack, and an upstream bulkhead for closing the tunnel for inspection and maintenance. Centerline elevation of the sluice gates is 2967. Currently, only gates 1 through 4 are operational. Gate 5 is no longer used and the trashrack for it has been removed.

The Bureau of Reclamation has placed restrictions on use of the sluice gates. The sluice gates are used for releases only when the reservoir elevation is below 3018 and the Lucky Peak Lake elevation is below the outlets. These gates can be used to drain Arrowrock Reservoir, but they should never be opened with less than 15 to 20 feet difference in head between Arrowrock and Lucky Peak Reservoirs. (The head difference is necessary to prevent mud from washing into the gates from Lucky Peak Lake and preventing closure of the sluice gates.)

- (4) <u>Power Facilities</u>. Arrowrock Dam presently has no generating units installed but the dam was designed so that power facilities could be added in the future. Outlets 1, 2, and 3 were designated as power tunnel outlets and they currently are connected to a diversion tunnel. Power generation potential at Arrowrock Dam was substantially reduced when Lucky Peak Dam was constructed since water backs up on the downstream face of Arrowrock Dam and thus reduces the effective power head. The Bureau of Reclamation is presently evaluating the feasibility of power at Arrowrock Dam and perhaps power generation will be installed in the future.
- (5) <u>Reservoir</u>. The reservoir pool level behind Arrowrock Dam normally fluctuates between pool elevations of 2974 and 3216 (242 feet). The following tabulation outlines key reservoir elevations and capacity allocations:

Arrowrock Dam

Reservoir ElementElevationTop of parapet wall3219.75Crest of dam3216Normal full pool3216Top of inactive pool2974Streambed at dam axis2959Lowest point of foundation
excavation 2866
Storage Element Freeboard.Elevation Range 0 FeetSurcharge.3216 to 3219.7511,630 AFJoint use.2974 to 3216.286,600 AFTotal active capacity.2974 to 3216.286,600 AFTotal gross capacity.2974 to 3219.75298,230 AF
Table 2-4, Page T2-3, lists the elevation-capacity data for Arrowrock Reservoir.

The reservoir at normal full pool elevation 3216 is an impoundment with a surface area of 3.150 acres and 60 miles of shoreline. Two prominent reservoir arms extend up the Middle Fork and South Fork of the Boise River. The Middle Fork reservoir arm is about 9 miles long from the dam to the upper end of the reservoir. The South Fork reservoir arm is about 7 miles long from its confluence with the Middle Fork to the upper end of the reservoir. Arrowrock Reservoir is approximately 1/2-mile wide at its broadest point above Grouse Creek because of the generally steep terrain along the reservoir shoreline.

Access to either arm of the reservoir is over good standard gravel or sandy surfaced roads. About 4 miles of the South Fork arm and the south and east sides of the Middle Fork arm are inaccessible except by foot, horseback, or boat.

(6) <u>Public Facilities</u>. Recreation areas on Arrowrock project lands are administered by the U.S. Forest Service as part of the Boise National Forest under a Memorandum of Agreement with the Bureau of Reclamation dated 30 July 1952. Table 2-5 (below) lists recreation sites, and Plate 2-10 shows the location of these recreation sites on project lands.

Arrowrock Reservoir Recreation Areas

<u>Area</u>	<u>Facilities</u>	<u>Activities</u>
<u>Campgrounds</u> :	•	
Cottonwood Creek	3 units, toilets	Camping, fishing, picnicking
Irish Point	Undeveloped, water, toilets	Undeveloped camping, fishing, picnicking
Willow Creek	10 units, water, toilets	Camping (trailers allowed), fishing, picnicking
Boating Sites:		
Arrowrock	Ramp, parking, toilets	Boat launching
Points of Interest:		

Boating facilities within the reservoir area are limited to Arrowrock boat ramp which is located 1-1/2 miles above Arrowrock Dam. Arrowrock boat ramp has a low-water elevation of 3125 (91 feet below normal full pool elevation 3216).

2-04. Lucky Peak.

Arrowrock Dam

Location. Lucky Peak Dam is located approximately 64 river miles above the mouth of the Boise River and is approximately 12 river miles below Arrowrock Dam. The following tabulation outlines the location of the dam.

Lucky Peak Dam

Stream: Boise River. River Mile: 63.8.

Drainage Basin: Boise River.

State: Idaho. County: Ada.

Location from nearby community:51/4

9 miles southeast of Boise.

1/ Approximate road mileage.

Sightseeing

- b. <u>Project Purposes</u>. Lucky Peak is a multipurpose project which controls water from the 470-square-mile drainage basin above Lucky Peak Dam and below Arrowrock Dam. The project also reregulates releases from Arrowrock Dam and provides flood control, irrigation water, recreation, and fish and wildlife water. Refer to Section VII WATER CONTROL PLAN for the system use priorities and regulation plans.
- c. <u>Physical Components</u>. The following paragraphs discuss in general terms the physical components of the Lucky Peak project (both structural and the reservoir). More detailed information on these items is available in the Operation and Maintenance Manual Lucky Peak Project, U. S. Army Engineer District, Walla Walla, 1959. Plate 2-11 shows the general plan and sections for Lucky Peak Dam.
- (1) <u>Dam</u>. Lucky Peak Dam is a rolled earth and gravel embankment with a central impervious core extending from the base to the top of the dam. The dam has a structural height of 340 feet, a hydraulic height of 238 feet, and a crest length of 1,700 feet. The crest of the dam is at elevation 3078 and has a width of 30 feet which provides an area for a roadway across the dam. Base width of the dam is 1,350 feet. The upstream face of the dam is on a 1V on 2.25H slope from the crest elevation 3078 down to elevation 3008, a 1V on 2.75H slope down to elevation 2928, and a slope of 1V on 3.25H down to elevation 2850. The downstream face is on a 1V on 1.50H slope from the crest down to elevation 3066, a 1V on 2H slope down to elevation 3008, a 1V on 2.25H slope down to elevation 2928, and a 1V on 2.50H slope down to elevation 2845. Material volume of the dam is approximately 5.9 million cubic yards.
- (2) <u>Spillway</u>. The spillway is located south of the dam. It is 600 feet long, has training wall abutments at each end, is made of reinforced concrete, and has an ogee shape with an apron on the downstream side. The crest of the spillway is at elevation 3060.

Discharge over the spillway is uncontrolled and travels over the unlined open hillside to the river below the project structures. At a maximum design pool elevation of 3072, approximately 93,300 cfs would be passed over the spillway. The spillway is for emergency use only and should never be used for normal operations, since use of the spillway is expected to severely erode the unlined hillside below the spillway. To prevent overtopping the spillway, either accidentally or by wave action, the reservoir pool must be maintained at elevations below 3060.

(3) <u>Outlet Works</u>. The outlet works are designed for a maximum discharge of 30,500 cfs at a normal reservoir pool elevation of 3055 and a maximum discharge of 17,000 cfs at a minimum pool elevation of 2905. The outlet works consist of the following:

- (a) Intake tower structure.
- (b) Tunnel and penstock.
- (c) Outlet manifold structure.
- (d) Auxiliary tunnel and cone valves.
- (e) Powerhouse.

A vertical intake tower is located south of the left abutment of the dam and is connected to the dam by a 231-foot-long, 12-footwide access bridge. (Refer to Plate 2-12.) The intake tower is made of concrete and is approximately 259 feet high, extending from elevation 2824 (top of foundation) to elevation 3083. The tower is approximately 55 feet wide and has a depth of approximately 41 feet (including trashrack slots and facilities) at its top. The intake structure sidewalls and downstream face are vertical and the upstream structure face is on a 6V on 1H slope. The sloping upstream tower face is equipped with trashrack slots and facilities. The trashracks consist of nine equal panels, each of which is 22 feet 7 inches wide and 11 feet 3 inches high. The trashracks extend between elevations 2824 and 2924. Within the intake tower there are two emergency gates and one bulkhead gate. Valves (sluice gates), with handles on the top deck, provide means of balancing hydraulic heads as needed to return gates to operating condition after inspection and/or maintenance.

Each of the two emergency gates is 11 feet wide and 24 feet high and is mounted on caterpillar roller treads which run in the emergen-The emergency gates are moved up and down with steel cy gate slots. cables mounted on operating hoists. These two gates are used to shut off flow into the tunnel for emergency and maintenance uses and were designed to close under any reservoir head that can be imposed upon them. They are designed to open at a differential head equal to a pool elevation of only 2960. For reservoir elevations greater than 2960, the hydrostatic head on either side of the gates must be balanced before opening the gates. Filling the tunnel and tower to pool elevation by opening either or both sets of equalizing valves (sluice gates) will balance the head on the emergency gates. Balanced heads on closing, though not necessary, allow the gate to seat more securely and reduce leakage. Minimum leakage is especially desirable prior to an extended tunnel unwatering period. emergency gates should not be used for flow regulation into the tunnel since high-velocity water causes gate vibrations that would damage rollers and seals.

A single intake bulkhead gate is provided for an extra closure of either one of the two tunnel openings. The normal use of this bulkhead is as a tunnel entrance closure to permit repairs on one or the other emergency gate during a time when it should be closed or to permit unusual repairs to one gate frame. The bulkhead gate is 11 feet 6 inches wide and approximately 26 feet high and is designed to withstand only a hydrostatic head equal to a 2940 pool elevation. However, an overload on the bulkhead may be allowed up to a maximum pool elevation of 2960. The bulkhead can only be moved under balanced-head and no-flow conditions. Bulkhead movement is guided by bulkhead slots within the intake tower and the bulkhead is moved by using a mobile crane from the top of the intake structure.

An outlet tunnel and penstock carry water from the intake structure 1,165 feet through the left abutment ridge to the manifold structure in the downstream channel. Centerline of the tunnel at the intake tower is at elevation 2835.5 and the tunnel has a slope of 0.003. The tunnel is 23 feet in diameter (top 815 feet lined to 22 feet diameter), lined with steel, and grouted with concrete to the rock. A 200-foot buried steel penstock, also 23 feet in diameter, carries water from the tunnel exit to the manifold structure. The centerline of the penstock is at elevation 2832 and the penstock has no slope.

The outlet manifold structure controls discharges from Lucky Peak (Plate 2-13). It contains the manifold water passages, bulkhead slots and gates, six slide gates and flipbuckets, and manifold control house. The manifold control house contains the hydraulic machinery, an engine generator and controls, and the remote recording gages for slide gate openings, hollow jet valve opening, and pool elevation. The outlet manifold water passage is approximately 148 feet in length and has a centerline elevation of 2832. The manifold is 23 feet in diameter where connected to the tunnel penstock and tapers to a 20.4-foot-square chamber over a 35-foot transition length. The manifold then tapers to approximately 9 feet wide by 15 feet high at the end of its 148-foot length. Six outlet chambers (5 feet 3 inches wide and 10 feet in height) branch off from the main manifold passage at 60-degree angles. Each outlet chamber contains slots for a bulkhead and a 5-foot 3-inch-wide by 10-foot-high slide gate which is operated by a hydraulic gate-operating cylinder. Centerlines of the outlet chambers are set approximately 21 feet apart. Table 2-6 lists discharge rating for Lucky Peak Dam slide gates. In addition to the six outlet chambers just described, a smaller (2-foot-wide by 3-foot-high) chamber also branches from the manifold passage at a 60-degree angle. A 2-foot-wide by 3-foot-high slide gate is located within the chamber. Maximum release capacity from all the outlets at normal full pool (elevation 3055) is approximately 30,500 cfs and release capacity at a minimum pool elevation of 2905 is approximately 17,000 cfs. When releasing water from Lucky Peak Reservoir, certain precautions must be taken to avoid problems. Some of these problems are discussed in the following paragraph.

Erosion has occurred with severity at gate openings of 1.7 and 1.8 feet when pool head is over 100 feet. For that reason, gate openings should always be more than 2 feet (preferably 4 feet) when there is 100 feet of head. At gate openings from zero to 2 feet the water is directed downward, causing erosion on the bottom of the channel and the sides near the bottom. When the head drops below 100 feet there is no serious erosion problem at any gate setting. Cavitation occurs near the maximum gate opening; therefore, the top foot of opening (between the ninth and tenth foot) should normally not be used. When reservoir releases would normally require gate settings between 9 and 10 feet of opening, an additional gate is operated and both are set at smaller openings. A flipbucket at the end of each outlet produces a long jet of water which, to a small extent, dissipates energy in flight. The primary purpose of the flipbucket is to throw the water downstream where the resultant turbulence will not endanger the integrity of the dam and outlet manifold structure. It is therefore most desirable to use gates 1 or 2 as much as possible to reduce the amount of spray on the roadway.

The auxiliary by-pass system consists of an intake structure, a steel-lined conduit, 12 feet in diameter and 2435 feet long, 1325 feet encased in a drilled tunnel and 1085 in open cut and fill, and an outlet works. Intake works include an intake gate, maintenance bulkhead gate and trashracks. Outlet works include a concrete valve house with two 84-inch fixed cone energy dissipating valves. Design discharge at elevation 3055 is 5861 cfs.

- (4) Powerplant Facilities. In 1988 a 3-unit powerhouse with about 90 mw of total installed capacity was added to Lucky Peak. The powerplant facilities consist of the following:
 - (a) Power penstocks.
 - (b) Butterfly valves.
 - (c) Draft-tube bulkheads.
 - (d) Hydraulic turbines.

Three power penstocks are connected to the existing outlet tunnel. Each of the three power penstocks is plate steel and encased in concrete. Two of them have an inside diameter of 168 inches and the small one has an inside diameter of 84 inches just upstream of the turbine shutoff valve. The centerline of the power penstocks is at elevation 2788 for the large units and elevation 2783 for the small one.

A 168 inch butterfly valve is installed in each of the two large penstocks and an 84 butterfly valve is installed on the small one. These valves are used as a shutoff valves at the inlet of the hydraulic turbine scroll cases. The butterfly valve may be closed in emergencies and is normally closed when its unit is to remain shut down for a prolonged period or to permit unwatering the scroll case prior to inspecting or servicing of the unit. Opening or closing the valve is effected by rotating the horizontally pivoted valve leaf through 90 degrees by means of a piston in a hydraulic cylinder. Each valve is equipped with two bypass lines to equalize the water pressure on the two sides of the leaf before it is opened.

Four draft-tube bulkheads (two for each unit), approximately 19 feet wide by 12 feet high, are provided for sealing of the large turbine draft-tube openings when a turbine is shut down and unwatering of the draft tube is required. One draft-tube bulkhead, approximately 19 feet wide by 6 feet high, is provided for sealing of the small turbine draft-tube opening when the turbine is shut down and unwatering of the draft tube is required. The bulkheads are lowered and raised by the 15-ton powerhouse gantry crane and are dogged in place at the top of the gate slots for storage when not in use.

Two vertical-shaft Kaplan hydraulic turbine generator units rated 46 mw each and one vertical-shaft Kaplan hydraulic turbine generator unit rated at 11.5 mw are presently installed and operating at the powerplant. Each turbine has 20 movable wicket gates to control the supply of water to the turbine runner. The number of gates and the number of vanes or water passages in the runner are coordinated in a manner to ensure that the turbine will operate without objectionable vibration. Operating range is 242 ft. to 80 ft. A powerhouse structure encloses the generators and the related operating equipment.

(4) <u>Reservoir</u>. The reservoir pool level behind Lucky Peak Dam normally fluctuates between pool elevations of 2905 and 3055 (150 feet). The following tabulation outlines key reservoir elevations and capacity allocations.

Lucky Peak Reservoir

Reservoir Element	Elevation
Crest of dam	3078
Maximum design water surface	
Top of uncontrolled spillway	
Normal full pool	. 3055
Top of active conservation	
pool	. 2905
Streambed at dam axis	
Lowest point of foundation	
,	
excavation	
<u>Storage Element</u> <u>Elevation Range</u>	<u>Allocation</u>
Spillway	
freeboard 3055 to 3060	5 Feet
Surcharge 3055 to 3060	
•	
Joint use 2905 to 3055	204,3/1 AF

Inactive 2824 to 2905. . . . 28,767 AF

capacity 2905 to 3055 . . . 264,371 AF

capacity 2824 to 3060. . . . 307,043 AF

Table 2-7, Page T 2-4, lists the elevation-capacity data for Lucky Peak Reservoir.

(5) <u>Project Lands</u>. Project-related land resources are managed for a variety of public purposes in addition to the actual operation of the dam facilities and reservoir. Among these land uses are recreation developments, roads and highways, and wildlife management.

Total active

Total gross

(6) <u>Public Facilities</u>. Recreation developments on project lands are the responsibility of the Corps of Engineers, with cooperation by the Idaho Department of Parks and Recreation. Under the Federal Water Project Recreation Act of 1965 (Public Law 89-72), the Corps is authorized to include all new recreation developments as part of a project on a 50-percent cost-sharing basis. While the entire Lucky Peak Lake area contributes to public recreational needs, most recreational activities and expenditures are concentrated in nine locations, with the Forest Service assuming responsibility for one additional area. The locations of the recreational areas are shown on Plate 2-15 along with a list of these areas and activities. All of the recreational areas except Lucky Peak viewpoint and Sandy Point have boat tie-up docks. Boat launching facilities are located at Barclay Bay, Macks Creek, Robie Creek, and Spring Shores, but only Barclay Bay and Spring Shores have launching ramps which are usable below normal full pool (elevation 3055). There are two ramps and a boat handling dock at Barclay Bay area. The Turner ramp has a low-water elevation of 2910 and the other Barclay ramp is at 3055. The Spring Shores area has one ramp at a low-water elevation of 2950 and another ramp at 3050. Spring Shores is a public marina which provides boat moorage.

2-05. <u>Diversion Dam, New York Canal, Lake Lowell</u>.

- a. <u>Locations</u>. The Boise River Diversion Dam is located 1.8 miles downstream from Lucky Peak Dam and about 7 miles southeast of Boise. The New York Canal headworks is located on the left abutment of the Diversion Dam. From the Diversion Dam, the New York Canal follows a winding southwesterly path for 40 miles to Lake Lowell. Lake Lowell is located 27 miles southwest of Boise. Plate 2-1 shows the locations for the Diversion Dam, New York Canal, and Lake Lowell.
- b. <u>Project Purposes</u>. The Diversion Dam diverts water from the Boise River into the New York Canal and Penitentiary Canal for irrigation and flood control. The New York Canal carries water from its headworks at the Diversion Dam to serve distribution laterals and Lake Lowell. Lake Lowell provides storage for Boise River water diverted for irrigation water.

c. Project Descriptions.

(1) <u>Diversion Dam and New York Canal</u>. The Diversion Dam is a rubble-concrete, weir-type structure with an earthfill section on each abutment protected on the upstream face by a concrete retaining wall. he overall length of the dam from abutment to abutment is about 500 feet. The ogee-type spillway has a structural height of 46 feet, a hydraulic height of 35 feet, and a crest length of 216 feet, excluding the 30-foot logway. The spillway crest elevation is 2812.24. The spillway capacity is 40,000 cfs. The following tabulation lists pertinent elevations for the Diversion Dam:

Top of New York Canal headworks28	29.84
Crest of dam	
Roller gate seal28	
New York Canal28	
Crest of roller gate	
Top of flashboards28	
Normal maximum pool28	18.90

On 15 March 1976 the Boise River Diversion Dam and Powerplant were designated historic structures in the National Register. The power-house main floor elevation is 2827.84 and has three inactive generators.

The headworks of the New York Canal consist of eight 5-foot-wide by 9-foot-high motor-operated slide gates that control the flow of water into the canal. Maximum hydraulic capacity of the canal is 2,815 cfs.

Details of operation and maintenance and structural features for the Boise River Diversion Dam and New York Canal are presented in the Standing Operating Procedures (SOP) - Boise River Diversion Dam - Boise Project, Idaho; U.S. Bureau of Reclamation, 20 April 1978.

(2) <u>Lake Lowell</u>. The Deer Flat Dams, three earthen embankments (upper, middle, and lower) form the offstream Lake Lowell Reservoir. Lake Lowell's total active storage capacity is 169,000 acre-feet and inactive capacity is 8,000 acre-feet, which amounts to a total storage capacity of 177,000 acre-feet. Lake Lowell has a surface area of about 9,800 acres at normal full pool elevation 2530.5. Details on operation and maintenance and structural features for the Deer Flat Embankments and Lake Lowell are presented in the Standing Operating Procedures - Deer Flat Embankments and Lake Lowell Reservoir - Boise Project, Arrowrock Division, Idaho; U.S. Bureau of Reclamation, 12 July 1979.

d. Public Facilities.

- (1) <u>Diversion Dam</u>. The Diversion Dam reservoir cannot support much recreation use because of the need to regulate diversion flows and flows passing the dam. However, group tours of the Diversion Dam and inactive powerplant can be arranged through the Bureau of Reclamation Central Snake Projects Office during the summer season.
- (2) <u>Lake Lowell</u>. Lake Lowell is a high-recreation-use area with fishing, boating, and picnicking being the most popular recreation activities. A park with boat ramp, concession stand, and picnic areas is located between the lower and middle (Forest) embankments. Numerous access roads lead to various areas around the lake.

III - HISTORY OF PROJECTS

3-01. General. The Boise River reservoir system was initially developed to support irrigation and has been expanded through the years because of the increasing demand for irrigation and flood control. The earliest use for the water was primarily agricultural and the first right to divert the water from the Boise River for irrigation purposes was developed in This water irrigated the town of Boise and supplied Fort Boise. Agriculture then actively started in the early 1880's when settlers began filing on desert lands under private irrigation enterprises. 1900, the Idaho legislature provided for the formation of irrigation districts. Passage of the Federal Reclamation Act in 1902 enabled landowners to organize and to petition for Government development, which resulted in the initiation of the Boise Project by the Bureau of Reclamation. Authorization for construction of the original Boise Project (now the Arrowrock Division which serves that portion of the Boise Project lands situated between the Boise and Snake Rivers) was made on 27 March 1905. Since its first authorization, the Project has expanded in accordance with an orderly program of development. Diversion Dam, New York Canal, and Lake Lowell (Deer Flat Reservoir) were the first Project facilities completed. Next came the construction of Arrowrock Dam. All of these facilities were authorized and built for irrigation purposes. Later, Anderson Ranch Dam was built as a multipurpose project. The Corps of Engineers then built Lucky Peak Dam as a multipurpose project authorized primarily for flood control.

3-02. Lake Lowell, Diversion Dam, and New York Canal. These facilities were authorized on 27 March 1905 under the original Boise Project. Construction began in 1906 and Lake Lowell began storing water in 1908. A powerplant at Diversion Dam, built originally to supply power for construction of Arrowrock Dam, was completed by 10 October 1908 and placed in operation in 1912. Since the original construction of these facilities, some modifications have occurred. The Upper Lake Lowell Dam was modified in 1909 and 1913, and both Lake Lowell dams were modified in 1911 and 1938. The New York Canal was enlarged in the period from 1909 through 1912.

Along with the facilities came water rights granted to the Bureau of Reclamation. The earliest right grew out of a filing by C.W. Moore, et al., as Water Right No. 63-0301 with a priority date of 14 December 1903. This was transferred to the Secretary of the Interior on 24 February 1904. The original application was for 5,200 cfs but was modified to 1,355 cfs

for irrigation of 240,000 acres in the Boise Valley. This application was preparatory to the development of Boise Project storage in Lake Lowell. The second filing was applied for by W. E. Weymouth, Supervising Engineer for the U.S. Reclamation Service. The original request was for 3,553 cfs for a power installation at Diversion Dam and 634 cfs for storage water in Lake Lowell. The final right was developed for 1,500 cfs for power (right No. 63-0367) and 926.5 cfs for irrigation (rights Nos. 63-0302 and 63-0373). After the New York Canal was enlarged, B. E. Stoutmeyer, District Counsel for the Bureau of Reclamation, made an application for 300 cfs listed to serve 164,572 acres of Boise Project land. This application, water right No. 63-2388, has a priority date of 18 August 1924.

3-03. Arrowrock Dam. Construction of Arrowrock Dam was authorized on 6 January 1911. The construction period was from 1911 to 1915 and the first storage began on 22 October 1914. During the period 1935 through 1937, Arrowrock Dam was repaired and raised 5 feet, thus increasing storage by 9,000 acre-feet. The original construction involved the use of a rather high proportion of sand-cement, and by 1935 the concrete on the downstream face of the structure showed deterioration due to climatic conditions. Repairs included refacing the downstream face and spillway channel.

Arrowrock Reservoir carries two water rights. The first was filed for by W. E. Weymouth in the name of the U.S. Reclamation Service as water right No. 63-0303. This water right is for 8,000 cfs and has a priority date of 13 January 1911. As a result of the enlargement of Arrowrock Reservoir in 1937, R. J. Newell filed water right No. 63-3613 for 15,000 acre-feet of water with a priority date of 25 June 1938 for the Bureau of Reclamation. This water was to serve Federal project lands in Ada and Canyon Counties and was the first right identified in terms of annual storage amounts in a reservoir.

3-04. Anderson Ranch. Construction of Anderson Ranch Dam was authorized on 12 August 1940 by the Secretary of the Interior under the provision of Section 9 under the Reclamation Project Act of 1939 (53 Stat. 1187). The construction period started in 1941 and the project was completed in 1950. Storage began on 15 December 1945.

To cover the operations and development of Anderson Ranch Dam and Reservoir, a water rights filing was made for the Bureau of Reclamation as water right No. 63-3614 for 493,161 acre-feet for power and irrigation use. The priority date is 9 December 1940 and lists 275,766 acres of land to be served and a powerplant of 324 feet of head and 20,000-kW capacity.

3-05. <u>Lucky Peak</u>. Construction of Lucky Peak Dam was authorized by Public Law 526, Seventy-Ninth Congress, Second Session, approved 24 July 1946, which reads as follows:

"The project for the Lucky Peak Reservoir on Boise River, Idaho, is hereby authorized substantially in accordance with the recommendations of the Chief of Engineers in his report dated 13 May 1946....Provided that, said dam and reservoir shall be so constructed as not substantially to damage the structure of the Arrowrock Dam, and shall be operated in such manner as not materially to interfere with the operation of said Arrowrock Reservoir."

Construction began in October 1949 and the project was completed in December 1957. Storage began on 16 October 1954. Listed below are a few of the important events and dates within the project history.

Project authorized	24 July 1946
started	
Permanent river flowing	
through tunnel	. July 1952
elevation 2854	. April 1954
Outlet works and machinery completed	ehruary 1955
Intake tower bridge and	
machinery completed	May 1955
Dedication of project	23 June 1955
Reservoir raised to eleva-	
tion 3060	25 June 1955
Project completed other than	
road relocation D	ecember 1957

The Bureau of Reclamation has filed for all storage rights within Lucky Peak Reservoir. This filing was for 307,000 acre-feet of storage (278,200 usable capacity) and was under water right No. 63-3618. A storage permit with a priority date of 12 April 1963 was issued to the Bureau and the license is pending upon proof of beneficial use. The existing permit was issued on the following condition: "...that the yield of water from 50,000 acre-feet of space be available for maintaining minimum wintertime flow in the Boise River below Boise Diversion Dam under a release pattern established from time to time by the Director of the Idaho Department of Fish and Game."

3-06. Project Water Rights. The water and storage rights discussed within each project history have evolved with the projects and are as important as the physical project facilities. Authorization for and building of the irrigation projects depended upon having the water available to fully utilize the projects and realize the benefits. The following tabulation summarizes water and storage rights within the Boise River reservoir system granted to the Bureau of Reclamation.

Date of Priority	Point of Diversion	Amount
14 December 1903	Diversion Dam	1,354.58 cfs
01 April 1909	Diversion Dam	292.5 cfs
16 June 1909	Diversion Dam	634 cfs
13 January 1911	Arrowrock Reservoir	8,000 cfs
18 August 1924	Diversion Dam	300 cfs
25 June 1938	Arrowrock Reservoir	15,000 AF
09 December 1940	Anderson Ranch Reservoir	493,161 AF
12 April 1 96 3	Lucky Peak Reservoir <u>1</u> /	307,000 AF

- 1/ License pending upon proof of beneficial use.
- 3-07. Memorandum of Agreement. From 1953 until the date of final approval of this Water Control Manual, the Boise River reservoirs were regulated under terms of a Memorandum of Agreement between the Department of the Army and the Department of the Interior. This agreement committed the existing irrigation reservoirs (Arrowrock and Anderson Ranch) to a flood control operation with Lucky Peak Reservoir. The agreement was made upon completion of Lucky Peak Reservoir to protect existing irrigation use of Anderson Ranch and Arrowrock reservoirs during flood control regulation and to commit the space in Lucky Peak Reservoir to irrigation as well as flood control use. Important features of the Memorandum of Agreement included:
- a. Commitment of 983,000 acre-feet of space in the three reservoirs (Anderson Ranch, Arrowrock, and Lucky Peak) to use for flood control and irrigation. This was essentially all of the active space in the reservoirs.
- b. Specification of flood space parameter curves to be used from 1 January to 31 July, with agreed-upon forecasts of runoff to determine evacuation requirements.
- c. Protection of space allocations in Arrowrock, Anderson Ranch, and Lake Lowell against water loss as a result of flood control operations.

- d. Provision for coordination and agreement on runoff forecasts.
- e. Specification of a maximum regulated flow objective of 6,500 cfs below Diversion Dam at the Glenwood gage during the reservoir refill period. This flow could be made if diversion rates assumed in the derivation of the flood control space parameter curves were not made.
- f. Provision of evacuation and refill sequence among the three reservoirs.
- g. Provision for releases during the refill period greater than 6,500 cfs below Diversion Dam when forecasts of runoff required more than 983,000 acre-feet to be provided for flood control. Those increased releases would be specified by the Chief of Engineers (U.S. Army Corps of Engineers) after consultation with the Commissioner of Reclamation.
- h. Provision for maintaining Lucky Peak Lake full as long as possible after the flood control season or until 15 September for recreation purposes. This would be done by releasing Arrowrock water first for downstream irrigation uses.
- i. Provisions for modification of the regulating plan with respect to allowable releases and space requirements for flood control upon agreement of the Chief of Engineers and Commissioner of Reclamation or their authorized representatives. Such modification would take place only after consultation with the Idaho Reclamation Engineer, Boise River Watermaster, and Boise Board of Control Manager.

IV - BASIN CHARACTERISTICS

4-01. General. The Boise River Basin has a total drainage area of approximately 4,130 square miles. It is located in southwestern Idaho and is one of the major tributaries of the Snake River, a principal branch of the Columbia River system. The Payette and Salmon River Basins are to the north and the Sawtooth Mountains and Big Wood River Basin are located to the east. The main stem of the Snake River is to the south and west. The long basin axis trends east-west and includes large portions of Ada, Canyon, and Elmore Counties and small portions of Boise and Camas Counties. Principal streams within the Boise Basin flow in a westerly direction from the headwaters in the Sawtooth Mountains to the mouth of the Boise River, a distance of about 200 river miles. Topography and runoff characteristics naturally divide the Boise River Basin into two separate and distinctive watersheds—an upper and lower watershed.

4-02. Watershed Topography and Characteristics. The upper watershed consists of approximately 2,680 square miles of drainage area upstream of Lucky Peak Dam and is a fan-shaped, mountainous area which contains the headwaters of all the significant tributaries. This area is composed largely of precipitous mountains and is characterized by a highly dissected topography with deep V-shaped valleys, steep slopes, and narrow sharp top ridges. The upper watershed ranges in elevation from 3,000 to 10,600 feet and the mean elevation is approximately 5,800 feet. Principal tributaries of the Boise River are (1) South Fork-1,310 square miles, (2) Middle Fork and North Fork-830 square miles, (3) Mores Creek-430 square miles. These four tributaries contain approximately 62 percent of the total area of the Boise River above its mouth. The upper watershed is characterized by sparse population and very limited development.

The lower watershed consists of approximately 1,450 square miles of drainage area below Lucky Peak Dam. This area is composed of river bottoms, terraces, and low rolling to steep hills with few distinct mountains. Adjoining the Boise River is bottom land, varying from 1 to 3 miles in width, which constitutes the normal flood plain. Adjacent to this bottom land is a series of two terraces; the first occurs at an elevation of approximately 2,500 feet and the second between 3,000 and 4,000 feet. The terraces grade upward toward the east to a ridge that cuts the basin north and south at approximately the location of Lucky Peak Dam. This ridge (known as the Boise Front) forms the boundary between the

upper and lower watersheds. In contrast to the upper watershed, the lower watershed is quite heavily populated and is extensively developed. Streamflow within the lower watershed is quite limited and the main tributaries are Indian Creek, Willow Creek, and Dry Creek. These streams, except Indian Creek, are intermittent and normally flow only during the spring and early summer months.

4-03. <u>Soils and Geology</u>. The soils in the Boise Basin are of two types, residuals and sedimentary deposits. The residuals are disintegrated granite, rhyolite, and basalt. From the standpoint of runoff, the granite soil is of major importance since it covers 90 percent of the upper watershed and this is the part of the basin that contributes practically the entire runoff of the Boise River.

The geology of the Boise Valley area is very complex. Southwestern Idaho has been described as being a region of broad flood plains, dissected lava plateaus, mesas, buttes, cinder cones, minor faults and fault-line scarps, badland piedmont hills, and mountains of uplifted crystalline rock. The Boise Valley within this area has been described as a broad alluvial plain having low relief lying adjacent to the Boise River. The following description of the geology of the area has been abstracted from the report by Nace:

"The Boise Valley is underlain by a trough-like, impermeable floor of ancient consolidated rocks. Within the trough there is a great thickness of stream-and-lake-deposited sediments (Payette formation) and volcanic rocks (Owyhee rhyolite and Columbia River basalt), all having generally low permeability. Resting on these materials is a younger group of sediments--the Idaho formation--which is a lake-laid deposit. This formation is quite varied in permeability but generally is somewhat more permeable than the older sediments. Idaho formation, consisting chiefly of clay, silt, and sand, is a source of moderately deep artesian water in the Boise and Snake River Valleys. Streams spread a thick sheet of rather permeable terrace gravel on the ancient land surface of the Idaho formation. Lava flows formed the Snake River basalt which lies on the lower part of the gravel in some places and at others is covered by the upper part of the gravel. The present course of the Snake River resulted as the river cut a deep canyon through the basalt and sediments.

The Boise Valley developed by alternate stream erosion and deposition, resulting in terraces underlain by permeable younger terrace gravel and the bottom land occupied by highly permeable recent alluvium. Recent local basalt flows are interbedded with terrace gravels at a few places. The younger, variable, but more permeable deposits in the Boise Valley

thus occupy a partly closed basin that was eroded in the older terrace gravel and Idaho formation. Outflow occurs only to the westward on the surface and at shallow depth. Under natural water conditions the water table was at shallow depth in the bottom lands and not more than 100 to 200 feet deep under the terraces and lowland slopes. Under irrigation development, with much of the irrigated area on the terraces and surface applications of large amounts of water, a great deal of water which formerly discharged in the river now enters the ground and must be discharged westward through the ground. Earth materials to the west, however, are generally less permeable than those to the east. As a result, the water table has risen to the east to develop enough hydraulic gradient to move the water westward. Consequently, drainage problems have been encountered through most of the length of the valley and, due to the lenticular character of much of the alluvium, trouble spots still develop."1/

Water Quality and Sediment. Boise River water is of good quality in the upper watershed, and as it leaves Lucky Peak Dam the water has a high oxygen content, low BOD, TDS, and bacteria, and nutrient levels below those that will produce nuisance growth of algae. A water quality analysis of the Lucky Peak discharge is shown on Table 4-1, page 4-4. This water is adequate for swimming and other water contact recreation and supports a trout fishery; however, the quality of the water in the river degenerates as it moves through the Boise Valley. Water quality is dependent upon numerous factors and varies from year to year and Groundwater flows coming into the river have a dissolved oxygen (DO) deficit that exerts considerable influence on the river DO. City wastewater treatment plants, storm drain discharges, sewage lagoon discharges, feedlot runoff, and irrigation drain discharges all add to the degeneration of water quality throughout the valley. Steps have been and are being taken to reduce pollution loading on the river, but water quality within the lower Boise River is still a major problem.

4-05. Climate. The climate of the Boise River Basin is characterized by hot dry summers and moderately cold winters. The area is dominated by Pacific maritime air, considerably modified by intervening topographic barriers as it travels eastward from the ocean. Although generally deflected to the east by the Rocky Mountain barrier, polar continental air occasionally enters the area during the winter months, resulting in

 $[\]underline{1}$ / Nace, R.L., S.W. West and R.W. Hower, 1957, U.S. Geological Survey, Water Supply Paper 1576, p. 121.

Total Dissolved Solids

48 mg Salids/L

64 mg Solids/L

56 mg Solids/L

TABLE 4-1 OUALITY ANALYSIS OF LUCKY PEAK RESERVOIR DISCHARGE1/

Constituents	18 Sep 74 Concentration	12 Dec 74 A	verage or the Higher ² / of the Two Values	Constituents	18 Sep 74 Concentration		erage or the Higher2/ of the Two Values
Aluminum Antimony	95.5 ug A1/L 17 ug Sb/L	92.3 ug A1/L 6.0 ug Sb/L	93.9 ug A1/L 11.5 ug Sb/L	Total Organic Carbon Total Phosphorus as Ortho Phosphate	1.1 mg C/L 0.1 mg PO ₄ /L	< 0.75 ng C/L 0.24 ng PO ₄ /L	1.1 ng C/L 0.17 ng P04/L
Arsenic Barium	< 10 ug As/L 12.5 ug 8a/L	< 1.0 ug As/L 14.8 ug Ba/L	< 10 ug As/L 13.7 ug Ba/L		2.4		0.7#
Beryllium	< 5.0 ug Be/L	< 0.5 ug Re/L	< 5.0 ug Be/L	Dissolved Oxygen 3/	8.4 ng/L	11.0 ng/L	9.7 ng/L
Boron	190 ug B/L	60 ug B/L	125 ug B/L	Color	1.0 Color Units	A.5 Calor Units	0.75 Color Units
Cadm1 um	< 1.0 ug Cd/L	< 1.0 ug Cd/L	< 1.0 ug Cd/L	Fecal Coliform	1.0/100 mls	< 1.0/100 mls	1.0/100 mls
Calcium	7.6 mg Ca/L	9.3 mg Ca/L	8.5 Mg Ca/L	Fecal Streptococci	1.0/100 mls	< 1.0/100 mls	1.0/100 mls
Chromium	< 1.0 ug Cr/L	< 1.0 ug Cr/L	< 1.0 ug Cr/L	Total Coliform	10.0/100 mls	< 1.0/100 mls	< 10.0/100 mls
Cobal t	< 1.0 ug Co/L	< 1.0 ug Co/L	< 1.0 ug Co/L	Floatables	< 0.1 m1/L	< 1.0 ml/L	< 1.0 ml/L
Copper	< 1.0 ug Cu/L	< 1.0 ug Cu/L	< 1.0 ug Cu/L	Oil and Greases	< 1.0 mg 011/L	< 1.0 mg 011/L	< 1.0 mg 011/L
Cyanides	< 2 ug CN/L	< 8.0 ug CN/L	< 8.0 ug CN/L	рн <u>з</u> /	7.5	8.0	7.8
Fluorides at 22°C.	0.27 mg F/L	0.34 mg F/L	0.30 ng F/L	Settleable Solids	< 0.1 ml/L	< 1.0 ml/L	< 1.0 ml/L
Lead	32 ug Pb/L	11.3 ug Pb/L	21.7 ug Pb/L	Surfactant (Detergents)	< 10 ug/L as Apparent LAS		nt < 100 ug/L as Apparent AS LAS
Magnesium	0.88 pg Mg/L	1.20 mg Mg/L	1.0 mg Mg/L	Taste and Odor:			
Manganese	9.7 ug Mn/L	8.75 ug Mn/L	9.2 ug Mn/L	at 40°C	1.0 Threshold Odor Units	1.8 Threshold Odor Units	1.4 Threshold Odor Units
Mercury	< 0.07 ug Hg/L	< 0.01 ug Hg/L	< 0.07 ug Hg/L	at 60°C	1.5 Threshold Odor Units	1.3 Threshold Odar Units	1.4 Threshold Odor Units
Molybdenum	1.2 ug Mo/L	1.3 ug Mo/L	1.3 ug Mo/L	Turbidity	3.0 F.T.U.	3.0 F.T.U.	3.0 F.T.U.
Nickel	< 1.0 ug Ni /L	< 1.0 ug N1/L	< 1.0 ug N1/L	Volatile Solids	23 mg Solids/L	10 mg Solids/L	16.5 mg Solids/L
Potassium	0.45 mg K/L	0.55 ng K/L	0.50 mg K/L	Gamma Radiation:			
Selenium	< 5.0 ug Se/L	< 5.0 ug Se/L	< 5.0 ug Se/L	90-Sr	< 1 nicocuries/L	< 1 picocuries/L	< 1 picocuries/L
Silver	< 1.0 ug Ag/L	< 1.0 ug Ag/L	< 1.0 ug Ag/L	226-Ra	< 5 picocuries/L	< 5 picocuries/L	< 5 picocuries/L
Sodium	2.43 ng Na/L	3.5 mg Na/L	3.0 mg Na/L	Gross Alpha Radiation	< 40 picocuries/L	< 40 picocuries/L	< 40 picocuries/L
Thallium	< 1.0 ug T1/L	< 1.0 ug T1/L	< 1.0 ug T1/L	Gross Reta Radiation	< 200 picocuries/L	< 200 picncuries/L	< 200 picocuries/L
Tin	< 10 ug Sn/L	< 1 mg Sn/L	< 10 ug Sn/L				
Titanium	< 50 ug Ti/L	< 50 ug Ti/L	< 50 ug T1/L				
Zinc	240 ug Zn/L	187 ug Zn/L	214 ug Zn/L	Pesticides:			
Conductivity $3/$	45 UMHOS/cm	48 UMHOS/cm	46.5 UMHOS/cm	Lindane	< 0.01 ug/L	< 0.01 ug/L	< 0.01 ug/L
Ricarbonates	31.5 mg/L as CaCO ₃	35.39 mg/L as CaCC	33.5 mg/L as CaCO3	Heptachl or	< 0.05 ug/L	< 0.05 ug/L	< 0.05 ug/L
Riochenical Oxygen Denand (5 day)	1.2 mg 0 ₂ /L	1.5 ng 0 _{2/L}	1.4 ng 0 ₂ /L	Aldrin	< 0.07 ug/L	< 0.07 ug/L	< 0.07 ug/L
Carbon Nioxide 3/	1.0 mg/L	3.5 mg/L	2.3 mg/L	Heptachlor Epoxide	< 0.25 ug/L	< 0.25 ug/L	< 0.25 ug/L
Chemical Oxygen Demand	5,2 mg N ₂ /L	3.5 mg 0 ₂ /L	4.4 mg 02/L	DDE -P , P	< 0.01 ug/L	< 0.01 ug/L	< 0.01 ug/L
Chi orides	1.0 mg C1/L	1.0 mg C1/L	1.0 mg C1/L	Dieldrin	< 0.01 ug/L	< 0.01 ug/L	< 0.01 ug/L
Ammonia as Nitrogen	0.07 mg N/L	0.238 mg N/L	.154 mg N/L	DOD (TOE)	< 0.02 ug/L	< 0.02 ug/L	< 0.02 ug/L
Nitrate and Nitrite as Nitrogen	0.065 ng N/L	0.15 mg N/L	.108 mg M/L	OOT -P , P	< 0.02 ug/L	< 0.02 ug/L	< 0.02 ug/L
Total Organic Mitrogen as Nitrogen	0.645 mg N/L	0.099 mg M/L	.372 ng N/L				
Phenols	3.4 ug Phenols/L	2.2 ug Phenols/L	2.8 ug Phenols/L				
Sulfates	4.0 mg S04/L	2.5 mg SO4/L	3.3 ng S04/L	1/ Water samples were t	taken from stilling basin.	. All laboratory analy	sis done at Washington
Suspended Solids	1.7 mg Solids/L	2.2 mg Solids/L	2.0 Solids/L	State University. 2/ Where constituents a higher measurement i	are expressed as less tha	n a certain value, and	there is a difference,
Total Alkalinity $\frac{3}{}$	32.0 mg/L as CaCO3	37.2 mg/L as CaCO	34.6 mg/L as CaCO3		in field by U.S. Corps o	f Engineers.	
Tempe rature 3/	590F.	42.8°F.	50.9°F.				

short periods of extremely low temperatures. Plate 4-1 shows the locations of streamflow, precipitation-temperature, and snow stations within the basin.

The following paragraphs discuss and outline temperature, precipitation, snow, evaporation, and wind data within the Boise River Basin. Of particular importance are the hydrologic stations which are used to supply real-time data necessary to regulate the Boise River reservoirs.

a. <u>Temperature</u>. Temperature records for the Boise Airport, Lucky Peak Dam, Arrowrock Dam, Anderson Ranch Dam, and Idaho City stations have been summarized. Table 4-2, page T4-1, lists an average of the maximum daily temperatures by month for each station, and Table 4-3, page T4-2, lists an average of the minimum daily temperatures by month. Temperatures within the Boise Basin can fluctuate dramatically from month to month and year to year. The following tabulation outlines temperature extremes which have occurred at some of the key stations.

Maximu	um and	Minimu	ım Temp	erature	Extreme	s (Degr	ees F)	
		ise port 1,		daho ity 2/		wrock am 2/	Ander Ranch	rson n Dam 2/
Month	Max	Min	Max	Min	Max	Min	Max	Min
Jan	63	-17	56	-32	56	-32	55	-21
Feb	69	-12	61	-30	60	-12	59	-16
Mar	81	6	76	-20	76	- 6	74	- 4
Apr	92	19	81	8	82	21	84	21
May	98	26	93	18	96	21	96	22
Jun	109	33	97	24	105	33	104	32
Jul	111	41	105	26	109	39	107	41
Aug	110	37	106	27	109	37	105	27
Sep	102	23	99	11	102	26	102	27
0ct	91	11	87	2	89	16	88	15
Nov	73	- 3	68	-17	70	- 6	72	- 2
Dec	65	-23	54	-26	59	-10	59	-13
$\frac{1}{2}$				1940-19 1951-19				

b. <u>Precipitation</u>. Plate 4-2 defines normal annual precipitation for areas within the Boise River Basin. Monthly precipitation records for the Boise Airport, Lucky Peak Dam, Arrowrock Dam, Anderson Ranch Dam, Idaho City, and Centerville stations are listed on Table 4-4, page T4-3.

Large amounts of precipitation can and do significantly affect the regulation of the Boise River reservoirs. The following tabulation lists maximum 24-hour precipitation accumulations which have occurred at some of the key stations.

Maxi	imum 24-Hour Pre	ecipitation	Accumulation	(Inches)
Month	Boise <u>Airport</u> <u>1</u> /	Idaho City 2/	Arrowrock Dam 2/	Anderson Ranch Dam 2/
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec	1.48 1.00 1.12 1.27 1.51 2.24 0.94 1.61 1.74 0.76 0.88 1.16	1.97 2.09 1.64 1.44 1.36 2.61 0.41 1.33 1.27 1.14 1.72 2.15	2.20 1.51 1.00 1.37 0.96 0.81 0.59 0.78 1.69 1.26 2.05 1.68	2.07 2.03 1.57 1.38 0.84 1.20 0.97 1.69 1.27 1.44 1.65 2.18
$\frac{1}{2}$	Period of rec	ord, 1940-1 ord, 1951-1		

c. <u>Snow</u>. Snowfall and accumulation within the lower watershed are very light as compared to the upper watershed. Table 4-5, page T4-4, summarizes snow course data for the upper watershed. The accumulation of snow over the upper watershed directly affects the snowmelt runoff and dictates the degree of regulation necessary and the manner in which the Boise River reservoirs are regulated. The following tabulation compares some snow courses for a small runoff volume and a large runoff volume year.

1 April Snow Course	Water Content	(Inches)
Snow Course	<u>1977</u>	1965
Atlanta Summit	7.4	55.8
Bogus Basin	11.2	31.0
Dollarhide Summit	4.4	37.2
Galena	3.4	31.8
Galena Summit	5.8	39.4
Jackson Peak	9.2	48.0
Mores Creek Summit	10.0	47.8
Trinity Mountain	9.8	65.2
Vienna Mine	10.4	46.0
April through July Runoff		
Volume (Upper Watershed)	316,540 AF	2,578,260 AF

- d. <u>Evaporation</u>. Evaporation losses within the basin vary with temperatures. Table 4-6, page T4-5, lists and summarizes evaporation rates which have occurred at Arrowrock Station. Annual water losses from the combined surfaces of Anderson Ranch, Arrowrock, and Lucky Peak Reservoirs under full pool conditions are estimated to range between 35,000 and 40,000 acre-feet.
- e. $\underline{\text{Wind}}$. Wind data for the Boise Airport Station are listed and summarized in Table 4-7, page T4-6.

4-06. Runoff Characteristics.

- a. <u>Streamflow Records</u>. Records of streamflow have been maintained for many years at several locations on the Boise River, on major tributaries, and on important diversions. In addition, natural streamflow of the Boise River at Diversion Dam has been computed by the Boise River Watermasters since the construction of the Boise River reservoirs. Table 4-8 on page 4-8 outlines key gaging stations and records within the Boise River Basin, plus pertinent reservoir storage records.
- b. Lower Watershed Runoff. Natural streamflow from the lower watershed constitutes only a small percentage of the total runoff from the entire Boise River Basin. Streams within the lower watershed normally contain very limited amounts of runoff (normally only in the spring and early summer) and flow intermittently. Occasionally thunderstorms or rapid snowmelt on frozen ground can produce high peaks and short-duration local runoffs causing local flooding and drainage problems; but these storms normally have very little impact on the Boise River flows and have little or no impact on regulation of the Boise River reservoirs.
- c. Upper Watershed Runoff. Most of the natural runoff from the upper watershed results primarily from snowmelt, and high flows occur each year in the spring when temperatures are increasing and the snow melts. The annual high-water period begins with a gradual increase in discharge in March, culminates with a peak discharge usually between 15 April and 15 June, and terminates with a gradual recession to base flows during July. Low flows then normally prevail from August through February. From 1895 through 1980, natural annual runoff volumes from the upper watershed have averaged approximately 2.040 million acre-feet per year (14.27 basin inches). Approximately 78 percent of this total average annual runoff volume comes off during the March through July snowmelt period. The amount of seasonal runoff and, to a considerable extent, the peak discharge vary with the amount of water accumulated in snow on the basin.

TABLE 4-8
KEY GAGING STATIONS - BOISE RIVER BASIN

Station	<u>Gage</u>	Period of Record 4/	Drainage Area above Station	Average Runoff Volume	1	Period of Record Disch	arge - cfs
			(square miles)	Ac.Ft/Year	Average	Maximum	Minimum
S.F. Boise R near Featherville	River	Apr 1945 to Sep 1980	635	571,600	789	7,580 (24 May 1956)	30 (10 Feb 1949)
Anderson Ranch Reservoir	Res Storage	Dec 1945 to Sep 1980	980				
S.F. Boise R at Anderson Ranch Dam	River	Apr 1943 to Sep 1980	982	725,200	1,001	9,850 (25 May 1956)	0.1 (13 Nov 1959)
Boise R near Twin Springs	River	Mar 1911 to Sep 1980	830	869,400	1,200	18,800 (23 Dec 1964)	105 (28 Nov 1976)
Arrowrock Reservoir	Res Storage	Oct 1917 to Sep 1980	2,210				
Mores Creek above Robie Creek	River	Oct 1950 to Sep 1980	399	213,700	295	5,440 (23 Dec 1955)	7.4 (18 Aug 1977)
Lucky Peak Lake	Res Storage	Oct 1954 to Sep 1980	2,680				
Boise R near Boise	River	Oct 1954 to Sep 1980	<u>2</u> / 2 , 680	2,139,000	2,976	11,600 (15 May 1965)	near zero
Boise R at Boise $\underline{1}/$	River	Oct 1954 to Sep 1980	<u>2</u> / 2 , 760	938,200	1,295		1.3 (3 Feb 1955)
Boise R near Middleton 3/	River	Dec 1974 to Sep 1980	3,050				38 (4 Sep 1977)
Boise R near Parma	River	Sep 1971 to Sep 1980	3,970	1,216,000	1,650	7,840 (3 Mar 1972)	93 (29 Apr 1977)
Natural Flow - Boise River							
above Lucky Peak Dam	Computed	Jan 1895 to present	2,680	2,040,000	2,814	35,500 (14 Jun 1896)	(near zero)
		,					

^{1/} Station is being relocated from Capitol Street Bridge to the Glenwood Bridge.

^{2/} Period since completion of Lucky Peak Dam.

³/ Low flow station.

^{4/} Statistics based on record through Sep 1980.

Peak snowmelt discharges are occasionally augmented by runoff from general rainstorms or thunderstorms. Occasionally rapid snowmelt on frozen ground, especially when augmented by heavy warm rains, will produce high peak flows during the winter. Most of these winter runoff events are of short duration and limited volume.

The upper watershed contains four primary subbasin tributaries to (1) South Fork, (2) Middle Fork, (3) North Fork, and (4) Mores Creek. A streamgaging station called "South Fork Boise River near Featherville" records streamflows for approximately 48 percent of the South Fork subbasin drainage area. This station is located approximately 15 miles upstream of Anderson Ranch Dam and is used to monitor natural inflows into Anderson Ranch Reservoir. Plate 4-3 summarizes streamflows recorded at this station since April 1945 and Table 4-9, page T4-7, lists monthly runoff volumes. Most of the streamflow from the Middle and North Fork subbasin drainage areas is recorded at a gaging station called "Boise River near Twin Springs." This station is located about 2 miles upstream from the maximum flow line of Arrowrock Reservoir. Plate 4-4 summarizes streamflows recorded at this station since March 1911 and Table 4-10, page T4-8, lists monthly runoff volumes. the streamflow from the Mores Creek subbasin drainage area is recorded at a gaging station called "Mores Creek above Robie Creek, near Arrowrock Dam." This station is located about 5 miles northwest of Arrowrock Dam. Plate 4-5 summarizes streamflows recorded at this station since October 1950 and Table 4-11, page T4-9, lists monthly runoff volumes.

As mentioned previously, natural streamflows for the total upper watershed above Lucky Peak Dam have been computed by the Boise River Watermasters since construction of the Boise River reservoirs. Plate 4-6 summarizes the total natural streamflow since January 1895 and Table 4-12, page T4-10, lists monthly runoff volumes. Plate 4-7 shows daily natural streamflows of the Boise River above Lucky Peak Dam for the period of record. Of this total natural runoff from the upper watershed, an average of approximately 81 percent of the annual runoff volume is recorded at the Featherville, Twin Springs, and Mores Creek gaging stations. The following tabulation outlines the average annual contribution from each of these three gages to runoff at Lucky Peak.

Gage	Average Annual Runoff Contribution	Percent of Total Area
S. F. near Featherville N. & M. F. near Twin Sp Mores Creek		24% 31% 15%
	Totals $\frac{10\%}{81\%}$	70%

Table 4-13 on page 4-11 lists station contributions for the normal high water period (March through July) for individual years from 1951. Contributions shown indicate some variations from year to year, but generally the basin is quite consistent on which areas produce the runoff.

(1) Floods. Natural or unregulated annual maximum daily spring snowmelt-event discharges in excess of 20,000 cfs have occurred on 10 occasions since 1895 in the Boise River at the Lucky Peak damsite. In the period of years between 1865 and 1894, which is prior to actual gaged records, five floods (based on precipitation records at Boise) are estimated to have equaled or exceeded 35,000-cfs peak discharge. The tabulation below summarizes the largest runoff events.

Date	Maximum Annual Mean Daily Peak Discharge (cfs) Measured Events	April through July Runoff Volume (Million Acre-Feet)
14 June 1896	35,500	2.700
14 April 1897	29,500	1.542
18 April 1943	25,040	2,717
28 April 1952	23,430	2.269
25 May 1956	22,950	2.249
22 May 1958	21,750	1.914
23 April 1965	20,850	2.578
10 May 1928	20,710	1.590
14 May 1971	20,250	2.477
18 May 1927	20,060	1.998
	Estimated Events	
1871	43,000	
1872	50,000	
1874	36,000	
1875	36,000	
1894	35,000	

Using (1) the observed maximum annual mean daily peak discharges for 1895 through 1976 and estimated peaks for 1865 through 1894, and (2) observed April through July runoff volumes from 1895 through 1974, the following frequency data had been computed for past Boise River studies.

TABLE 4-13

STATION RUNOFF CONTRIBUTIONS (Percentage)

March through July

<u>Year</u>	<u>Featherville</u>	Twin Springs	Mores Creek	<u>Total</u>
1951	30.4	42.7	9.7	82.8
52	27.1	38.7	11.5	77.3
53	27.7	46.7	10.9	85.3
54	27.9	49.1	9.9	86.9
1955	27.6	51.0	9.4	88.0
56	28.2	42.5	10.3	81.0
57	26.4	43.4	12.3	82.1
58	28.5	42.3	11.3	82.1
59	28.8	49.2	9.2	87.2
1960	25.0	44.9	10.9	80.8
61	27.1	52.0	8.7	87.8
62	30.9	45.9	8.7	85.5
63	30.4	48.1	8.0	86.5
64	28.3	46.2	10.0	84.5
1965	29.3	39.5	10.3	79.1
66	30.6	46.5	8.1	85.2
67	33.5	46.0	7.0	86.5
68	30.2	52.7	7.0	89.9
69	30.8	40.3	10.4	81.5
1970	27.0	45.0	10.0	82.0
71	27.7	40.6	10.9	79.2
72	23.6	41.1	10.9	75.6
73	28.4	49.6	9.1	87.1
74	26.9	44.4	10.8	82.1
1975	28.3	40.5	10.8	79.6
76	27.1	44.6	10.3	82.0
77	28.1	51.8	7.8	87.7
78	29.4	46.5	10.3	86.2
79	30.1	52.3	9.8	92.2
1980	29.3	44.7	10.5	84.5

Exceedence Probability <u>1</u> / (Percent)	Average Recurrence Interval (Years)	Unregulated Annual Spring Snowmelt Peak Discharge (cfs)	Unregulated April through July Runoff Volume (Million Acre-Feet)
1	100	41,200	3.100
2	50	36,200	2 .9 00
5	20	30,000	2.550
10	10	25,200	2.270
20	5	20,400	1.950
50	2	13,800	1.400

 $[\]underline{1}$ / Frequency data for unregulated streamflow and runoff volume of the Boise River at Lucky Peak Dam.

Significant winter rainstorm-snowmelt flood events occurred in the upper watershed in November 1909, December 1955, and December 1964. The December 1964 flood event had a computed instantaneous peak discharge of approximately 44,000 cfs and is estimated to have been in excess of a 100-year winter flood event. The following tabulation summarizes the four largest winter flood events.

<u>Date</u>	Unregulated Maximum Mean Daily Discharge <u>1</u> / (cfs)	Duration Above 5,000 cfs (days)	Runoff Volume Above 5,000 cfs (Acre-Feet)
December 1964	27,295	7	125,000
December 1955	20,551	5	72,000
November 1909	15,200	6	52,000
December 1937	10,641	2	16,000

^{1/} Unregulated flow at Lucky Peak damsite.

^{(2) &}lt;u>Droughts</u>. Years of low runoff volumes from the upper watershed can critically affect irrigation within the lower watershed. Since 1895, 9 years have had annual runoff volumes of less than 1.250 million acrefeet, as compared to a normal of 2.040 million acrefeet. The 1977 drought year was the lowest runoff year of record and the annual maximum mean daily peak discharge only reached 3,190 cfs. The following tabulation summarizes annual runoff volumes and peak discharges for the 9 lowest runoff volume years of record.

	October-September	Annual Maximum Mean				
Year	Annual Runoff Volume (Million Acre-Feet)	Daily Peak Discharge <u>l</u> / (cfs)				
1977	0.659	3,190				
1924	0.892	3,923				
1931	0.947	4,057				
1934	1.080	4,161				
1926	1.114	3,999				
1937	1.166	6,148				
1961	1.176	4,820				
1905	1.183	4,128				
1915	1.214	4,421				

1/ Unregulated flow at Lucky Peak damsite.

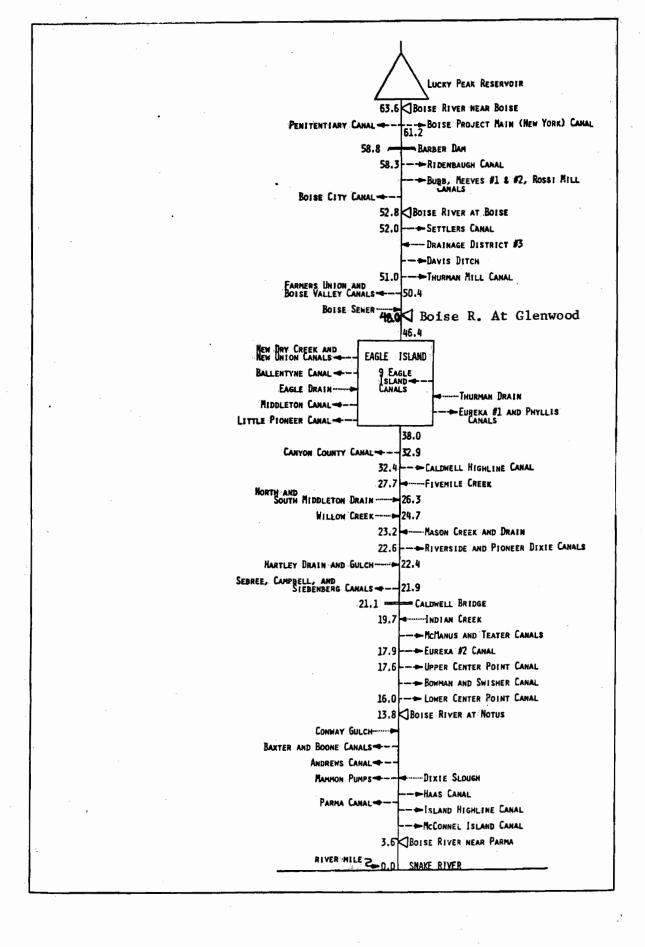
4-07. <u>Boise River Channel</u>. The capacity and condition of the existing Boise River channel within the lower watershed restrict and establish the manner in which the Boise River reservoirs can be regulated for flood control. The following paragraphs discuss capacity, condition, diversion from, and key gaging locations for the Boise River channel.

a. <u>Capacity and Conditions</u>. Capacity of the Boise River channel through the lower watershed (Boise Valley) varies between approximately 3,500 cfs and 10,000 cfs. At 3,500 cfs, a few small areas are subjected to out-of-channel flow and are inundated. For flows up to 6,500 cfs at the Glenwood Bridge, flooding is normally limited to pastureland, low-lying farmland, gravel pits near the river, and a few buildings located directly at the edge of the river. Flows in the 5,000-cfs to 6,500-cfs range do, however, result in significant channel and bank erosion. Flood damages caused by flows within the 5,000-cfs to 8,000-cfs range, represent an accumulation of bank and channel erosion problems over a 50-mile river reach. Flooding and damages dramatically increase as the flow levels increase above 10,000 cfs. The following tabulation summarizes approximate flood damages within the Boise Valley at various flow levels based on an October 1980 price and development level.

Flow (cf	s)	<u>1</u> /					Flo	od Damages (dollars)
4,000.	•		•	•		•		0
5,000.			•	•			•	24,000
6,500.						•	•	76,800
7,000.						•	•	182,400
7,200.			•	•	•	•	•	227,000
8,000.					•	•	•	397,000
10,000.				•	•	•	•	. 1,717,000
12,000.	•			•	•	•	•	. 6,640,000
15,000.	•		•	•	•			.15,747,000
20,000.			•	•		•		.34,946,000
25,000.			•					.63,366,000
30,000.	•	•					•	112,125,000
35,000.	•				•			178,147,000
40,000.			•					242,272,000
45,000.	•	•	•		•	•	•	304,488,000

1/ Flow of Boise River below New York Canal Diversion.

Information on areas subject to flooding by the Boise River can be found in existing flood plain information reports. The following list outlines some reports which are available.


- (1) Flood Plain Information, Boise, Idaho, and Vicinity Boise River and Northside Tributaries, U.S. Army Corps of Engineers, Walla Walla, Washington, October 1967.
- (2) Special Flood Hazard Information Boise River Caldwell, Idaho, and Vicinity, U.S. Army Corps of Engineers, Walla Walla, Washington, April 1975.
- (3) Flood Insurance Study, City of Garden City, Idaho, U.S. Army Corps of Engineers, Walla Walla, Washington, April 1978.
- (4) Flood Insurance Study, City of Boise, Idaho, U.S. Army Corps of Engineers, Walla Walla, Washington, May 1978.
- (5) Flood Insurance Study Ada County, Idaho, U.S. Army Corps of Engineers, Walla Walla, Washington, October 1978.
- (6) Floodway Boundary Map City of Caldwell, Idaho, Federal Insurance Administration, 3 September 1980.

Observation of the Boise River channel in the lower watershed shows that most of the channel is generally in very poor condition. Large gravel bars have formed within the channel and trees and brush are growing in the channel and at the banks. In some reaches of the river, local landowners, flood control districts, and land developers have done some channel clearing and have constructed levees to increase channel capacity at specific locations. Without a comprehensive and continuing maintenance program, it is expected that gravel bar, tree, and brush accumulation within the channel will continue. Annual flushing of the channel with high releases (6,000 cfs to 6,500 cfs at the Glenwood Bridge) may slow and somewhat reduce this type of accumulation in the channel.

b. <u>Key Gaging Locations and Irrigation Diversions</u>. The Eagle Island area is the first reach of the Boise River with a very restricted channel capacity. For this reason, this area has been used as the point of flood control regulation for the Boise River reservoirs. In the past, a river gaging station (Boise River at Boise) was located at the Capitol Boulevard Bridge in Boise. This station has been relocated downstream to the Glenwood Bridge where it will more accurately define flows at the upstream end of Eagle Island.

Between Lucky Peak Dam and Eagle Island, many irrigation canals divert water during the irrigation season (April through 15 October). The flood control season and the irrigation season generally overlap and the amount of water being diverted for irrigation directly affects release amounts from Lucky Peak when trying to limit floodflows at Eagle Island to 6,500 cfs or less. The diagram on page 4-16 outlines Boise River diversions and drains. The following tabulation summarizes approximate average diversions for the canals between Lucky Peak Dam and Eagle Island during the peak irrigation season.

<u>Canal</u>						A	vei	rag	ge	Diversion	(cfs)
New York										2 600	
Ridenbaugh										550	
Penitentiary a				•	•	•	•	•	•	330	
Meeves, Ross										68	
Boise City			•	•	•	•	•	•		30	
Settlers											
Davis Ditch .					•		•	•	•	10	
Thurman Mill .											
Farmers Union,	Boi	se V	al	ley	•	•	•	•	•_	250	
Total			•							3,723	

Input to the Boise River from Drainage District No. 3 and the Boise sewer normally averages only about 30 cfs during this period. Thus, Lucky Peak releases of approximately 10,200 cfs will normally result in Boise River flows of approximately 6,500 cfs (10,200 - 3,700 cfs) when irrigation demand is near normal.

c. <u>Travel Times</u>. The following tabulation outlines approximate travel times for water released from Lucky Peak, assuming that Diversion Dam pondage is full and irrigation diversions remain constant.

Location	Travel Time From Lucky Peak (Hours)
Diversion Dam	

4-08. Economy and Population. The economy of the Boise Valley is based on four major sources: (1) agricultural, (2) commercial, (3) industrial, and (4) governmental employment. The agricultural source includes crops, cattle feeding, forestry products, and food processing. The City of Boise is the state capital, the administrative center of Idaho, and also the largest city within Idaho. It is also the location of many regional Federal offices and is designated as a Standard Metropolitan Statistical Area (the only such district within 300 miles).

Population data presented in the following tabulation depict the rapid recent growth within the Boise Valley.

Area	Population			
,	1960	<u>1970</u>	1980	
Ada County Canyon County	93,460 57,662	112,230 61,288	173,306 93,756	
Boise Nampa	34,481 18,897	74,990 20,768	102,451 25,112	
Caldwell	12,230	14,219	17,699	

This population growth has resulted in increased and changing demands on the water resources of the Boise River. Water-based recreation uses have increased substantially. A larger segment of the people is

concerned about Boise River water quality and instream flows. Housing developments have taken place on land that was used for irrigated agriculture. There is now a much broader segment of the public that is concerned about the operation of the Boise River system.

4-09. <u>Irrigation Systems</u>. Boise River water is used to irrigate approximately 327,000 acres of land in the Boise Valley. The Boise Valley can be divided into three general irrigated areas. The largest is the Boise Project. The Boise Project in turn can be divided into an upper and lower system. The upper system, 116,300 acres, includes the area served directly from the Boise River, mostly by the New York and Ridenbaugh canals. The lower system, 50,600 acres, includes the area that received water after it has first been stored in Lake Lowell.

The second general irrigated area lies immediately north and south of the Boise River between Diversion Dam and the Snake River. This area includes older privately developed irrigation districts which divert directly from the river. These canals supply approximately 160,000 acres of land.

The northwest portion of the Boise Valley is irrigated with water diverted from the Payette River. Irrigation of this area does not significantly affect flows of the Boise River.

SECTION V - DATA COLLECTION AND COMMUNICATION NETWORKS

<u>Data Collection</u>. Data for the key streamflow, snow course, and climatic stations within the upper Boise River watershed were previously outlined in paragraphs 4-05 and 4-06, and Plate 4-1 shows the station locations. The Bureau of Reclamation and the Corps of Engineers have cooperative agreements with other agencies to collect and publish specific hydrologic data necessary for reservoir regulation. Under the terms of these agreements, the Bureau and Corps pay the Geological Survey, Soil Conservation Service, and the National Weather Service for their data collection services. The Geological Survey collects streamflow data and annually publishes recorded data in their publication, Water Resources Data for Idaho. The Soil Conservation Service collects manual snow course measurement data and publishes the data in their monthly publication, Water Supply Outlook for Idaho. In addition, SNOTEL stations provide real-time snow water content data on a daily basis via the SCS's Data General System. The National Weather Service collects climatic data and publishes it annually in their Climatological Data for Idaho publication.

For real-time reservoir regulation, data are readily available, once collected, from the Soil Conservation Service and the National Weather Service. The Bureau of Reclamation and the Soil Conservation Service have established automated hydromet systems for the Boise River Basin which provide real-time data as listed in paragraph 5-03.

5-02. <u>REPORTING AND EXCHANGING BASIC DATA</u>.

- a. <u>Purpose</u>. To fully regulate winter and spring floods and assure sufficient storage of water for irrigation, a timely exchange of basic data between the Bureau of Reclamation and the Corps of Engineers is required. A list of key officials and telephone numbers is included on pages ix and x (pink sheets) of this Manual for both normal regulation and abnormal events. During abnormal events, the exchange of data will be expedited by telephone to these officials during non-duty hours. On occasions of an emergency nature, the normal communication channels may be out of service and emergency action may have to be used. Emergency actions to be taken are summarized on pages xi and xii (pink sheets) of this Manual.
- b. <u>Frequency of Exchange</u>. The frequency of exchange of basic data pertinent to efficient operation of the dam and regulation of floods will be on a daily basis during the work week except during unusual or rare conditions of weather or reservoir inflow when the frequency will be as requested or needed. Data is automatically sent to the Corps of Engineers CROHMS system on an hourly basis 7 days per week from the Bureau of Reclamatation Hydromet System located in Boise.

Automated Hydromet Systems.

a. <u>Bureau Hydromet System</u>. The Pacific Northwest Regional Office of the Bureau of Reclamation has a hydromet system for the Boise Basin as part of an extensive automated hydrometeorological data collection system throughout the upper and middle Snake River Basin. This system is composed of (1) a Direct Readout Ground Station (DRGS) located in Boise for the Geostationary Operational Environmental Satellite (GOES), (2) a computerized network controller, referred to as the Central Computer Facility (CCF), and (3) remote stations.

The system is unique in that the Data Collection Platform (DCP) at each remote site is microprocessor-controlled and has the capability to transmit through two channels on the GOES system. One channel handles only self-timed transmissions, whereas the second channel is dedicated to only adaptive random transmissions. Operation in the self-timed mode is as follows. The DCP interrogates all sensor outputs at 15-minute intervals and stores the values in its memory. At a preassigned time interval, every 4 hours, the DCP transmits all stored values from each sensor to the Central Computer Facility through the Direct Readout Ground Station in Boise. This produces a very complete detailed data base.

Transmissions in the adaptive random reporting (R/R) mode are completely unscheduled with the decision to transmit being made by the DCP. This is accomplished by programming threshold values in the microprocessor which the DCP uses to compare with sensor outputs. If the threshold values are exceeded, the DCP computes a random transmission rate and begins to transmit randomly. The microprocessor also computes rates of change between sensor readings; if the rate of change exceeds the preprogrammed threshold values, this also causes the DCP to compute a random transmission rate and begin transmitting. Each time a DCP transmits randomly, it only sends three values - the most current value and the two preceding values. Also, once the DCP goes into random mode it will send at least three transmissions randomly before shutting down. However, if the threshold values are continually exceeded and/or the rates of change increase, the DCP will continue in the random mode until the situation returns to normal. It is important to note that as the rate of change of the sensor value increases, the random transmission interval is shortened, thereby transmitting more frequently as the event becomes more serious.

All data received by the Central Computer Facility (CCF) are immediately processed and stored in the Dayfiles. At 5:00 a.m. each morning, the CCF compiles data from the previous day's Dayfiles database file readings to be put into the Archives database. The Archives database is composed of such things as midnight reservoir elevation and contents, maximum and minimum temperatures, and mean daily flows, etc. Both Dayfiles and Archives databases are available to users through terminals.

Figure 5-1 on page 5-6 shows a schematic for the Boise River basin hydromet system. The following tabulation summarizes real-time data which are available from the Bureau's hydromet system.

Sta	ation	Parameters	
	Dam and Reservoir	Archives	<u>Dayfiles</u>
1.	Anderson Ranch Reservoir (AND)	AF, FB, MM, MN, MX, PC, SD	AF,FB,PC,OB AF,FB,PC,OB
3.	Arrowrock Reservoir (ARK) Lucky Peak Lake (LUC)	AF. FB. ID. OD. ORD. OU.	AF, FB, Q, QE, QS
٠.	Lucky Found Lance (200): ***********************************	QV, XQD	QR,QT,XQ
4.	Lake Lowell near Caldwell (LOW).	AF,FB	AF,FB
	Stream Gages		
	S.F. Boise River near		
	Featherville (BRFI)	GD,HJ,MM,MN,MX,QD	GH,HJ,OB,Q
2.	S.F. Boise River at	CD 113 OD 011	CU U1 0
2	Anderson Ranch Dam (ANDI) Boise River near	פט, חט, עט, עט	GH,HJ,Q
		GD.HJ.OD	GH,HJ,Q
4.	Twin Springs (BTSI)	(QĎ,QÚ) <u>1</u> /	, , , ,
5.	Mores Creek above	CD U1 OD	CU U1 O
6	Robie Creek (MORI) New York Canal Diversion	שט, חט, עט	GH,HJ,Q
		GJ,HH,QJ	CH,HH,QC
7.	at headworks (BSEI) Boise River Diversion Dam (BDDI)	FB,GD,HJ,HM,QD	AF, FB, GH
0	Paice Diver at Clerwood (PICI)	CD H1 0D	HJ,HK,Q GH,HJ,Q
	Boise River at Glenwood (BIGI) Boise River near	dD, NO, QD	dii,110,Q
	Middleton (BOMI)	GD,HJ,QD	GH,HJ,Q
10.	Boise River near Parma (PARI)	GD,HJ,QD	GH,HJ,Q

 $\underline{1}$ / not "real time" manually entered

Regional Climate Stations	<u>Elevatio</u>		<u>Pa</u> chives	<u>rameters</u>	<u>Dayfiles</u>
2. Deadwood Dam (DED) 3. Cascade Dam (CSC) 4. Idaho City (IDHI)	5,343 4,828 3,965	SP,MM,M SD,MM,M	N,MX,PC N,MX,PC N,MX,PC N,MX,PC U	,PP,PU ,PP,PU	OB,PC OB,PC OB,PC OB,PC PC
AF - Reservoir content CH - Outlet channel gage hei FB - Reservoir forebay eleva GD - Mean daily gage height GH - Observed gage height GJ - Mean daily canal stage HH - Gage height shift for c HJ - Gage height rating shif HK - Diversion Pool Height ID - Daily average reservoir MM - Average daily temperatu MN - Minimum daily temperatu MX - Maximum daily temperatu OB - Observed air temperatu PC - Cumulative Precipitation PU - Cumulative precipitation	anal t inflow ire ire ire e	QC - DT M QD - T M QD - T M QD - T M QD - D QQ Q Q - D QQ QQ - D QQ Q - D QQ QQ - D QQ Q - D QQ QQ - D QQ Q - D QQ - D	utlet claily avoine claim dai ischargo ischargo ischargo aily con aily avoinow wate econdary aily secondary	hannel dierage discharge discharge (cone ve (slide e (powerhgates (Acomputed unerage powerher conter	scharge e discharge valves) valves) house + quasonic) hregulated flow wer discharge

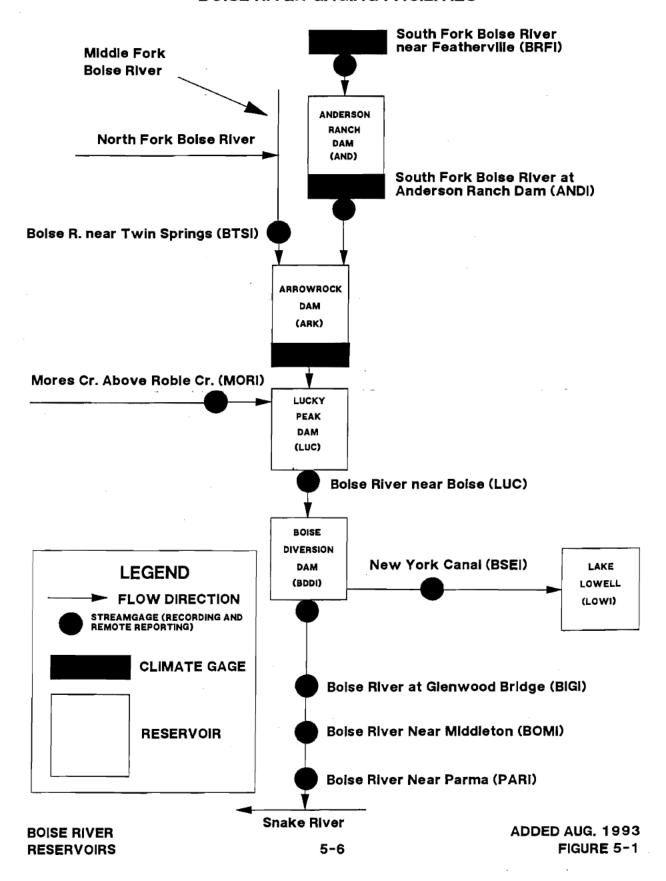
b. SCS SNOTEL System. The Soil Conservation Service owns and operates a hydromet system for the Boise River and adjacent river basins as part of its western states Snow Telemetry (SNOTEL) program. This system uses (1) two master polling stations located at Boise, Idaho, and Ogden, Utah, (2) meteor-burst radio communications, and (3) remote stations. The system collects remote data once per day during a nominal polling period (5:00 a.m. to 8:00 a.m. Pacific time) and has the capability of additional interrogations (ad hoc polls) as needed. A total of three parameters can be retrieved from each remote data site, with ultimate plans for retrieving a total of 16 parameters. The following tabulation summarizes real-time data which are available from the SNOTEL system.

			Location				
	Station	Elevation		Latit	ude	Longi	tude
	Name (No.)	<u>(ft. msl)</u>	<u>Basin</u>	Deg.	Min.	Deg.	<u>Min.</u>
1.	Atlanta Summit (15F04S)	7,600	Boise	43	45	115	14
2.	Graham Guard Sta. (15F14S)) 5,690	Boise	43	57	115	16
3.	Jackson Peak (15E09S)	7,070	Boise	44	03	115	27
4.	Mores Cr. Summit (13E06S)	6,100	Boise	43	55	115	40
5.	Prairie (15F06S)	4,800	Boise	43	30	115	35
6.	Trinity Mountain (15F05S)	7,770	Boise	43	38	115	26
7.	Dollarhide Summit (14F08S)	8,420	Big Wood	43	36	114	40
8.	Galena (14F01S)	7,440	Big Wood	43	53	114	40
9.	Galena Summit (14F12S)	8,780	Big Wood	43	51	114	43
10.	Vienna Mine (14F04S)	8,960	Salmon	43	48	114	51
11.	Bennett Mountain (15F07S)	6,560	Canyon Cr.	42	16	115	26
12.	Cozy Cove (15E08S)	5,380	Payette	44	17	115	39
13.	Deadwood Summit (15E04S)	6,860	Payette	44	33	115	34

Parameters reported by these SNOTEL stations include:

- 1. PILL Snow water content from snow pillow
- 2. PREC Cumulative precipitation
- 3. TMAX Maximum daily air temperature
- 4. TMIN Minimum daily air temperature
- TAVE Average daily air temperature

Note: SNOTEL stations provide real-time snow water content data on a daily basis via the SCS's Data General System.


5-04. CORPS OF ENGINEERS - CROHMS SYSTEM

The Columbia River Operational Hydromet and Management system (CROHMS) is a real-time water resources data management system. A computer system is used for data reduction, system modeling, forecasting, and data base support functions. The data acquisition for these three functions is supported through the CROHMS Automated Front End (CAFE). Figure 5-2 on page 5-7 shows the CROHMS network diagram.

The CAFE is a centralized computer facility consisting of a primary computer and a backup, communications interface, storage for data, and software capabilities. It functions as a central point of raw data collection for CROHMS, a source of raw data files, and a distribution center for reports processed by the CROHMS computer.

5-05. <u>Use of Real-Time Data</u>. The real-time data are used for volume forecasting and in the Streamflow Synthesis and Reservoir Regulation (SSARR) model and thus form the basis for decisions and resultant reservoir regulation. All of the regulating agencies plan continued support for the existing data collection programs.

FIGURE 5-1 BOISE RIVER GAGING FACILITIES

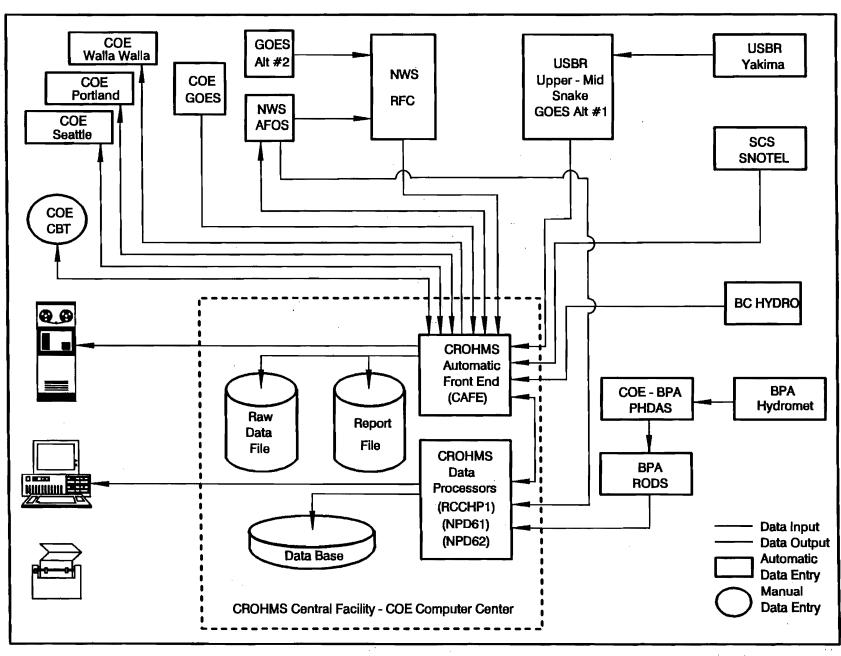


FIGURE 5-2 CROHMS Data Collection System

VI - HYDROLOGIC FORECASTS

6-01. General. Reservoir regulation (Anderson Ranch, Arrowrock, and Lucky Peak) for flood control and refill is primarily based on forecasts of expected runoff volumes from the watershed; thus, accurate forecasts are very important for successful regulation of the system. forecasts for the upper Boise River watershed are normally prepared by the Bureau of Reclamation, Corps of Engineers, Northwest River Forecast Center-National Weather Service, U.S. Soil Conservation Service, and the Boise Project Board of Control. Each entity has its own volume forecast procedure and purpose for the volume forecast. The Bureau and Corps forecasts are normally the only ones used for reservoir regulation. Procedures used by the entities are generally based on regression and correlation techniques and use snow water content and precipitation data as the primary independent variables. Some of the forecast procedures also have indices for base flow and soil moisture. All of the entities continually try to update and improve their procedures as much as is practical. sources for errors in these procedures are future weather conditions and an inability to account for all of the factors which affect runoff.

In addition to regression techniques, the Bureau, Corps, and River Forecast Center use SSARR models (daily mathematical simulation model - "Streamflow Synthesis and Reservoir Regulation") for short-term forecasting. The SSARR models account for most of the factors controlling runoff and are especially useful late in the season during final refill of the reservoirs.

6-02. Operational Forecasts. It is the responsibility of the Bureau of Reclamation and the Corps of Engineers to jointly agree upon the runoff volume forecasts which will be used for the regulation of the three Boise River reservoirs (Anderson Ranch, Arrowrock, and Lucky Peak). and River Operations Branch personnel prepare the Bureau of Reclamation runoff volume forecasts. Hydrology Branch personnel prepare the Corps of Personnel from these two staff level Engineers runoff volume forecasts. offices then agree upon an "operational" runoff volume forecast which will Normally, the agreed-to operational be used for reservoir regulation. forecast should be an average of the Bureau and Corps forecasts. official operational runoff volume forecasts are determined approximately every 2 weeks (near the first of the month and mid-month) beginning on 1 January each year and continuing until flood control season is over.

In the latter part of the flood control season, the Bureau and the Corps normally use SSARR models for short-term volume forecasting. Volume forecasts derived from the SSARR models can be used for operational forecasts so long as staff level Bureau and Corps personnel can agree upon the numbers. The joint agreement method used between the Bureau and Corps for determining operational forecasts (from either regression procedures or SSARR models) has been adequate in the past and will be continued in the future. Regression analysis forecast procedures used by the Bureau and Corps are presented in Exhibit A of this manual.

6-03. <u>Conservation Forecasts</u>. Neither the Bureau nor the Corps has volume forecasting procedures designed specifically for low runoff or drought years, but both agencies do have SSARR models which can adequately forecast streams necessary for regulation during drought years. Future efforts will examine utilization of different forecast procedures during drought or low-flow years.

VII - WATER CONTROL PLAN

7-01. General Objectives. It is the objective of this Water Control Plan to define reservoir regulation procedures and practices for joint use of the storage spaces in Anderson Ranch, Arrowrock, and Lucky Peak Reservoirs. Storage in Lake Lowell is affected by this Water Control Plan through regulation of the upstream reservoir projects, but Lake Lowell is an off-stream irrigation project regulated by the Boise Project Board of Control through an operation and maintenance contract between the Board and the Bureau of Reclamation. Thus, this Water Control Plan contains no direct regulation criteria for Lake Lowell.

7-02. Authorized Reservoir Uses. Authorized reservoir uses were discussed in Section III - HISTORY OF PROJECTS, and the Memorandum of Agreement (paragraph 3-07) outlined reservoir uses since 1953. This Water Control Plan basically retains the same uses and priorities as defined in the 1953 Memorandum of Agreement. This Plan also recognizes 50,000 acrefeet of Lucky Peak storage space to provide flows for downstream fish and wildlife as required by the current Lucky Peak storage permit. The Bureau of Reclamation is in the process of amending and finalizing the Lucky Peak Lake storage permit by designating 102,300 acre-feet of noncontracted space for streamflow maintenance and municipal and industrial uses.

As a system, Anderson Ranch, Arrowrock, and Lucky Peak Reservoirs normally add water to storage from the end of the irrigation season (in October) each year until the annual flood control season is over (normally ranging between 15 April to 1 July).

From the end of the irrigation season until April, Idaho Department of Fish and Game and noncontracted space water is released from Lucky Peak Lake to maintain minimum flows in the downstream river.

The normal end of irrigation season storage of Lake Lowell is 120,000 to 140,000 acre-feet. If storage is below this amount, diversion from the Boise River is usually begun in February or March. Lake Lowell is then normally filled as soon after 1 April as possible and in most years is full by 1 May. Boise River natural flows have always been sufficient to credit Lake Lowell with having filled under its water right (see paragraph 7-06.e.). However, part of this water is usually temporarily stored in upstream reservoirs to avoid canal operation problems in winter, then transferred to Lake Lowell in the spring.

The amount of water stored in the system and precisely when it is stored is dependent on water rights, the amount of water available as runoff, the timing of the runoff, and the required flood control regula-Flood control regulation during this period (1 November through the spring high water period) endeavors to maintain adequate flood control spaces within the reservoirs and yet refill the reservoirs without exceeding 6,500 cfs as measured at the Glenwood Bridge gaging station. In the low runoff years, flood control regulation during the spring snowmelt period is normally limited or not necessary, and water conservation and reservoir refill are the primary objectives. Runoff years near normal require delicate balances between flood control and refill regulation, with runoff timing and volume forecasts as the key factors for the In large runoff years, maintaining adequate flood control space within the reservoirs and passing excess water through the system without unduly jeopardizing system refill, are the primary objectives.

After the annual spring flood season is over and until the end of the irrigation season, the reservoirs are drafted to maintain irrigation flows. Arrowrock Reservoir is drafted first to maintain the power head at Anderson Ranch Reservoir and also a desirable recreation level at Lucky Peak Reservoir. If the storage in Arrowrock has been used before the end of August, both Anderson Ranch and Lucky Peak Reservoirs are drafted without exceeding powerplant capacity at Anderson Ranch. After the end of August, irrigation demands are met primarily from storage in Lucky Peak Reservoir. Normal project inspections and maintenance then generally occur just after the irrigation season each year.

7-03. <u>Use Priorities</u>. Flood control and irrigation are the primary uses for Anderson Ranch, Arrowrock, and Lucky Peak storage spaces. Idaho Fish and Game's 50,000 acre-feet for streamflow maintenance and the noncontracted space on 102,300 acre-feet for streamflow maintenance and municipal and industrial uses at Lucky Peak are also primary uses. Secondary uses for the storage spaces include power generation at Anderson Ranch and recreation at Lucky Peak. Incidental uses include recreation (at Anderson, Arrowrock, and Boise River below Lucky Peak Dam), downstream water quality, and sedimentation pools within the reservoirs.

7-04. <u>Use Conflicts</u>. Because the Boise River reservoirs are managed as a multiple-purpose system, it is not possible to optimize regulation for each of the separate uses. Thus, this Water Control Plan represents compromises between the various uses as established within the priorities listed. Flood control use directly conflicts with all of the other system

uses to some degree. Optimum flood control protection possible with the system would require that the reservoirs be maintained empty and available to control floodwaters. Even with this type of regulation, past studies have shown that the existing system (with the limited downstream channel capacity) would not be adequate to control large spring snowmelt flood volumes (events of approximately 50-year magnitude or larger) to desirable levels of downstream flooding.

Optimum irrigation use would require that the system be maintained as full as possible to provide carryover storage water for the drought years, and even this operation would not necessarily assure adequate water supplies for a series of drought years. Full refill of the system for irrigation does not conflict with recreation until the reservoirs have to be drawn down to meet irrigation requirements in the summer and fall. During the winter, refill for irrigation directly conflicts with the maintenance of minimum fish and wildlife and water quality flows.

Some of the use conflicts have just been outlined and more could be discussed, but the key conflict is that of flood control versus refill regardless of the intended use of the stored water.

7-05. Flood Control Plan. This element of the Water Control Plan defines specific reservoir regulation criteria which shall be strictly followed during the flood control season. The flood control plan consists of the following:

Par	agraph	Page
a. b. c. d.	Winter Requirements Spring Evacuation Requirements Refill Requirements Constraints and Considerations 1. Regulation Objectives 2. Allocations 3. Reservoir Surcharges 4. Rule Curves	7-3 7-6 7-11 7-16 7-16 7-18 7-19 7-19
e.	Regulation Procedures	7-20

a. Winter Requirements. Flood control regulation during the period 1 November through 1 March requires that specific minimum flood control spaces be maintained in the reservoir projects to protect against unpredictable winter floodflows resulting from rapid snowmelt and/or

heavy precipitation on frozen ground. Maintaining these space requirements ensures that the 100-year winter flood can be contained within the projects.

From 1 November through 31 December, the following tabulation defines required minimum winter flood control spaces for the projects:

Projects	Minimum Space Requirements (Acre-Feet)
Anderson + Arrowrock + Lucky Peak Arrowrock + Lucky Peak Lucky Peak	300,000 $\frac{1}{1}$ / 165,000 $\frac{1}{2}$ / 50,000 $\frac{2}{2}$ /
$\frac{1}{2}$ / Maintain from 1 November through $\frac{2}{2}$ / Maintain from 1 November through	31 December. 31 March.

These minimum requirements must be maintained each year without consideration to either existing climatic conditions or refill potential. If a violation of these criteria occurs, excess storage must be evacuated as rapidly as is practical without exceeding 6,500 cfs at the Glenwood gage. The following tabulation provides general information on refill assurances during the early winter period.

Space to be Refilled 1/	Percent Chance of Refill		of Month St (Acre-Feet) December	orage <u>1</u> /
Total Active Capacity (974,149 AF)	98	745,000	775,000	805,000
	95	685,000	715,000	750,000
	90	615,000	630,000	690,000
Allocated Space (1982) (871,728 AF)	98 95 90	655,000 585,000 515,000	675,000 615,000 550,000	705,000 650,000 590,000
All Space Excluding	98	485,000	515,000	545,000
Lucky Peak	95	425,000	455,000	490,000
(709,778 AF)	90	355,000	390,000	430,000

Does not include dead or inactive storage, but may include storage credited to Lake Lowell.

Since a minimum of 300,000 acre-feet of winter flood control space will be maintained in the Anderson Ranch, Arrowrock, and Lucky Peak system from 1 November through 31 December each year, refill assurances for the total active system capacity will be approximately 89 percent on 1 January for normal runoff volumes.

From 1 January through 1 March, the required winter space for the system is a function of the flood potential related to runoff volume forecasts determined from the procedure described in Section VI - HYDRO-LOGIC FORECASTS. The winter space line shown on Plate 7-1 defines the system winter requirements when runoff volume forecasts are near or above normal. If runoff volume forecasts are significantly above normal, system winter space requirements (in excess of the winter space line) are also shown on Plate 7-1. If runoff volume forecasts are below normal, system winter space requirements can be reduced below the winter space line on Plate 7-1 in accordance with the criteria shown on Plate 7-2. Plate 7-2 maintains a 100-year winter flood control assurance and also provides a 95-percent refill assurance for 871,728 acre-feet of system space within the limits of the runoff volume forecasts shown. condition will the system space be less than 150,000 acre-feet from 1 January through the end of February. The following tabulation illustrates use of Plates 7-1 and 7-2 to define 1 January through 1 March winter space requirements.

<pre>1 February Forecasted Runoff Volume (Million Acre-Feet)</pre>	1 February Winter Space Requirement (Acre-Feet)		
2.3	360,000 (Plate 7-1)		
1.8	300,000 (Plate 7-1)		
1.5	237,000 (Plate 7-2)		
1.1	150,000 (Plate 7-2)		

A minimum of 55 percent of the total winter flood control requirement (from Plates 7-1 or 7-2 as appropriate) during the 1 January through 1 March period must be held within the Arrowrock and Lucky Peak projects; and no less than 50,000 acre-feet of space will be in Lucky Peak. If a violation of the winter flood control criteria occurs, excess storage must be evacuated as rapidly as is practical without exceeding 6,500 cfs at the Glenwood gage.

- b. <u>Spring Evacuation Requirements</u>. Flood control regulation during the spring snowmelt evacuation period (1 January through 31 March) normally requires some evacuation of stored water from the Boise River reservoirs by 1 April. This evacuation is necessary to provide adequate flood spaces within the reservoir projects to control forecasted floodflows resulting from melting snowpacks within the upper Boise Basin. The normal active snowmelt season generally begins during the first 2 weeks in April; thus, evacuation should be completed by approximately 1 April to ensure adequate spaces are available. The amount of evacuation necessary and the required 1 April target flood control spaces are based on:
 - Operational runoff volume forecasts.
 (Determined from procedure in Section VI -HYDROLOGIC FORECASTS.)
 - 2. Flood control rules curves.
 (Plates 7-1 or 7-2 as appropriate)
 - 3. Space distribution curves. (Plate 7-3)
 - 4. Inflow volume projections.

Years with small runoff volume forecasts may require no evacuation while years with large runoff volume forecasts may require large releases for evacuation.

During the evacuation period, it is necessary to maintain current day flood control spaces and distribution requirements and also schedule releases such that all 1 April requirements will be properly met. The following procedure outlines steps necessary to check the <u>current date flood control requirements</u>:

- 1. Compute current date through 31 July residual runoff volume forecast using the operational forecast and unregulated runoff volumes to date.
- 2. Determine current date required system flood control space from the flood control rule curves (Plates 7-1 or 7-2 as appropriate).

- 3. Determine current date space distribution requirements from the distribution curves (Plate 7-3).
- 4. Compare the current date flood control requirements to the observed current date data.

The following procedure outlines steps necessary to compute 1 April target flood control requirements (refer to Table 7-1 on page 7-8 as a worksheet).

1. Compute the expected residual 1 April through 31 July total Lucky Peak unregulated inflow volume using the current operational runoff forecast and the following projection equations for inflows prior to 1 April.

Inflow Projection Period	Projection Equation $\frac{1}{2}$ / Y = A ₀ + A ₁ X (KAF)	Standard Error <u>2</u> / (KAF)
1 Jan - 31 Mar	Y = 68.792 + 0.129677 X	72.473
16 Jan - 31 Mar	Y = 59.698 + 0.119461 X	69.986
1 Feb - 31 Mar	Y = 43.598 + 0.107706 X	73.436
15 Feb - 31 Mar	Y = 46.446 + 0.085270 X	59.385
1 Mar - 31 Mar	Y = 19.088 + 0.080381 X	69.108
16 Mar - 31 Mar	Y = 14.256 + 0.055828 X	49.807

- 1/Y = Projected inflow volume (1,000 acre-feet) expected during inflow projection period.
 - X = Forecasted runoff volume (1,000 acre-feet) corresponding to volume forecast period (date through 31 July).
- 2/ Standard error for regression equation (1,000 acre-feet). Projection equations and standard errors developed from 1895 through 1980 period of record.
- 2. Determine 1 April expected system flood control requirements from the flood control rule curves (Plate 7-1).
- 3. Compute minimum required flood control release using the expected 1 April flood control space requirement, present available space, and the date through 31 March inflow projection volume.

TABLE 7-1 LUCKY PEAK RELEASE SCHEDULING WORKSHEET (BEFORE 1 APRIL)

Vol	ume	Forecast (Date - 31 July): 1 February - 31 July): 2,000 KAF	ıly <u> </u>	DATE: NAME:		<u>e</u>
		Date: 1 April	لمحطما	Infla.		
1.	Exp	ected Residual 1 April through 31 July Unregul				
	á.	Volume Forecast (Date - 31 July):	2,0	000_KA	\ F	
	b.	Expected Inflow Volume (Date - 31 March) (Projection Equations Page 7-12)		3.598 59. KA	+ 0.1077 F	06 X)
	с.	Residual Forecast (1 April - 31 July) (a-b)			1,741	KAF
2.	[En	ected 1 April System Flood Control Space Requiter Flood Control Rule Curve (Plate 7-1) with idual Volume Forecast on 1 April]	remen	ts		
•	a.	Required 1 April System Flood Control Space			435	KAF
3.	Min	imum Required Flood Control Release				
	a.	Required 1 April System Flood Control Space (From 2.a.)	4	35_KA	F	
	b.	Present Available Space	3	20_KA	F ,	
	с.	Minimum Required Evacuation (a-b)	1	15"_KAI	F	
	d.	Expected Inflow Volume (Date - 31 March) (From 1.b.)	2!	59 KAI	-	
	e.	Minimum Required Release Volume (Date - 31 March) (c+d)			374	_KAF
	f.	Minimum Required Daily Release = (e) (500/Inflow Projection Period in Days)=(37)	74)(50 59	00) =	3,169	_CFS <
4.		imum Space Distributions, ter Plate 7-3 with Residual Forecast on 1 April				
	a.	Minimum Percentage of 1 April Flood Control Sp Required in Arrowrock and Lucky Peak Projects	ace		30	%
		Required 1 April System Flood Control Space (From 2.a.)	43	5 KAF		
		Minimum 1 April Space Required in Arrowrock and Lucky Peak Projects, (a)(b)/100 = (30)(435)/100	=	131	KAF :

4. Determine the minimum space distribution percentage which is expected to be required in Lucky Peak and Arrowrock on 1 April using the expected 1 April through 31 July residual runoff volume forecast and Plate 7-2. Compute the minimum expected 1 April flood control requirement for Lucky Peak and Arrowrock using the Lucky Peak and Arrowrock minimum space distribution percentage and the expected 1 April flood control requirement for the system.

After current date and expected 1 April flood control requirements have been determined, reservoir releases must be scheduled such that violations of these flood control requirements do not occur. Minimum flood control releases from Lucky Peak should not average less than the value computed under step 3 of the 1 April target requirement procedure. If the current date system space requirement is being violated, the required Lucky Peak release must be larger than the computed step 3 value; but it will not normally exceed 6,500 cfs at the Glenwood gage.

If the required minimum Lucky Peak release (as computed from step 3 of the 1 April target requirement procedure, Table 7-1 on page 7-8) exceeds 6,500 cfs at the Glenwood gage, it may be necessary to increase the regulation objective above 6,500 cfs at the Glenwood gage. Computed releases above 6,500 cfs usually occur as a result of exceptionally heavy snowpacks within the upper Boise Basin or very large increases in the runoff volume forecasts. Regulated flows at the Glenwood gage should not exceed 6,500 cfs before 1 April when there is more than a 50-percent chance that the expected flood can be controlled to 6,500 cfs. If the probability of controlling the expected flood to 6,500 cfs is 50 percent or less, the regulation objective must be increased as necessary (not to exceed 10,000 cfs at the Glenwood gage) to maintain at least a 50-percent control probability.

Computed releases above 6,500 cfs at the Glenwood gage usually occur as a result of exceptionally heavy snowpacks within the upper Boise Basin or very large increases in the runoff volume forecasts. If the required minimum Lucky Peak release (as computed from step 3 of the 1 April target requirement procedure, Table 7-1 on page 7-8) exceeds 6,500 cfs at the Glenwood gage, it may be necessary to increase the regulation objective above 6,500 cfs at the Glenwood gage. Criteria affecting increases above the regulation objective of 6,500 cfs at the Glenwood gage are listed as follows:

- 1. When the probability of controlling the expected flood to 6,500 cfs is more than 50 percent, regulated flows at the Glenwood gage should not exceed 6,500 cfs before 1 April.
- 2. If the probability of controlling the expected flood to 6,500 cfs is 50 percent or less, the regulation objective must be increased as necessary (not to exceed 10,000 cfs at the Glenwood gage).

The 50-percent control probability during the 1 January to 31 March evacuation period is defined as the system space required on the current date to control the following spring flood conditions to the regulation objective of 6,500 cfs at the Glenwood gage.

- 1. 50-percent exceedence (normal) runoff volume forecast.
- 2. 50-percent confidence level (normal) runoff timing sequence.

Methods which could be used to evaluate flood control space requirements for a 50-percent control probability are summarized as follows:

- Summary Hydrograph Method. Using a normal or mean hydrograph from a summary hydrograph and adjusting the hydrograph to maintain the timing and match the operational runoff volume forecast. Then routing this hydrograph through the Boise River reservoir system.
- Inflow Projection Method. Using inflow projection equations listed in Exhibit B to distribute the operational runoff volume forecast with time and then develop volumetime distribution data, a 50-percent flood hydrograph can be computed and routed through the Boise River reservoir system.

The procedures outlined in the preceding paragraphs should be repeated each time that a new operational runoff volume forecast is made (normally near the first of each month and mid-month during the 1 January through 31 March period). Plate 7-4 provides 95-percent refill assurance information which can be used to evaluate how the proposed flood control regulation will impact refill during this period.

- c. Refill Requirements. Flood control regulation during the refill period (1 April through 31 July) requires the use of snowmelt runoff to refill flood control spaces within the Boise River reservoirs. Refill rates for these flood control spaces must be controlled such that the regulation objective of 6,500 cfs at the Glenwood gage is not exceeded and the required reservoir project spaces are refilled at the end of the snowmelt runoff period. Premature filling of these spaces (before natural floodflows had decreased to regulation objective levels) would result in extensive flood damages below Lucky Peak Dam. Reservoir regulation during the refill period is normally the most difficult and most critical of the three flood control periods. Therefore, it is absolutely essential that required minimum flood control spaces and space distributions be maintained while the reservoir projects are being refilled. Reservoir releases must be scheduled such that flood control requirements are not violated; and yet, release fluctuations at Lucky Peak must be limited as much as practical to avoid unnecessary interference with irrigation diversions during this period. Flood control requirements and rates of refill during the refill period are based on:
 - Operational runoff volume forecasts. (Determined from the procedure in Section VI - HYDROLOGIC FORECASTS.)
 - Flood control rule curves.
 (Plates 7-1, 7-2, or 7-3A as appropriate)
 - Space distribution curves. (Plate 7-3)
 - Projections of 15-day and 30-day inflow volumes.

During the refill period, it is necessary to maintain current day flood control spaces and distribution requirements and also schedule releases such that 15-day and 30-day target requirements will be properly met. A procedure for checking the current date flood control requirements was outlined in paragraph 7-05.b. The following procedure outlines steps necessary to compute expected 15-day and 30-day target flood control spaces and release requirements (refer to Table 7-2 on page 7-13 as a worksheet).

1. Compute expected 15-day and 30-day residual runoff volume forecasts from the current date using the current operational runoff volume and the following projection equations.

			· · · · · · · · · · · · · · · · · · ·
Volume Forecast Date	Inflow Projection Period (Days)	Projection Equation $\frac{1}{4}$ Y = A ₀ + A ₁ X (KAF)	Standard <u>2</u> / Error (KAF)
			•
1 Apr	15	Y = 19.726 + 0.084950 X	56.041
1 Apr	30	Y = 17.487 + 0.229886 X	106.060
16 Apr	15	Y = 11.296 + 0.150415 X	75.344
16 Apr	30	Y = 52.610 + 0.301187 X	111.155
1 May	15	Y = 60.102 + 0.163226 X	63.217
1 May	30	Y = 114.571 + 0.350973 X	100.209
16 May	15	Y = 81.481 + 0.208614 X	65.625
16 May	30	Y = 63.450 + 0.516790 X	67.799
1 Jun	15	Y = 15.702 + 0.394130 X	42.760
1 Jun	30	Y = -2.683 + 0.738186 X	33.958
16 Jun	15	Y = -6.034 + 0.557465 X	22.875
16 Jun	30	Y = -10.831 + 0.870625 X	9.935
1 Jul	15	Y = -8.343 + 0.702454 X	5.670
_1_Jul	30		

 $[\]frac{1}{2}$ Y = Projected inflow volume (1,000 acre-feet) expected during the inflow projection period.

X = Operational runoff volume forecast (1,000 acre-feet)
 from the volume forecast date through 31 July.

²/ Standard error (1,000 acre-feet) for the projection equation. Equations and standard errors developed using the 1895 through 1980 period of record.

^{2.} Determine the 15-day and 30-day target date expected system flood control requirements from the flood control rule curves (Plate 7-1).

^{3.} Compute minimum required flood control releases from Lucky Peak using the 15-day and 30-day flood control space requirements and the 15-day and 30-day inflow volume projections.

^{4.} Determine 15-day and 30-day space distribution requirements from the space distribution curves (Plate 7-3).

TABLE 7-2 LUCKY PEAK RELEASE SCHEDULING WORKSHEET (AFTER 1 APRIL)

		st Period (Date - 31 July): <u>1 May -</u> Forecast (Date - 31 July): <u>1,</u> 200 K		July	Dat Nam		ıp1e	
		Dates (15-Day): 15 May		. (30-Day		ay	
				15-D Target	•	30-D Target	•	
1.	Exp	ected Residual Target Date through	31 J	July Unr	egulate	ed Inflo	w Volu	ume
	a. b.	<pre>Expected Inflow Volume (Date-Target Date) (Y = 60.102+0.163226 (Projection Equations Page 7-12)</pre>		1,200	KAF	1,200 571+0 3	KAF	Χì
	с.			256	KAF	536	KAF	^ /
		31 July) (a-b)			KAF	664	KAF	
2.	Expected Target Date System Flood Control Space Requirements [Enter Flood Control Rule Curve (Plate 7-1) with Residual Volume Forecasts and Target Dates]							
	a.	Required System Flood Control Space	е	252	KAF	167	KAF	
3.	Minimum Required Flood Control Release							
	a.	Required System Flood Control Space (From 2.a.)	е	252	KAF	167	KAF	
	b.	Present Available Space		305	KAF	305	KAF	
	с.	Minimum Required Evacuation (a-b)		53_	KAF	-138	KAF	
	d.	Expected Inflow Volume (Date - Target Date) (From 1.b.)	•	256	KAF	536	KAF	
	е.	Minimum Required Release Volume (Date - Target Date) (c+d)		203	KAF	398	KAF	
	f.	Minimum Required Daily Release	= ((e) (500, 6,767	/15) = CFS	(e) (50 6,633	00/30) _CFS	
4.	Minimum Space Distributions (Enter Plate 7-3 with Residual Forecast and Target Date)							
	a.	Minimum Percentage of Flood Control Space Required in Arrowrock and Lucky Peak Projects		30	_%	30_	_%	
	b.	Required System Flood Control Space (From 2.a.)	!	252	_KAF	167	_KAF	•
	с.	Minimum Space Required in Arrowrock and Lucky Peak Projects (a)(b)/100		76	KAF	50	KAF	

Step 1 of the procedure just outlined can use methods other than the projection equations to determine total Lucky Peak unregulated inflows expected between the current date and 15 days and 30 days later. Using other methods, such as the SSARR model but not limited to SSARR, can be very advantageous for short-term inflow forecasting since these models use many more parameters and are generally more accurate than the projection equations. If methods other than the projection equations are used for projecting short-term inflow volumes, the regulating agencies must agree on inflow volume values before these values are used for release scheduling. If, however, the regulating agencies cannot agree on inflow volume values, the projection equation procedure will be the required step and must be used.

After current date and expected 15-day and 30-day flood control requirements have been determined, reservoir releases must be scheduled such that violations of these flood control requirements do not occur. Minimum flood control releases from Lucky Peak should not average less than the smaller of the two values computed under step 3 of the 15-day and 30-day target flood control procedure. If the current date system space requirement is being violated, the required Lucky Peak release must be equal to or greater than the larger of either value computed under step 3; but it will not normally exceed 6,500 cfs at the Glenwood gage.

If the required minimum Lucky Peak release (as computed from step 3 of the 15-day and 30-day target flood control procedure) exceeds 6,500 cfs at the Glenwood gage, it is necessary to check a second set of criteria to determine if the 6,500-cfs regulation objective must be increased. The purpose of the additional criteria is to insure that exceeding 6,500 cfs is actually necessary to control the flood as opposed to meeting the 15-day and 30-day space targets. The desired flood control objective (April through July) is to maintain an 80-percent control probability. While flows between 6,500 cfs and 10,000 cfs at the Glenwood gage do result in significant flood damages, flows in excess of 10,000 cfs produce major flood damages and should be avoided, if possible. Criteria used to determine flows in excess of 6,500 cfs at the Glenwood gage are summarized as follows:

1. When the probability of controlling the expected flood to 6,500 cfs is more than 80 percent, regulated flows at the Glenwood gage should not exceed 6,500 cfs.

2. When the probability of controlling the expected flood to 6,500 cfs is less than 80 percent, regulated flows at the Glenwood gage must be increased to the 80-percent control probability level (20-percent risk).

The regulation objective necessary to maintain an 80-percent control probability from April through July is evaluated by routing two synthetic 20-percent exceedence flood hydrographs through the Boise River reservoir system to determine the minimum constant flow required at the Glenwood gage to control the expected floods. These two synthetic hydrographs (one with a 50-percent timing distribution and a 20-percent exceedence volume and a second hydrograph with a 50-percent volume and a 20-percent early timing exceedence) can be developed by any of the following methods:

- Using the joint (Bureau-Corps) operational runoff volume forecast and its standard error of estimate, the two synthetic hydrographs are calculated with the inflow projection equations and standard errors listed in Exhibit B.
- 2. Using the joint (Bureau-Corps) operational runoff volume fore-cast and the unregulated summary hydrograph, the forecasted volume is distributed to represent each of the two synthetic flood hydrographs.
- 3. Using the SSARR computer model with the 50-percent and 20-percent exceedence runoff volume forecasts, 20-percent and 50-percent exceedence temperature sequences are input into the model to generate the early and normal timing distributions for the synthetic hydrographs.

The procedures outlined in the preceding paragraphs should be repeated each time that a new operational runoff volume forecast is made (normally near the first of each month and mid-month during the 1 April through 1 June period). Plate 7-4 provides 95-percent refill assurance information which can be used to evaluate how proposed flood control regulation will impact refill during this period. Plate 7-5 provides 1-percent flood control space information which can be used to evaluate risks being taken with proposed flood control regulation.

The final 60,000 acre-feet of reservoir system space to be refilled each year (within the Anderson Ranch, Arrowrock, Lucky Peak projects, excluding surcharge) will be used jointly for flood control protection for late

season, large rainstorms; underestimation of remaining runoff; river regulation during emergency conditions (such as canal breaks, construction within the Boise River channel, etc.); and storage of water for stream maintenance flows and municipal and industrial uses. The Bureau of Reclamation has the temporary State permit for Lucky Peak Lake storage and will be finalizing the permit by requesting that the Lucky Peak Lake noncontracted space be assigned as follows:

- 1. 13,950 acre-feet of water volume between pool elevations 3055 to 3060 for exclusive flood control.
- 2. 102,300 acre-feet for stream maintenance flows and municipal and industrial uses.

Even though the 60,000 acre-feet of space has last priority in the Boise reservoir system for the purpose of improving the flood control operation, the regulating agencies should try to refill the space because the water stored in the space is critical to maintaining minimum Boise River stream maintenance flows.

When Anderson Ranch, Arrowrock, and Lucky Peak projects have a total of 60,000 acre-feet of space or less (excluding surcharge) during the annual snowmelt flood control season, reservoir regulation will be guided by current basin conditions such as snowpack water contents, expected precipitation and temperatures, current irrigation diversions, and any other data which are available and indicate current flood potential. The regulating agencies will jointly determine current flood control requirements for existing basin conditions. If it is deemed safe to refill a portion of the final 60,000 acre-feet of space, the regulating agencies must agree on the proposed regulation schedule before additional planned filling begins. This filling will be limited by the "Final Fill Flood Control Requirements" shown on Plate 7-3A when unregulated inflows are greater than 10,000 cfs.

- d. <u>Constraints and Considerations</u>. As part of the plans presented for each of the three flood control periods, there are some general constraints and considerations which affect final flood control regulation. The following information outlines these items.
- (1) <u>Regulation Objectives</u>. The purpose of regulating the Boise River for flood control is to prevent loss of life and limit property damage due to flooding of the Boise River. To accomplish these goals,

it is desirable to contain Boise River natural floodflows within the reservoir projects while limiting downstream flows at the Glenwood Bridge gaging station to 6,500 cfs or less. The 6,500-cfs regulation objective at the Glenwood gage is a primary regulation target and should not be violated unless an emergency exists or is anticipated (refer to the individual flood control plans for each of the three periods). 6,500 cfs at the Glenwood gage do result in some minor flooding (primarily overbank flooding of agricultural and pastureland and seepage into low elevation areas); however, 6,500 cfs is considered to be the normal acceptable damage flow level by the regulating agencies. Using regulation objectives, less than 6,500 cfs would result in reducing the flood control capability of the system and past studies have shown that average annual flood damages would increase if the regulation objective was de-Streamflow magnitudes of 6,500 cfs at Glenwood gage are less serious later in the irrigation season as more water is diverted from the river below Glenwood gage.

During the irrigation season, irrigation water is diverted from the Boise River between Lucky Peak Dam and the Glenwood Bridge gaging station. These diversions are normally quite dependable from year to year and significantly aid in reducing flows and thus allow Lucky Peak releases to be increased by an equal amount if necessary for flood control. The following tabulation lists assumed irrigation diversions and total Lucky Peak releases used for the development of flood control criteria for normal flood control regulation.

Period	Flood Control Objective Boise River at Glenwood Gage (cfs)	Assumed Irrigation Diversions Lucky Peak to Glenwood Gage (cfs)	Flood Control Objective Lucky Peak Release (cfs)
1 Jan-31 Mar	6,500	0	6,500
1 Apr-30 Apr	6,500	1,600	8,100
1 May-31 May	6,500	3,700	10,200
1 Jun-31 Jul	6,500	3,800	10,300

A secondary flood control regulation objective is to maintain the downstream flows at the Parma gaging station to 7,000 cfs or less whenever possible. Flows at the Parma gage are dependent upon flows at the Glenwood gage, current irrigation diversions and return flows, and upon local runoff from rain or snowmelt.

The normal flood control regulation objectives just presented outline desirable maximum flood control limits which are usually obtainable within the physical limits of the existing reservoir system and the restricted downstream channel capacity. Occasionally a large or unusual flood event will occur which cannot be controlled within the reservoir system while maintaining 6,500 cfs at the Glenwood gage. When the flood control space requirements cannot be maintained with 6,500 cfs at the Glenwood gage, flood control strategies necessary to prevent loss of flood control regulation and still significantly reduce flood damages are presented within paragraphs 7-05.a., b., and c.

(2) <u>Allocations</u>. The following flood control space allocations define maximum spaces which can be used for flood control in each of the Boise River reservoir projects.

Project	Flood Control Allocation (Acre-Feet)	Reservoir Pool Range (Feet)	
Anderson Ranch Arrowrock Lucky Peak Lake Lowell Diversion Dam Total	418,178 423.178 286,600 264,371 0 0 0 969,149	4,044 to 4,196 2,974 to 3,216 2,905 to 3,055 	4039-21044 SKM

Flood control allocations for the Anderson Ranch and Arrowrock projects remain the same as shown in earlier manuals and references. The flood control allocation for the Lucky Peak project has been reduced from 278,276 acre-feet to 264,371 acre-feet in this manual to provide 5 feet of freeboard (surcharge) at the project to avoid inadvertent use of the emergency spillway. No flood control allocations are used for Lake Lowell or Diversion Dam pond even though floodwaters have been diverted to Lake Lowell to reduce Boise River flows in the past. It is expected that Lake Lowell will probably continue to be used to reduce floodwaters in the future; but these floodflow diversions are made by agreement with the Boise Project Board of Control and possible canal problems could arise which would make any allocation unusable. Therefore, the flood control plan excludes flood control diversions above conservative irrigation demand.

(3) Reservoir Surcharges. Surcharge storage spaces within the reservoir projects should not be used as normal planned flood control space. These spaces should only be used during emergencies when potentially hazardous downstream situations can be alleviated by temporarily utilizing some of the surcharge spaces. Any water in surcharge will be released as soon as the downstream situation permits. The following tabulation summarizes surcharge storage spaces which can be used for emergencies.

Project	Surcharge Space (Acre-Feet)	Reservoir Pool Range (Feet)		
Anderson Ranch	10,504	4,196 to 4,198.20		
Arrowrock Lucky Peak	11,630 13,905	3,216 to 3,219.75 3,055 to 3,060.00		
Ţotal	36,039			

Rule Curves. Operational flood control rule curves (Plate 7-1) define required system flood control spaces as functions of date and operational runoff volume forecasts. These rule curves represent a balance between flood control risks and refill assurances and were specifically designed to minimize the impact of volume forecast errors and abnormal runoff timing sequences. Use of the operational flood control rule curves does not provide complete assurance that flows in excess of 6,500 cfs at the Glenwood gage can be prevented during the entire flood control season, nor that the reservoir system will completely refill. When runoff volume forecasts increase significantly because of heavy accumulations of precipitation or when runoff volume forecast errors and/or runoff timing sequences are outside of the limits of the rule curves, it may not be possible to maintain required rule curve spaces without exceeding 6,500 cfs at the Glenwood gage. During years with large runoff volume forecasts that require large downstream releases, release limitations at the Arrowrock project can sometimes make it impossible to maintain rule curve spaces. Forecast errors and/or abnormal timing sequences may also prevent filling the reservoir system occasionally. Early in the season, assurances for flood control and refill are high, and then decrease later in the season. Table 7-3 on page T7-1 approximates how the flood control and refill assurances are incorporated in the Plate 7-1 rule curves as the season progresses.

- e. Regulation Procedures. The Corps of Engineers (Walla Walla District) and the Bureau of Reclamation (Pacific Northwest Region) are the regulating agencies for the Anderson Ranch, Arrowrock, and Lucky Peak projects during the annual flood control season. It is the responsibility of these agencies to jointly develop and implement real-time regulation plans and schedules for the three Boise River reservoirs which satisfy both the flood control and nonflood control requirements of these projects during the flood control season. The Corps of Engineers is responsible for ensuring that criteria within the flood control plans are not violated and they also have the final authority to specify releases from the three reservoirs if mutual agreement cannot be achieved. The Boise River Watermaster is not responsible for flood control regulation; but through his duties as watermaster, he is an integral part of the regulation planning during the flood control season by providing information about river conditions, planned activities, and irrigation requirements. - WATER CONTROL MANAGEMENT defines overall agency responsibilities and organizational structures and the following four paragraphs outline staff level offices involved in the daily regulation of the three reservoirs during the flood control season.
- (1) <u>Hydrology Branch Personnel</u> (Corps of Engineers Walla Walla District) are responsible for developing seasonal runoff forecasts, defining and proposing regulation plans and schedules which will meet required flood criteria, and agreeing to operational forecasts and release schedules. During the flood control season, these personnel order releases at Lucky Peak, inform the Watermaster of Lucky Peak release schedules, and keep State of Idaho Department of Water Resources personnel (Hydrology Section) informed of current regulation.
- Pacific Northwest Region) are responsible for defining and proposing regulation plans and schedules which will meet nonflood control requirements for the projects (such as power generation at Anderson Ranch, storage contract obligations, fish and game releases, storage transfers to Lake Lowell, etc.) during the flood control season. These personnel work very closely with the Watermaster and irrigation users to integrate their water rights and irrigation requirements into their nonflood control regulation plans and schedules. Central Snake projects personnel are responsible for agreeing to final release schedules, ordering releases at the Anderson Ranch and Arrowrock projects, and informing the Watermaster of project storages and releases.

e. Flood Control Regulation Procedures. The Corps of Engineers (Walla Walla District) and the Bureau of Reclamation (Pacific Northwest Region) are responsible for the regulating the three Boise River reservoirs (Anderson Ranch, Arrowrock, and Lucky Peak projects) during the annual flood control season. The Corps of Engineers and the Bureau of Reclamation jointly develop and implement real-time regulation plans and schedules for the three Boise River reservoirs which satisfy both the flood control and nonflood control requirements of these projects during the flood control season.

The Boise River Watermaster is not responsible for flood control regulation; but through his duties as watermaster, he is an integral part of the regulation planning during the flood control season by providing information about river conditions, planned activities, and irrigation requirements.

Figure 7-1 on page 7-22A and the following paragraphs outline duties and procedures of staff level offices involved in the daily regulation of the three reservoirs during the flood control season:

- (1) Corps of Engineers Walla Walla District,
- (2) Bureau of Reclamation Pacific Northwest Region,
- (3) Boise River Watermaster,
- (4) Coordination Procedures.

(1) Corps of Engineers - Walla Walla District.

(a) <u>Hydrology Branch Personnel</u> are responsible for developing seasonal runoff forecasts, defining and proposing regulation plans and schedules which will meet required flood criteria, and agreeing to operational forecasts and release schedules. During the flood control season, these personnel order releases at Lucky Peak through the Project Manager, inform the Watermaster of Lucky Peak release schedules, and keep State of Idaho Department of Water Resources personnel (Hydrology Section) informed of current regulation.

The Corps of Engineers is responsible for ensuring that criteria within the flood control plans are not violated and also have the final authority to specify releases from the three reservoirs if mutual agreement cannot be achieved.

(b) <u>Lucky Peak Project Manager</u> or his representative has the primary responsibility for (1) ordering flood control releases from the Lucky Peak Powerhouse and auxiliary outlet, which is owned and operated by the Boise River Board of Control, (2) making additional releases from the main Corps of Engineers outlet works, when the total releases required for flood control exceed the combined hydraulic capacity of both the powerhouse and auxiliary outlet works, and (3) monitoring Lucky Peak reservoir conditions. The combined hydraulic capacity for Lucky Peak's powerhouse and auxiliary outlet works are summarized in the following tabulation:

HYDRAULIC CAPACITY OF LUCKY PEAK POWERHOUSE AND AUXILIARY OUTLET WORKS

POOL	POWERHOUSE	AUXILIARY	TOTAL
ELEVATION	DISCHARGE	DISCHARGE	DISCHARGE
(FMSL)	(CFS)	(CFS)	(CFS)
3,055	5,584 5600_	5-890 5900	11,474 11,500
2,905	6-330- 6300	411 400	6,741 6,700

(2) Bureau of Reclamation) - Pacific Northwest Region.

- (a) Central Snake Projects Personnel are responsible for defining and proposing regulation plans and schedules which will meet nonflood control requirements for the projects (such as power generation at Anderson Ranch, storage contract obligations, fish and game releases, storage transfers to Lake Lowell, etc.) during the flood control season. These personnel work very closely with the Watermaster and irrigation users to integrate their water rights and irrigation requirements into their nonflood control regulation plans and schedules. Central Snake projects personnel are responsible for agreeing to final release schedules, ordering releases at the Anderson Ranch and Arrowrock projects, and informing the Watermaster of project storages and releases.
- (b) Reservoir and River Operations Branch Personnel provide technical data and assistance to the Central Snake Projects Office personnel. They serve as the coordination office between the Hydrology Branch (Corps) and Central Snake Projects Office (Bureau). During the flood control season, Reservoir and River Operations Branch personnel develop seasonal runoff forecasts and agree to operating forecasts, review, evaluate, and coordinate proposed flood control and nonflood control plans and schedules between the Corps and Bureau offices until one plan and schedule is agreed upon to satisfy all of the requirements.
- (3) <u>Boise River Watermaster</u> is responsible for the measurement, accounting, and distribution of Boise River water according to all decreed and licensed rights. During the flood control season, the Watermaster defines required Lucky Peak releases necessary to meet water right requirements and also provides information on current river and channel conditions, changing irrigation diversions, activities along the river, etc.
- (4) Coordination Procedures. Daily regulation of the three reservoirs during the flood control season requires that agency personnel (Hydrology Branch-Corps), Central Snake Projects-Bureau, Reservoir and River Operations- Bureau, Boise River Watermaster) closely coordinate their planning and scheduling to accomplish the desired regulation goals. Coordination procedures used to derive and agree upon reservoir releases and schedules during the flood control season are summarized in the following steps:
- <u>Step 1</u>. Walla Walla District Hydrology Branch personnel shall call the Boise River Watermaster in the morning to get current information on (1) water right release requirements, (2) downstream diversion changes, and

- Step 2. After completing Step 1, the <u>Walla Walla District</u> <u>Hydrology Branch</u> personnel shall call the Bureau of Reclamation Reservoir and River Operations Branch to coordinate release schedules for flood control requirements.
- <u>Step 3</u>. After release schedules have been coordinated and agreed upon between the Walla Walla District Hydrology Branch and the Bureau of Reclamation Central Snake Projects Office and Reservoir and River Operations Branch,
 - a. The Walla Walla District Hydrology Branch personnel shall:
 - (1) notify the Boise River Watermaster of any release schedule changes at Lucky Peak in order to provide 24 hour notice to the watermaster for safety reasons;
 - (2) call Lucky Peak project personnel to order required release changes; and
 - (3) brief the Idaho Department of Water Resources personnel (Hydrology Section) from time to time to keep them informed of the general flood situations and plans.
 - b. The Bureau of Reclamation Central Snake Projects Office shall:
 - (1) order any release changes needed at the Arrowrock and/or Anderson Ranch projects.
 - (2) issue joint (Bureau Corps) news releases about the Boise reservoir system, When appropriate.
- Step 4. Whenever a new operational runoff volume forecast is made or the flood control situation is critical, the current flood control plan must be reevaluated and a new plan and schedules must be coordinated and agreed upon. Normally, final agreement should be reached within 2 days from the date that the first flood control plan is submitted. If agreement cannot be reached within 2 days or if the flood control situation is too critical to allow a 2-day coordination period and agreement cannot be reached immediately, each office will take the proposed plans and schedules to higher authorities to resolve. Higher authority for the Corps of Engineers will be the Walla Walla District Commander. Higher authority for the Bureau of Reclamation will be the Regional Director, Pacific Northwest Region. The District Commander will have final flood control authority if agreement cannot be reached with the Regional Director.

NOTE: criteria within this manual should not be violated under normal operation. However, situations may arise in the future where it may not always be possible or practical to exactly follow the criteria. Therefore, the flood control criteria can be temporarily violated, but only with approval of both the Walla Walla District Engineer and the Pacific Northwest Regional Director.

BOISE RIVER RESERVOIRS (ANDERSON, ARROWROCK, AND LUCKY PEAK) FLOOD CONTROL COORDINATION PLAN

BUREAU OF RECLAMATION

CENTRAL SNAKE PROJECTS OFFICE

- 1) ORDER RELEASES FROM ANDERSON AND ARROWROCK DAMS.
- 2) ISSUE JOINT NEWS/MEDIA ANNOUNCEMENTS ON FLOOD OPERATIONS FOR BOISE RIVER RESERVOIRS.

BOISE RIVER WATERMASTER

- 1) PROVIDE:
 - A) IRRIGATION
 REQUIREMENTS
 - B) DOWNSTREAM DIVERSIONS
- MONITOR BOISE RIVER CONDITIONS.

CORPS OF ENGINEERS WALLA WALLA DISTRICT

HYDROLOGY BRANCH

- 1) CALL BOISE RIVER WATERMASTER.
- 2) COORDINATE OPERATING FORECAST AND RELEASE SCHEDULE WITH USBR RIVER OPERATIONS BRANCH.
- NOTIFY WATERMASTER ABOUT SCHEDULE CHANGES.
- ORDER RELEASES FROM LUCKY PEAK VIA PROJECT MANAGER.
- BRIEF IDAHO DEPT. OF WATER RESOURCES ON FLOOD CONTROL PLAN.

LUCKY PEAK DAM

PROJECT MANAGER

- ORDER RELEASES FROM LUCKY PEAK.
- 2) MONITOR RESERVOIR CONDITIONS.

BUREAU OF RECLAMATION

RESERVOIR & RIVER OPERATIONS BRANCH

1) COORDINATE OPERATING
FORECAST AND FLOOD
CONTROL RELEASE
SCHEDULE WITH CORPS
OF ENGINEERS
HYDROLOGY BRANCH
AND CENTRAL SNAKE
PROJECTS OFFICE.

IDAHO DEPARTMENT OF WATER RESOURCES

HYDROLOGY SECTION

 BRIEFED BY CORPS OF ENGINEERS ON FLOOD CONTROL PLAN.

7-06. Irrigation Water Supply Plan.

- a. <u>Purpose of Plan</u>. The purpose of the irrigation water supply plan is to document irrigation water supply and management practices which are generally being used for Boise River water.
- Water Rights. Existing water rights form the base from which Boise River water is managed and used for irrigation. Early water right decrees on the Boise River were preceded by many court cases involving claims of different individuals and companies contending harm from the over-allocation of Boise River waters. All decreed rights below Lucky Peak are now governed by the Stewart Decree of 1906 and the Bryan Decree of 1929 which state the priorities, amounts, and procedures by which each canal receives water. Table 7-4 on page T7-2 summarizes Stewart and * Bryan Decree filings by canals. In addition to these rights, the State of Idaho has issued rights which permit storage of Boise River water into Anderson Ranch, Arrowrock, and Lucky Peak Reservoirs. storage is currently under a permit. All storage rights and permits are held by the Bureau of Reclamation primarily for irrigation water supply. Contracts have been made between the Bureau and various irrigation districts and canal companies for the stored water. These contracts are not water rights but they do define the space allocations of water stored under the Bureau rights. Space allocations in Anderson Ranch, Arrowrock, and Lucky Peak Reservoirs are shown in Tables 7-5, 7-6, and 7-7 on pages T7-3 and T7-4, respectively. The entire space of Arrowrock and Anderson Ranch Reservoirs has been allocated to irrigation districts or canal companies with two exceptions. In Anderson Ranch, 5,200 acre-feet have been allocated to power production, and in Arrowrock 23,000 acre-feet have been reserved for future irrigation in the Hillcrest area of the Boise Valley. Of the total 264,250 acre-feet in Lucky Peak Reservoir, 111,950 acre-feet are allocated to irrigation districts or canal companies for irrigation and 152,300 acre-feet allocated are for streamfl ow maintenance.

- c. Administration of Water Rights. Surface water rights on the Boise River are administered by the Boise River Watermaster. The Watermaster is responsible for the measurement, accounting, and distribution of water according to all decreed, licensed, and permitted rights.
- d. <u>Irrigation Water Supply Periods</u>. For the purposes of water right administration, the irrigation season on Boise River is considered to be 1 April to 1 November. However, actual diversions for irrigation usually begin on approximately 15 April and end near 15 October. During this period, the Boise River Watermaster distributes water to the irrigation districts, canal companies, and others who hold natural flow rights and/or reservoir space contracts. Water deliveries are reported each year in the report "Water Distribution of Boise River District #63," prepared by the Watermaster. Reservoir storage, which generally begins near the end of the irrigation season, occurs whenever runoff exceeds irrigation demand or when releases are not required for flood control.
- e. Boise River Reservoir Storage Accrual. Boise River reservoir storage accrues on a daily basis to each reservoir according to the priority of the water right(s) for the reservoir(s) and the natural flow supply available at the point of diversion. Natural flow is determined at the * location of the dams for the main river reservoirs (Anderson Ranch, Arrowrock, and Lucky Peak) and at the New York Canal Diversion Dam for the offstream reservoir, Lake Lowell.

In order of priority, the water rights for storage in Arrowrock, Anderson Ranch, Lucky Peak, and Lake Lowell Reservoirs are as follows:

	Priority	Rate (cfs)	Volume (acre-feet)	Remarks ¹ /
	14 December 1903	1,354.58		New York Canal (BD)
	13 January 1911	8,000.00		Arrowrock (BD)
	25 June 1938		15,000	Arrowrock (L)
*	9 December 1940		493,161	Anderson Ranch (L)
	12 April 1963		293,050	Lucky Peak (P) *

^{1/} BD - Bryan Decree; L - License; P - Permit. All of these rights are held by the Bureau of Reclamation for the Department of the Interior.

The New York Canal right of 1,354.58 cfs is an irrigation right * which can also be used to store water offstream in Lake Lowell Reservoir during the nonirrigation season. The volume of water storable per annum is limited by the physical capacity of Lake Lowell, 177,150 acre-feet. Transmission losses in the New York Canal from 1 November to 1 April may * be diverted in addition to the physical capacity of Lake Lowell to compensate for such losses.

Arrowrock Reservoir is filled according to two rights, one for 8,000 cfs for a physical capacity of 275,000 acre-feet and another for 15,000 acre-feet with no limit on the diversion rate. However, because of siltation, the current total physical capacity is 286,600 acre-feet.

Anderson Ranch Reservoir is filled by a right for 493,161 acrefeet with no limit on diversion rate. This right is limited by dead storage of 28,980 acre-feet plus normally inactive storage of 40,981 acre-feet to 423,200 acre-feet active space.

Lucky Peak Reservoir is filled by a right for 293,050 acre-* feet, also having no limit on diversion rate. The right is limited by normally inactive storage of 28,800 acre-feet to 264,250 acre-feet of space. At the time of this agreement the Lucky Peak right is at permit stage with licensing pending.

The above-described reservoir rights are the primary diversion rights in effect during the nonirrigation season (1 November to 1 April).

* Prior to and subsequent to these dates when natural flow is sufficient to meet some or all of these storage rights, they are equal in stature to all other rights subject to priority date and other conditions imposed by state water law. To provide for efficiency and flexibility in reservoir operations, storage under the Arrowrock, Anderson Ranch, and Lucky Peak rights can physically occur in any of the three reservoirs without * regard to the reservoir specified in the right as long as the capability of any other right to be exercised remains unaffected.

The volume stored per annum, beginning on 1 November of each year, cannot exceed the volume specified by the water right or the physical capacity of the reservoir unless all subsequent rights have been met. The volume stored (including unused storage from a previous year) cannot, on any given day, exceed the specified or physical volume of the reservoir. Previously unused storage (carryover) which is released during the

nonirrigation season for a specified beneficial use can be replaced in the same year within the constraints of the right(s) governing that * space.

At the end of the irrigation season, it is the responsibility of the Bureau, in conjunction with the Watermaster, to determine the amount of unused storage in each of the three main river reservoirs (Anderson Ranch, Arrowrock, and Lucky Peak) within 30 days of the time the Watermaster has determined the amount of stored water used. It is the duty of the Watermaster to determine on a daily basis the accumulation of stored water under the rights of each of the three reservoirs and to notify the Bureau each season when the maximum fill of each reservoir is *known. The Bureau shall in turn inform the Watermaster of each user's stored water allocation in sufficient detail for proper delivery of that water.

f. <u>Distribution of Irrigation Water</u>. Water rights for direct diversion of flow for irrigation are potentially valid only during the 1 April through 31 October irrigation season. The Boise River Watermaster makes a daily calculation of natural (unregulated) flow at one or more locations near these points of diversion to sufficiently estimate the available natural flow supply. The Watermaster then credits the natural flow to appropriate users based on a list of water rights in force provided by the State of Idaho, Department of Water Resources. When the rate of diversion of a user is greater than the credited natural flow, the remainder is charged by the Watermaster to the user's stored water supply, or lacking storage, the rate of diversion must be reduced.

In many years flood control regulation extends several weeks into the irrigation season. When Lucky Peak flood control releases are equal to or greater than the demand for irrigation water (all users are receiving an adequate supply), the entire release is considered surplus to the Boise River and the above computation of natural flow diversion by user is not necessary. During this period, no charges are made against stored water supplies.

During the irrigation season, the Watermaster defines irrigation releases which are needed at Lucky Peak Dam. The Bureau in turn transfers water from Anderson Ranch and Arrowrock Reservoirs as necessary to provide water for irrigation release. Irrigation releases made from Lucky Peak are normally near 4,500 cfs.

g. <u>Irrigation Responsibilities</u>. It is the responsibility of the Central Snake Projects personnel (Bureau of Reclamation) and the Boise River Watermaster to supply water to the downstream users. The Central Snake Projects personnel regulate the Anderson Ranch, Arrowrock, and Lucky Peak projects for the purpose of water supply, and the Boise River Watermaster defines required Lucky Peak releases necessary to meet demands and then ensures that these demands are met.

From 1 April to approximately 1 July each year, the flood control season and the irrigation season normally overlap. Coordination for the purpose of meeting irrigation requirements during the flood control-irrigation overlap period will be done in accordance with the procedures defined within paragraph 7-05.e. of the Flood Control Plan. After the flood control season is over, the Corps of Engineers has only a limited responsibility in the regulation of the projects; therefore, the procedure in the following paragraphs will be used to eliminate unnecessary interagency coordination.

After the flood control season each year, the Chief of Hydrology Branch (Corps of Engineers) will by letter designate the Central Snake Projects Superintendent (Bureau of Reclamation) as the person responsible for releases from the Lucky Peak project. The Central Snake Projects Superintendent is then responsible for Lucky Peak releases during the remainder of the irrigation season because water will be withdrawn from storages for which the Bureau of Reclamation holds the storage licenses and permit. After the irrigation season each year, Lucky Peak releases will again become the responsibility of the Chief of the Hydrology Branch. Chief of the Hydrology Branch will then notify necessary personnel of this transfer in responsibility by letter.

The Central Snake Projects Superintendent, after being designated as responsible for Lucky Peak releases, will by letter designate personnel authorized to call Lucky Peak project personnel and order release changes. He may designate either himself and members of his staff or the Boise River Watermaster as authorized personnel, but only one office at one time will be authorized to call Lucky Peak.

7-07. Maintenance Plan. After the irrigation season ends (approximately 15 October), Lucky Peak releases are reduced to minimum and water is normally stored within the three reservoirs until flood control releases are required, or until storage transfer to Lake Lowell, or until irrigation season begins again. Project inspections and maintenance as well as downstream maintenance and construction should normally be scheduled within

this period and as soon after irrigation season as possible. The length of this low-flow maintenance period is dependent upon storage within the system, project inflows, and runoff volume forecasts beginning on 1 January. Winter flood control requirements outlined in paragraph 7-05.a. will not be violated in order to limit flows below Lucky Peak Dam for downstream maintenance or construction during this period.

Lucky Peak Lake should normally be at elevation 2960 by the end of irrigation season so that annual inspections and maintenance can be completed. If it is necessary during this time to reduce Lucky Peak releases to zero, the storage pool behind Diversion Dam will be used to temporarily supply Boise River minimum flows.

Inspections and maintenance at the Anderson Ranch and Arrowrock projects should also be scheduled as much as possible for this period after irrigation season. Normal irrigation season requirements and regulation practices generally reduce the Arrowrock storage to levels which coincide with annual inspection and maintenance requirements.

System regulation for the purpose of project inspection and maintenance is a cooperative regulation effort between the Bureau of Reclamation and the Corps of Engineers. Shortly after the end of flood control season, it is desirable for personnel (from the Central Snake Projects Office - Bureau, Reservoir and River Operations Branch Office - Bureau, Hydrology Branch Office - Corps, and Lucky Peak Project Office - Corps) to meet for the purpose of defining inspection and maintenance requirements and scheduling target pool elevations for the maintenance period. This meeting (if held) should also be attended by the Boise River Watermaster and representatives from the State of Idaho, Department of Water Resources.

Lucky Peak releases made during the irrigation season for the purpose of meeting maintenance-period target pool elevations should be scheduled in accordance with the procedure outlined in paragraph 7-06.g. of the Irrigation Plan. During the maintenance period (after irrigation season), Lucky Peak releases will be scheduled through Hydrology Branch personnel - Corps of Engineers. If it is necessary to reduce Lucky Peak releases to zero during the maintenance period, the Lucky Peak Project Supervisor and/or his staff will coordinate Diversion Dam pool requirements directly with the Central Snake Projects Superintendent and/or his staff in order to maintain minimum Boise River flows below Diversion Dam. Lucky Peak project personnel will keep Hydrology Branch personnel (Corps) notified of the schedules for this purpose.

7-08. Hydroelectric Power Plan. Hydroelectric power generation at Anderson Ranch Dam is a secondary use to flood control and irrigation water supply. It is desirable to generate power whenever possible; but the amount of power produced is dependent upon releases needed for flood control, irrigation, and balancing storage distributions within the system rather than optimizing power production. Anderson Ranch Dam normally generates some power year-round and the power is marketed under the authority of the Bonneville Power Administration (BPA) and then added to the Federal system. The Central Snake Projects Superintendent and his staff are responsible for power generation at Anderson Ranch Dam. Normally, no special water control coordination is needed between the regulating agencies.

If and when power generation facilities are installed at Lucky Peak and/or Arrowrock, power generation will be a secondary use and operation of the plant(s) will not adversely impact flood control or irrigation.

7-09. Recreational Plan. As the population of Boise and adjacent areas has rapidly grown, the demand for nearby outdoor recreation opportunities has also increased. This has been particularly true with regard to water-oriented recreational activities such as boating, fishing, water skiing, and swimming; but exceptional demands for water-adjacent picnicking and general relaxation are also being experienced. Plate 7-6 shows the locations of some of the recreation sites surrounding the Boise area.

Recreational opportunities at the Boise River reservoirs cannot be fully optimized because of the manner in which the reservoirs must be regulated for flood control and irrigation water supply. Flood control regulation normally restricts early filling of the reservoirs for recreation, and irrigation releases producing reservoir drawdown restrict late season reservoir recreation. Special emphasis will be placed on optimizing recreational opportunities at Lucky Peak Lake as much as practical. It is desirable to refill Lucky Peak Lake to elevation 3035 by Memorial Day each year (if allowed by the flood control criteria) and after flood control season to hold the recreation pool (elevation 3055) until Labor Day if possible. Maintaining the Lucky Peak recreation pool during the irrigation season will be done by drafting water from Arrowrock. result of this regulation, Lucky Peak recreation season is extended, but primarily at the expense of recreational opportunities at Arrowrock. the reservoirs do not refill by the end of the flood control season, water

will be drafted from Arrowrock to enhance the Lucky Peak recreational opportunities. Plates 7-7, 7-8, and 7-9 show past reservoir storages for Anderson Ranch, Arrowrock, and Lucky Peak.

Management of the Lucky Peak recreational pool is the responsibility of the Corps of Engineers, but filling the pool and then maintaining it is a cooperative regulation effort between the Corps of Engineers and the Bureau of Reclamation. After flood control season, the Central Snake Projects Superintendent and his staff will schedule Arrowrock releases such that the Lucky Peak recreational pool will remain near constant until Arrowrock storage is nearly depleted and downstream irrigation demand must be met with Lucky Peak storage. Lucky Peak releases after flood control season are scheduled according to the procedure in paragraph 7-06.g. of the Irrigation Plan.

Management of the Anderson Ranch and Arrowrock recreational pools is the responsibility of the Bureau of Reclamation. As previously discussed, recreational opportunities at Arrowrock are quite limited, but it is desirable to enhance the Anderson Ranch recreational opportunities as much as practical. No water control coordination between the regulating agencies is required for recreation at Anderson Ranch or Arrowrock.

7-10. Fish and Wildlife Plan. It is desirable to enhance fish and wildlife resources within the three reservoirs, in the Boise River, and adjacent areas as much as is practical. In order to accomplish this goal, specific policies and practices have been established. Lucky Peak Lake contains a minimum conservation pool of 28,767 acre-feet of storage (elevation 2824 to 2905). Anderson Ranch Reservoir contains a minimum conservation pool of 41,000 acre-feet of storage (elevation 3992 to 4039.6). At Arrowrock Reservoir it is desirable to maintain 28,700 acre-feet of storage (elevation 2974 to 3078.32) as a conservation pool. Occasionally it may be necessary (because of inspections, maintenance, or flood control) to evacuate some or all of this Arrowrock storage, but this should be avoided whenever possible.

In addition to conservation pools at each reservoir, there are provisions for minimum fish flows below Lucky Peak and Anderson Ranch dams. Lucky Peak Lake has a 50,000-acre-foot space allocation for the Idaho Fish and Game Department as required by the current Lucky Peak storage permit. This allocation is a primary use within Lucky Peak and is equal to flood control and irrigation. The purpose of this space allocation is to provide minimum fish and wildlife streamflows below Lucky

Peak Dam during the nonirrigation season. The 50,000 acre-feet of stored water is sufficient to provide a continuous flow of 137 cfs over a 182-day period from 16 October to 14 April, or a continuous flow of 160 cfs for a 156-day period. The actual release pattern is to be established by the * Director of the Idaho Fish and Game Department; however, since an additional 102,300 acre-feet of space in Lucky Peak is used for stream main- * tenance flows along with the Idaho Department of Fish and Game space, the release from the Fish and Game space could vary from a minimum of about 70 cfs to larger releases.

At Anderson Ranch, the Bureau of Reclamation has a verbal agreement with the Idaho Fish and Game Department to maintain minimum releases from Anderson Ranch Dam of 300 cfs during the nonirrigation season and 600 cfs during the irrigation season. The maximum flow release during the irrigation season is about 1,600 cfs. This verbal agreement is contingent upon having ample storage water and favorable forecasts to indicate that it is practical to make these minimum releases. It is also desirable at Anderson Ranch to avoid, if possible, making large spring releases which would disturb downstream spawning beds.

7-11. Minimum Streamflow Maintenance. A continuous flow of 80 cfs as a * minimum below Diversion Dam will be provided from the 102,300 acre-foot streamflow maintenance space in Lucky Peak for the purpose of flow main-This 80-cfs minimum requirement will not be violated unless required maintenance within the Lucky Peak outlet tunnel makes it temporarily impractical to do so. As specified within paragraph 7-10., a continuous minimum of 70 cfs will also be released from the 50,000-acrefoot Idaho Fish and Game Department allocation during the nonirrigation season (if stored water is available). Thus, the normal total nonirrigation season minimum streamflow below Diversion Dam will generally be 150 cfs. This normal minimum can be larger than 150 cfs if the Director of Idaho Fish and Game Department specifies a release larger than 70 cfs from the 50,000-acre-foot allocation. If water is not available in Lucky Peak Lake's 102,300-acre-foot streamflow maintenance space to maintain an 80-cfs flow release to the Boise River, the 80-cfs flow * release would be made from the Idaho Department of Fish and Game space, if water is available.

There is no minimum release requirement for Arrowrock. A minimum release is not necessary since there is no channel reach between Arrowrock Dam and Lucky Peak Reservoir.

There is no specific minimum release requirement for Anderson Ranch. As described within paragraph 7-10., there is a verbal agreement and desirable goal to maintain 300 cfs and 600 cfs during the nonirrigation and irrigation seasons, respectively, but these are desired goals and not specific requirements.

7-12. <u>Rate of Release Change</u>. There are criteria for rates of release changes at Anderson Ranch Dam for power peaking operation during the winter and at the end of the irrigation season, but there are no requirements or criteria for rates of release changes at Arrowrock and Lucky Peak.

The Anderson Ranch powerplant is operated to meet peak electrical needs on winter weekdays from January through March. Daily fluctuations are necessary on winter weekdays to generate hydropower when it is needed Although infrequent, the power peaking operation may begin in The winter power peaking operation is restricted to a maximum increase in electrical generation of 12 megawatts per hour until the desired peak electrical output is reached. Power peaking is avoided on winter weekends because of whitefish fishing on the South Fork of the Boise River. To protect the South Fork fishery, the maximum winter power peaking release would be restricted to 1,800 cfs per hour. The maximum rate of decline would have no specific limitation down to 600 cfs. ther flow reductions would be at a rate of no more than 35 cfs per 10 minutes (210 cfs per hour) down to the minimum riverflow. During the irrigation season the release to the South Fork of the Boise River is usually about 1,600 cfs. At the end of the irrigation season, flows are reduced gradually to prevent aquatic insects from becoming dewatered and dessicated and juvenile fish from becoming stranded. Initial discharge reductions are unrestricted down to 1,000 cfs. However, below 1,000 cfs, irrigation releases are reduced about 35 cfs per 10 minutes (210 cfs per hour) each day until the minimum instream flow is reached.

Lucky Peak does not have any restriction on maximum rate of release change which affects downstream river stage fluctuations. However, changes in releases from Lucky Peak shall be made in such a manner that any downstream effects are minimized. The actual rate of release change will depend on current conditions. Since 1954, adjustments to Lucky Peak's discharge have been made on a gradual basis and have not resulted in significant downstream problems. In addition, as consideration for downstream safety, local authorities are notified and a public notice is issued when significant release changes are scheduled from Lucky Peak.

Drought Contingency Plan. Of the total 264,250 acre-feet in Corps of Engineer's Lucky Peak Reservoir, 111,950 acre-feet are allocated for irrigation and 152,300 are allocated for streamflow maintenance. The regulation of the Lucky Peak project as a part of the Boise River reservoir system is controlled by existing state water right laws during the irrigation season (1 April - 1 November) and the minimum streamflow maintenance during the non-irrigation season. the irrigation season releases of water from the Boise River Reservoir system through Lucky Peak Dam is controlled by water right seniority as established by the Idaho Department of Water Resources and as outlined in Paragraph 7-06 Irrigation Water Supply Plan on page 7-23 of this manual. During the nonirrigation season Lucky Peak releases will comply with Paragraph 7-11 Minimum Streamflow Maintenance on page 7-31 of this manual and any deviations from the minimum flow requirements because of drought conditions and municipal water supply shortages will be coordinated by the Bureau of Reclamation with the Idaho Department of Water Resources, Idaho Department of Fish and Game, Corps of Engineers, and other affected parties.

VIII - EFFECT OF WATER CONTROL PLAN

8-01. <u>General</u>. The expected effects or results of the various water control plans will be generally outlined in the following paragraphs. The flood control plan set forth specific procedures and requirements to be followed without violation during the flood control seasons. The other water control plans generally documented regulation and/or management practices currently being used to accomplish desired goals.

8-02. Flood Control. The flood control plan set forth specific regulation criteria to be followed without violation. The plan itself is designed to minimize the effects of runoff volume forecast errors and account for varying runoff timing sequences, thus establishing desirable operating ranges for both flood control and refill during most of the flood period. This concept becomes somewhat unworkable late in the flood control season during the refill period, basically because the remaining runoff volume decreases much faster than standard forecast errors. Thus, the final 60,000 acre-feet of system space is to be refilled on a day-today basis when the real-time evaluation of the flood potential indicates that it is reasonably safe to do so. Specific criteria are stated in the flood control plan and on Plate 7-3A for the refill of the final 60,000 acre-feet of system space. Basin conditions are so dynamic during the final refill period that normal regression equation forecast procedures are inadequate for regulation. In addition to Plate 7-3A, mathematical simulation models can realistically provide the real-time regulation criteria necessary for the final refill. Both the Bureau and the Corps are presently using the SSARR model for detailed regulation.

Taking this approach for the final refill will require more work, cooperation, and coordination by the regulating agencies, but it should provide better regulation than has been experienced in the past. Consistently in the past, both flood control and refill have been limited. Runoff volume forecast errors and resultant parameter curve-space requirements, during refill of the last 60,000 acre-feet of system space, fixed regulation such that only drastic increases or decreases in Lucky Peak releases could be used in an attempt to overcome errors as they became apparent.

Plate 8-1 shows expected regulated peak discharge frequencies at Boise for various natural peak discharges and Plate 8-2 shows regulation of the Standard Project Flood. Both plates demonstrate the inability to

regulate large floods to desirable levels of downstream flooding with the present reservoir system space and downstream capacity. Table 8-1 on Page T8-1 lists natural and regulated peak discharges for the Boise River. Since the completion of Lucky Peak Dam in 1954, it is estimated that the flood control regulation of Anderson Ranch, Arrowrock, and Lucky Peak has jointly reduced Boise River flood damages by \$106,956,000 through 1980. The summary hydrograph shown on Plate 8-3 summarizes regulated Boise River streamflows which have occurred at the Capitol Boulevard Bridge since the completion of Lucky Peak Dam.

8-03. Other Plans. Information presented within the (1) irrigation plan, (2) maintenance plan, (3) hydroelectric plan, (4) recreation plan, (5) fish and wildlife plan, (6) minimum flow plan, and (7) rate of release plan generally documents practices currently being used. Following these practices should result in meeting desirable goals. The agencies responsible for managing and updating the water control plans should continually try to improve these practices and more effectively utilize the reservoir storages wherever possible.

IX - WATER CONTROL MANAGEMENT

9-01. General. Anderson Ranch, Arrowrock, and Lucky Peak are federallyowned projects each managed by the Federal agency which constructed it. The Bureau of Reclamation manages and is responsible for Anderson Ranch and Arrowrock projects, and the Corps of Engineers manages and is responsible for Lucky Peak project. Jointly the Bureau and the Corps try to utilize and regulate these three reservoir projects as one multipurpose Regulation criteria used to regulate this multipurpose system are jointly developed by the Bureau, Corps, and the Department of Water Resources (acting as representative for the State of Idaho). regulation of the system requires coordination between the Bureau, Corps, Department of Water Resources, and Boise River Watermaster (elected representative of the State of Idaho - Water District #63). 9-02, 9-03, 9-04, and 9-05 outline the overall responsibilities that each entity has in the management of the multipurpose system. Specific coordination procedures used between the entities to perform day-to-day regulation are outlined within Section VII - WATER CONTROL PLAN. tional structures for these entities are shown on page 9-2 and corresponding personnel names and office telephone numbers are listed on page 9-3.

9-02. United States Department of the Interior, Bureau of Reclamation, Pacific Northwest Region. As a Federal agency, the Bureau of Reclamation is responsible for the overall management of the Anderson Ranch and Arrowrock projects. This management responsibility (regulation, operation, and maintenance of the project functions, facilities, and lands) is the responsibility of the Pacific Northwest Regional Director and specific personnel within his staff.

The Bureau of Reclamation is also responsible for jointly (with the Corps and Department of Water Resources) developing and revising regulation plans used for regulation of Anderson Ranch, Arrowrock, and Lucky Peak projects as one multipurpose system. The Bureau holds State of Idaho storage licenses for Anderson Ranch and Arrowrock projects and a State of Idaho storage permit for the Lucky Peak project, and based on these licenses and permit, the Bureau has contracted with water user organizations to provide stored water for downstream use. Thus, through joint development and revision of the system regulation plans, the Bureau is able to ensure that all three reservoir projects will be regulated as a system which will allow them to meet their storage contract obligations (if water is available) and ensure that downstream demand water is supplied in a usable manner with limited Boise River fluctuations at diversion structures.

9-03. United States Department of Defense, Department of the Army, Corps of Engineers, Walla Walla District. As a Federal agency the Corps of Engineers is responsible for the overall management of the Lucky Peak project. This management responsibility (regulation, operation, and maintenance of the project functions, facilities, and lands) is the responsibility of the Walla Walla District Engineer and specific personnel within his staff.

The Corps of Engineers is also responsible for jointly (with the Bureau and Department of Water Resources) developing and revising regulation plans used for regulation of Anderson Ranch, Arrowrock, and Lucky Peak projects as one multipurpose system. The Corps is responsible for utilizing storage spaces within the system for flood control to protect downstream life and property. Thus, through joint development and revision of the system regulation plans, the Corps is able to ensure that all three reservoir projects will be regulated as a system which will provide reasonable downstream flood control protection within the physical limitations of the existing project storage space capacities and the restricted downstream channel.

9-04. State of Idaho, Department of Water Resources. As a State agency, the Department of Water Resources is responsible for ensuring that Idaho water is regulated, stored, conserved, distributed, and used in an effective manner consistent with State of Idaho laws and policies. Maintaining these interests for the State of Idaho is the responsibility of the Director and specific personnel within his staff.

The Department of Water Resources is also responsible for jointly (with the Bureau and/or Corps) developing and revising regulation plans used for regulation of Anderson Ranch, Arrowrock, and/or Lucky Peak projects. Through joint development and revision of the regulation plans, the Department of Water Resources is able to protect the water control management interests of the State of Idaho.

The Boise River Watermaster is responsible for the measurement, accounting, and distribution of Boise River water according to all decreed, licensed, and permitted rights. The Watermaster receives day-to-day irrigation demand information from individual person(s) and water user organizations, defines total water demand requirements for the Lucky Peak releases, and then ensures that each irrigation district, organization, or individual, as appropriate, is receiving their rightful water. Boise River Watermaster must work very closely with staff level personnel from Bureau, Corps, and Department of Water Resources to accomplish his duties as Watermaster. As part of his duties, he computes natural flows, does continuous accountings for the Boise River water, and monitors activities within the Boise River channel. The manner in which he measures, accounts, and distributes Boise River water is in accordance with the Idaho laws and as overseen by the Western Regional Supervisor, Department of Water Resources.

9-06. Other Agencies. While not involved with project regulation, the National Weather Service, Soil Conservation Service, and the Geological Survey collect support data (precipitation and temperature, snow survey measurements, and streamflows) under contract with the regulating agencies. This data is essential for the regulation and these data collection programs must be supported and continued.

9-07. <u>Public Information</u>. The regulating agencies have an obligation to provide pertinent regulation information to the Idaho Department of Water

Resources so that they can routinely monitor the regulation and evaluate the effectiveness of regulation. When significant regulation and release changes are necessary, the regulating agencies have an obligation to provide public information news releases.

ANDERSON RESERVOIR - ELEVATION CAPACITY TABLE

DAM LOCATION: BOISE RIVER BASIN, IDAHO - SOUTH FORK BOISE RIVER MILE 43.5

STORAGE ELEMENT: FREEBOARD......4,198.2 to 4,206 feet MSL.......7.8 feet SURCHARGE CAPACITY . 4,196 to 4,198.2 feet MSL.....10,504 acre-feet JOINT USE CAPACITY . 4,044 to 4,196 feet MSL......418,178 acre-feet

EXCLUSIVE POWER

CAPACITY 4,039.6 to 4,044 feet MSL 5,000 acre-feet INACTIVE CAPACITY . . . 3,992 to 4,039.6 feet MSL 41,000 acre-feet DEAD STORAGE CAPACITY .3,866 to 3,992 feet MSL 29,000 acre-feet

TOTAL ACTIVE CAPACITY. 4,039.6 to 4,196 feet MSL. . . .423,178 acre-feet TOTAL LIVE CAPACITY. . 3,992 to 4,196 feet MSL. . . .464,178 acre-feet TOTAL GROSS CAPACITY . 3,866 to 4,198.2 feet MSL. . . .503,682 acre-feet

ELEVATION (Feet)	CAPACITY (Ac-Ft)	DIFF. PER. FT.	ELEVATION (Feet)	CAPACITY (Ac-Ft)	DIFF. PER. FT.	ELEVATION (Feet)	CAPACITY (Ac-Ft)	DIFF. PER. FT.
4039.6	0	4.00	4055	18371	1010	4071	41420	1500
4040	462	462	4056	19681	1310	4072	43009	1589
4041	1578	1116	4057	21008	1327	4073	44615	1606
4042	2704	1126	4058	22353	1345	4074	462 39	1624
4043.	3840	1136	4059	23715	1362	4075	47880	1641
4044	4987	1147	4060	25095	1380	4076	49541	1661
4045	61 44	1157	4061	26492	1397	4077	51 22 4	1683
4046	7311	1167	4062	27906	1414	4078	52929	1705
4047	8489	1178	4063	29338	1432	4079	54657	1728
4048	9677	1188	4064	30787	1449	4080	56407	1750
4049	10875	1198	4065	32254	1467	4081	58179	1772
4050	12084	1209	4066	33738	1484	4082	59973	1794
4051	13307	1223	4067	35240	1502	4 083	61790	1817
4052	14547	1240	4068	36759	1519	4084	63629	1839
4053	15804	1257	4069	38295	1536	4085	65490	1861
4054	17079	1275	4070	39849	1554	4086	67373	1883
		1292			1571	. 555	0,0,0	1906

ANDERSON RESERVOIR - ATION CAPACITY TABLE

			notific on	norn (non	12-1221)			
ELEVATION (Feet)	CAPACITY (Ac-Ft)	DIFF. PER. FT.	ELEVATION (Feet)	CAPACITY (Ac-Ft)	DIFF. PER. FT.	ELEVATION (Feet)	CAPACITY (Ac-Ft)	DIFF. PER. FT.
4087	69279	1928	4114	130753	2000	4141	208262	
4088	71207	1950	4115	133359	2606	4142	211478	3216
4089	73157		4116	135983	2624	4143	214718	3240
4090	75129	1972	4117	138626	2643	4144	217982	3264
4091	77127	1998	4118	141287	2661	4145	221271	3289
4092	79156	2029	4119	143967	2680	4146	224584	3313
4093	81215	2059	4120	146665	2698	4147	227921	3337
4094	83304	2089	4121	149382	2717	4148	231283	3362
4095	85423	2119	4122	152118	2736	4149	234669	3386
4096	87573	2150	4123	154873	2755	4150	238079	3410
4097	89753	2180	4124	157647	2774	4151	241512	3433
4098	91963	2210	4125	160440	2793	4152	244966	3454
4099	94203	2240	4126	163252	2812	4153	248441	3475
4100	96473	2270	4127	166083	2831	4154	251937	3496
4101	98771	2298	4128	168933	2850	4155	255454	3517
4102	101092	2321	4129	171802	2869	4156	258992	3538
4103	103437	2345	4130	174690	2888	4157	262550	3558
4104	105806	2369	4131	177601	2911	4158	266129	3579
4105	108198	2392	4132	180540	2939	4159	269729	3600
4106	110614	2416	4133	183508	2968	4160	273350	3621
4107	113054	2440	4134	186504	2996	4161	276995	3645
4108	115517	2463	4135	189528	3024	4162		3671
4109	118004	2487	4136	192580	3052		280666	3697
4110	120515	2511	4137	195660	3080	4163	284363	3723
4111	123047	2532	4138	198769	3109	4164	288086	3749
4112	125597	2550	4139	201906	3137	4165	291835	3776
4113	128166	2569	4140	201900	3165	4166	295611	3802
		2587	4140	2050/1	3191	4167	299413	3828

TABLE 2-1 (Continued)

ANDERSON RESERVOIR - ELEVATION CAPACITY TABLE

ACTIVE CAPACITY (ACRE-FEET)

ELEVATION (Feet)	(Ac-Ft)	DIFF. PER. FT.	ELEVATION (Feet)	CAPACITY (Ac-Ft)	DIFF. PER. FT.	ELEVATION (Feet)	(Ac-Ft)	DIFF. PER. FT.
4168	303241	2054	4178	343100	4153	4188	386201	4510
4169	307095	3854	4179	347253		4189	390 71 1	
4170	310975	3880	4180	351437	4184	4190	395258	4547
4171	314884	3909	4181	355654	4217	4191	399838	4580
4172	318823	3939	4182	359908	4254	4192	404447	4609
4173	322793	3970	4183	364199	4291	4193	409086	4639
4174	236793	4000	4184	368526	4327	4194	413754	4668
4175	330824	4031	4185	372890	4364	4195	418451	4697
4176	334885	4061	4186	377290	4400	4196	423178	4727
		4092			4437	4190	423176	
4177	338977	4123	4187	381727	4474			

SURCHARGE CAPACITY (ACRE-FEET)

ELEVATION (Feet)	CAPACITY (Ac-Ft)	DIFF. PER. FT.
4196	0	
4197	4756	4756
4198	9541	4785
4198.2	10504	963

TABLE 2-3

ARROWROCK DAM UPPER GATE ELEVATION-DISCHARGE TABLE (Discharge per Gate)

ELEVATION	DISCHARGE	ELEVATION	DISCHARGE	ELEVATION	DISCHARGE
(feet)	(cfs)	(feet)	(cfs)	(feet)	(cfs)
1.000/	(0.0)	(1000)	(0.0)	1 710007	(0.0)
3110	217	3150	645	3190	889
11	235	51	653	91	894
12	253	52	660	92	899
13	270	53	668	93	905
14	287	54	675	94	910
15	303	55	682	95	915
16	317	56	688	96	920
17	332	57	695	97	925
18	346	58	702	98	930
19	360	59	708	99	935
3120	373	3160	715	3200	940
21	385	61	722	01	945
22	398 410	62	728 725	02	950
23 24	410 421	63	735	03	955
25 25	432	64 65	742 748	04 05	960 965
26	443	66	754	06	970
27	453	67	760 ·	07	975
28	464	68	766	08	980
29	474	69	772	09	985
3130	484	3170	778	3210	989
31	494	71	784	11	994
. 32	503	72	790	12	999
33	512	73	796	13	1,005
34	521	74	802	14	1,011
35	530	75	808	15	1,017
36	539	76	813	16	1,023
37	547	77	819	17	1,029
38	555	78 70	825	18	1,035
39 3140	563 571	79	831	·	
41	571 578	3180 81	836 842	! !	
42	588	82	847		
43	594	83	852		
44	602	84	858		
45	610	85	863		
46	617	86	868		
47	624	87	874		
48	632	88	879		
49	639	89			

TABLE 2-3 (Continued)

ARROWROCK DAM LOWER GATE ELEVATION-DISCHARGE TABLE (Discharge per Gate)

ELEVATION	DISCHARGE	ELEVATION	DISCHARGE	ELEVATION	DISCHARGE
(feet)	(cfs)	(feet)	(cfs)	<u>(feet)</u>	(cfs)
2020	155	2050	CO1	2100	042
3020	155 173	3060 61	601 608	3100 01	842 847
21 22	191	62	615	02	852
23	209	63	622	03	857
24	227	64	629	04	862
25	245	65	636	05	867
26	261	66	643	06	872
27	276	67	650	07	877
28	291	68	656	08	882
29	305	69	663	09	887
3030	319	3070	669	3110	891
31	332	71	675	11	895 001
32	345	72 72	682	12	901 906
33	358 371	73 74	689 605	13 14	910 910
34 35	371 383	74 75	695 701	15	915
36	394	75 76	701 708	16	920
37	405	70	714	17	925
38	416	78	720	18	930
39	427	79	726	19	935
3040	437	3080	732	3120	939
41	447	81	738	21	944
42	457	82	744	22	948
43	466	83	750	23	953
44	475	84	755	24	958 963
45 46	484	85 86	761 766	25 26	963 967
46 47	493 502	86 87	772	27	972
48	510	88	778	28	976
49	518	89	784	29	981
3050	526	3090	789	3130	985
51	534	91	795	31	990
52	542	92	800	32	994
53	550	93	805	33	999
54	557	94	810	34	1,003
55	565	95	816	35	1,008
56 57	572	96 07	821	36 37	1,012 1,017
57 58	580 .	97 98	826 831	37	1,017
	587	98	831 837	30	1,021
<u>59</u>	594	99	03/		

TABLE 2-3 (Continued)

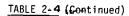
ARROWROCK DAM SPILLWAY ELEVATION-DISCHARGE TABLE (Discharge per Gate)

	(Discharge	per dave,		
	Discharge			Discharge
Elevation	Each Gate	Elevation	1	Each <u>Gate</u>
(feet)	(cfs)	(feet)	-	(cfs)
(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	(=: = /	, ,		
3210.00	 . 0	3214.30		1,627
3210.10	 . 12	3214.40		1,683
3210.20	 . 24	3214.50		1,739
3210.30	 . 36	3214.60		1,795
3210.40	 . 48	3214.70		1,851
3210.50	 . 60	3214.80		1,907
3210.60	 . 84	3214.90		1,963
3210.70	 . 108	3215.00		2,019
3210.80	 . 132	3215.10		2,070
3210.90	 . 156	3215.20		2,120
3211.00	 . 180	3215.30		2,170
3211.10	 . 210	3215.40		2,220
3211.20	 . 240	3215.50		2,270
3211.30	 . 270	3215.60		2,352
3211.40	 . 300	3215.70		2,434
3211.50	 . 330	3215.80		2,516
3211.60	 . 364	3215.90		2,598
3211.70	 . 408	3216.00		2,680
3211.80	 . 442	3216.10		2,/52
3211.90	 . 476	3216.20		2,824
3212.00	 . 500	3216.30		2,890
3212.10	 . 542	3216.40		2,908
3212.20	 . 584	3216.50		3,040
3212.30	 . 626	3216.60		2 264
3212.40	 . 668	3216.70		2 276
3212.50	 . 710	3216.80		2 /100
3212.60	 . 756	3216.90		3 600
3212.70	 . 802	3217.00 3217.10		3 780
3212.80	 . 848	3217.10		3 960
3212.90	 . 894	3217.20		4 140
3213.00	 . 940	3217.40		4 320
3213.10	 992	3217.40		4,500
3213.20	 1,044	3217.60		4,680
3213.30	 . 1,096	3217.70		4,860
3213.40	 . 1,200	3217.80		5,040
3213.50		3217.90		5,220
3213.60	 . 1,252 . 1,304	3218.00		
3213.70	 1,356	3218.10		
3213.80	 1,356	3218.20		·
3213.90	 1,460	3218.30		
3214.00	 •	3218.40		5,560
3214.10	 . 1,516 . 1,571	3218.50		
3214.20	 . 1,5/1	3213.30		

ARROWROCK RESERVOIR - ELEVATION CAPACITY TABLE

DAM LOCATION: BOISE RIVER BASIN, IDAHO - BOISE RIVER MILE 75.4

ELEVATION (Feet)	CAPACITY (Ac-Ft)	DIFF. PER. FT.	ELEVATION (Feet)	CAPACITY (Ac-Ft)	DIFF. PER. FT.	ELEVATION (Feet)	CAPACITY (Ac-Ft)	DIFF. PER. FT.
2974	0	20	2990	500	60	3006	1740	110
2975	20	20	2991	560	60	3007	1850	110
2976	40		2992	620	60	3008	1960	110
2977	60	20	2993	680	60	3009	2080	120
2978	80	20	2994	740	60	3010	2210	130
2979	100	20	2995	800	60	3011	2340	130
2980	120	20	2996	870	70	3012	2470	130
2981	140	20	2997	940	70	3013	2610	140
2982	170	30	2998	1010	70	3014	2760	150
2983	200	30	2999	1080	70	3015	2910	150
2984	230	30	3000	1160	80	3016	3070	160
2985	270	40	3001	1250	90	3017	3240	170
2986	310	40	3002	1340	90	3018	3420	180
2987	350	40	3003	1440	100	3019	3600	180
2988	400	50	3004	1540	100	3020	3800	200
2989	450	50 .	3005	1640	100	3021	4000	200
		50	3003	1040	100	3021	4000	200


TABLE 2-4 (continued)

ARROWROCK RESERVOIR - ELEVATION CAPACITY TABLE

ELEVATION (Feet)	CAPACITY (Ac-Ft)	DIFF. PER. FT.	ELEVATION (Feet)	CAPACITY (Ac-Ft)	DIFF. PER. FT.	ELEVATION (Feet)	CAPACITY (Ac-Ft)	DIFF. PER. FT.
3022	4200	200	3049	11490	420	3076	26950	
3023	4400	200	3050	11920	430	3077	27690	740
3024	4600	200	3051	12360	440	3078	28450	760
3025	4800	210	3052	12810	450	3079	29220	770
3026	5010	210	3053	13270	460	3080	30000	780
3027	5220	210	3054	13740	470	3081	30800	800
3028	5430	220	3055	14220	480	3082	31600	800
3029	5650	220	3056	14710	490	3083	32400	800
3030	5870	220	3057	15210	500	3084	33200	800
3031	6090	220	3058	15720	510	3085	34000	800
3032	6310	220	3059	16240	520	3086	34900	900
3033	6530	240	3060	16770	530 540	3087	35800	900
3034	6770	240	3061	17310	550	3088	36700	900
3035	7010	240	3062	17860	560	3089	37600	900
3036	7250	240	3063	18420	570	3090	38500	900
3037	7490	260	3064	18990	580	3091	39500	1000
3038	7750	260	3065	19570	600	3092	40500	1000
3039	8010	260	3066	20170		3093	41500	1000
3040	8270	280	3067	20790	620	3094	42500	1000
3041	8550	300	3068	21420	630 650	3095	43500	1000
3042	8850	320	3069	22070	660	3096	44600	1100
3043	9170	340	3070	22730	670	3097	45700	1100
3044	9510	360	3071	23400	690	3098	46800	1100
3045	9870	390	3072	24090	700	3099	47900	1100
3046	10260	400	3073	24790	710	3100	49000	1100
3047	10660	410	3074	25500	710	3101	50200	1200
3048	11070	420	3075	26220	730	3102	51400	1200
					730			1200

ARROWROCK RESERVOIR - ELEVATION CAPACITY TABLE

EVATION (Feet)	CAPACITY (Ac-Ft)	DIFF. PER. FT.	ELEVATION (Feet)	CAPACITY (Ac-Ft)	DIFF. PER. FT.	ELEVATION (Feet)	CAPACITY (Ac-Ft)	DIFF. PER. FT.
3103	52600	1200	3130	90500	1700	3157	140000	
3104	53800	1200	3131	92200	1700	3158	142000	2000
3105	55000	1300	3132	93900	1700	3159	144000	2000
3106	56300	1300	3133	95600	1700	3160	146000	2000
3107	57600	1300	3134	97300	1700	3161	148100	2100
3108	58900	1300	3135	99000	1700	3162	150200	2100
3109	60200	1300	3136	100700	1700	3163	152300	2100
3110	61500	1300	3137	102400	1700	3164	154400	2100
3111	62800	1300	3138	104100	1700	3165	156500	2100
3112	64100	1300	3139	105800	1700	3166	158600	2100
3113	65400	1300	3140	107500	1700	3167	160700	2100
3114	66700	1300	3141	109300	1800	3168	162800	2100
3115	68000	1400	3142	111100	1800	3169	164900	2100
3116	69400	1400	3143	112900	1800	3170	167000	2100
3117	70800	1400	3144	114700	1800	3171	169200	2200
3118	72200	1400	3145	116500	1800	3172	171400	2200
3119	73600	1400	3146	118400	1900 1900	3173	173600	2200
3120	75000	1500	3147	120300	1900	3174	175800	2200
3121	76500	1500	3148	122200		3175	178000	2200
3122	78000	1500	3149	124100	1900	3176	180300	2300
3123	79500	1500	3150	126000	1900	3177	182600	2300
3124	81000	1500	3151	128000	2000	3178	184900	2300
3125	82500	1600	3152	130000	2000	3179	187200	2300
3126	84100	1600	3153	132000	2000	3180	189500	2300
3127	85700	1600	3154	134000	2000	3181	191900	2400
3128	87300	1600	3155	136000	2000	3182	194300	2400
3129	88900	1600	3156	138000	2000	3183	196700	2400
	•	1000			2000			2400

ARROWROCK RESERVOIR - ELEVATION CAPACITY TABLE

ACTIVE CAPACITY (ACRE-FEET)

ELEVATION (Feet)	CAPACITY (Ac-Ft)	DIFF. PER. FT.	ELEVATION _(Feet)	CAPACITY (Ac-Ft)	DIFF. PER. FT.	ELEVATION (Feet)	CAPACITY (Ac-Ft)	DIFF. PER. FT.
3184	199100	2400	3196	229600	0500	3208	262700	
3185	201500		3197	232200	2600	3209	265600	2900
3186	204000	2500	3198	234800	2600	3210	268500	2900
3187	206500	2500	3199	237400	2600	3211	271500	3000
3188	209000	2500	3200	240000	2600	3212	274500	3000
3189	211500	2500	3201	242800	2800	3213	277500	3000
3190	214000	2500	3202	245600	2800	3214	280500	3000
3191	216600	2600	3203	248400	2800			3000
3192	219200	2600	3204	251200	2800	3215	283500	3100
3193	221800	2600	3204		2800	3216	286600	
3194	224400	2600		254000	2900			
3195	227000	2600	3206	256900	2900			
3133	22/000	2600	3207	259800	2900			

SURCHARGE CAPACITY (ACRE-FEET)

ELEVATION (Feet)	CAPACITY (Ac-Ft)	DIFF. PER. FT
3216	0	
3217	3100	3100
3218	6200	3100
5.2.5		3100
3219	9300	2330
3819.75	11630	2000
3219.75		

U. S. ARMY ENGINEER DISTRICT CORPS OF ENGINEERS WALLA WALLA, WASHINGTON

July, 1962

DISCHARGE RATING TABLE CFS Lucky Peak Dam Slide Gates

								Gate	e Openi	ing -	feet								
	_1		_2		3		4		5		6		7		8		9		10
Pool Elev	Disch	Diff	Disch	Diff	Disch	Diff	Disch	Diff	Disch	Diff	Disch	Diff	Disch	Diff	Disch	Diff	Disch	D1ff	Disch
2850 2851	166 170	163 166	329 336	159 163	488 499	158 162	646 661	157 162	803 823	174 178	977 1001	187	1164 1193	206 212	1370 1405	22 <u>5</u> 233	1595 1638	246 254	1841 1892
2852	173	170	343	167	510	166	676	165	841	184	1025	198	1223	216	1439	240	1679	262	1941
2853 2854	177 180	174 177	351 357	170 175	521 532	169 174	690 706	170 172	860 878	187 192	1047 1070	204 208	1251 1278	222	1473 1506	247 253	1720 1759	269 277	1989 2036
2855	183	181	364	178	542	176 180	718	177 181	895	199	1094	211	1305	234	1539	259	1798	283	2081
2856 2857	187 190	184 187	371 377	181 185	552 562	184	732 746	184	913 930	201 205	1114 1135	217 222	1331 1357	242 244	1573 1601	262 271	1835 1872	291 301	2126 2173
2858 2859	193 196	191 194	384 390	188 191	572 581	187 191	759 772	188 191	947 963	209 213	1156 1176	226 231	1382 1407	250 255	1632 1662	277 283	1909 1945	303 310	2212 2255
2860	199	197	396	195	591	194	785	194	97.9	218	1197	235	1432	260	1692	288	1980	316	2296
2861 2862	202 206	200 203	402 4 0 9	198 200	600 609	197 201	797 810	198 201	995	221 225	1216 1236	240 244	1456 1480	265 269	1721 1749	293 299	2014 2048	323 329	2337 2377
2863 2864	208 211	207 209	415 420	203 207	618 627	204 207	822 8 3 4	204 208	1026 1042	229 232	1255 1274	248 252	1503 1526	276 278	1779 1804	302 310	2081 2114	335 341	2416 2455
2865	214	212	426	210	636	210	846	211	1057	235	1292	257	1549	283	1832	314	2146	347	2493
2866 2867	217 220	215 218	432 438	213 215	645 653	212 216	857 869	215 217	1072 1086	239 243	1311 1329	260 264	1571 1593	287 292	1858 1885	320 324	2178 2209	353 359	2531 2568
2868 2869	223 225	220 224	443 449	219 221	662 670	218	880 891	220 224	1100 1115	247 249	1347 1364	267 272	1614 1636	297 300	1911 1936	330 335	2241 2271	363 369	2604 2640
2870	228	226	454	224	678	224	902	227	1129	252	1381	276	1657	305	1962	339	2301	374	2675
2871 2872	231 233	228 232	459 465	227 229	686 694	227	913 924	229 232	1142 1156	257 260	1399 1416	279 282	1678 1698	308 313	1986 2011	345 349	2331 2360	379 385	2710 2745
2873	236	234	470	232	702	233	935	235	1170	262	1432	287	1719	317	2036	353	2389	390	2779
2874 2875	239 241	236 239	475 480	235 238	710 718	235 238	945 956	238 240	1183 1196	266 269	1449 1465	289 293	1738 1758	322 325	.2060 2083	358 362	2418 2445	395 401	2813 2846
2876 2877	244 246	241 244	485 490	241 243	726 733	240 243	966 976	244 246	1210 1222	271 276	1481 1498	297 300	1778 1798	329 332	2107 2130	367 371	2474 2501	405 410	2879 2911
2878	249	246	495	246	741	246	987	248	1235	278	1513	304	1817	336	2153	376	2529	414	2943
2879 2880	251 254	249 251	500 505	248 251	748 756	249 250	997 1006	251 254	1248 1260	281 285	1529 1545	307 310	1836 1855	340 344	2176 2199	380 383	2556 2582	419 425	2975 3007
2881 2882	256 258	254 257	510	253	763	253 256	1016 1026	257 259	1273 1285	286 290	1559	314	1873 1892	348	2221 2242	388 393	2609 2635	430 434	3039 3069
2883	261	259	515 520	255 257	770 777	259	1036	261	1297	293	1575 1590	317 320	1910	350 355	2265	396	2661	436	3097
2884 2885	263 265	261 264	524 529	260 262	784 791	261 263	1045 1054	264 267	1309 1321	296 299	1605 1620	323 323	1928 1943	359 365	2287 2308	400 404	2687 2712	443 447	3130 3159
2886	268	265	533	265	798	266	1064	269	1333	302	1635	329	1964	365	2329	409	2738	451	3189
2887 2888	270 272	268 271	538 543	267 269	805 812	268 270	1073 1082	272 274	1345 1356	304 307	1649 1663	333 336	1982 1999	368 372	2350 2371	412 416	2762 2787	456 461	3218 3248
2889 2890	274 277	273 275	547 552	272 274	819 826	273 274	1092 1100	276 279	1368 1379	310 313	1678 1692	338 341	2016 2033	376 380	2392 2413	420 423	2812 2836	465 469	3277 3305
2891	279	277	556	276	832	278	1110	281	1391	315	1706	344	2050	383	2433	427	2860	473	3333
2892 2893	281 283	279 282	56 0 565	279 281	839 846	279 281	1118 1127	28 4 286	1402 1413	318 321	1720 1734	348 350	2068 20 8 4	385 389	2453 2473	431 435	2884 2908	478 481	3362 3389
2894 2895	285 287	284 286	569 573	283 286	852 859	284 286	1136 1145	288 29 0	1424 1435	324 326	1748 1761	353 356	2101 2117	392 396	2493 2513	439 442	2932 2955	485 489	3417 3444
2896	290	288	578	287	865	289	1154	292	1446	328	1774	360	2134	398	2532	446	2978	494	3472
2897 2898	292 294	290 292	582 586	289 292	871 878	291 293	1162 1171	295 297	1457 1468	331 333	1788 1801	362 3 65	2150 2166	402 405	2552 2571	449 453	3001 3024	498 501	3499 3525
2899 2900	296 298	294	590	294 295	884 890	295 297	1179 1187	299 302	1478 1489	336 339	1814 1828	368 370	2182 2198	408 411	2571 2590 2609	457 460	3047 3069	506 509	3553 3578
2901	300	297 299	595 599	297	896	300	1196	304	1500	341	1841	372	2213	415	2628	464	3092	513	3605
2902	302 304	301 303	603 607	300 302	903 909	301 303	1204 1212	306 308	1510 1520	344 346	1854 1866	375 379	2229 2245	418 420	2647 2665	467 471	3114 3136	517 521	3631 3657
2904	306	305	611	304	915	305	1220	311	1531	348	1879	381	2260	423	2683	475	3158	525	3683
2905 2906	308 310	307 309	615 619	306 308	921 927	307 310	1228	313 314	1541 1551	351 353	1892 1904	384 387	2276	426 429	2702 2720	477 481	3179 3201	529 533	3708 3734
2907 2908	312 314	311 333	623 627	310 312	933 939	311 314	1244 1253	317 318	1561 1571	356 ¹ 358	1917 1929	389 392	2306 2321	432 435	2738 2756	48 4 487	3222 3243	537 540	3759 3783
2909	316	314	630	315	945	315	1260	321	1581	361	1942	394	2336	438	2774	49i	3265	543	3808
2910	318 320	316 318	634 638	317 318	951 956	317 320	1268	323 325	1591 1601	363 365	1954 1966	396 399	2350	442 444	2792 2809	49 4 497	3286 3306	547 552	3833 3858
2912	322	320	642 646	320	962	322	1284	327	1611	367	1978	402 404	2380	447 450	2827 2844	500 504	3327 3348	555	3882
2913 2914	324 325	322 325	650	322 324	968 974	324 325	1292 1299	329 331	1621 1630	369 372	1990 2002	407	2394 2409	453	2862	506	3368		3906 3930
2915 2916	327 329	326 328	653 657	326 328	979 985	328 329	1307 1314	333 336	1640 1650	374 376	2014	409 411	2423 2437	456 459	2879 2896	510 513	3389 3409	565 569	3954 3978
2917	331	330	661	329	990	332	1322	337	1659	378	2037	415	2452	461	2913	516	3429	572	4001
2918 2919	333 335	332 333	665 668	331 334	996 1002	333 335	1329 1337	339 341	1668 1678	381 383	2049 2061	417 419	2466 2480	464 466	2930 2946	519 523	3449 3469		4025 4048
2920	337	335	672	335	1007	337	1344	343	1687	385	2072	422	2494	469	2963	525	3488		4071

DISCHARGE RATING TABLE CFS Lucky Peak Dam Slide Gates

								Gate	e Openi	ng -	feet								
	1		2		3		4		5		6		7		8		9		10
Pool Elev	Disch	Diff	Disch	Diff	Disch	Diff	Disch	Diff	Disch	Diff	D1sch	D1ff	Disch	Diff	Disch	Diff	Disch	Diff	Disch
2921	338	338	676 670	337	1013	339	1352	345 347	1697	387	2084	424	2508	472	2980	528	3508	586	4094
2922 2923	340 342	339 341	679 683	339 340	1018 1023	341 343	1359 1366	349	1706 1715	389 392	2095 2107	427 428	2522 2535	474 478	2996 3013	532 535	3528 3548	589 592	4117 4140
2924 2925	344 345	342 345	686 690	343 344	1029 1034	345 347	1374 1381	350 352	1724 1733	394 396	2118 2129	431 434	2549 2563	480 482	3029 3045	537 541	3566 3586	597 599	4163 4185
2926	347	347	694	346	1040	348	1388	354	1742	398	2140	436	2576	486	3062	543	3605	603	4208
2927 2928	349 351	348 350	697 701	348 349	1045 1050	350 352	1395 1402	356 358	1751 1760	400 402	2151 2162	439 441	2590 2603	488 491	3078 3094	546 549	3624 3643	606 609	4230 4252
2929	353	351	704	352	1056	353	1409	360	1769	405	2174	442	2616	493	3109	553	3662	612	4274
2930 2931	354 356	354 355	708	353 355	1061	355 357	1416	362 364	1778 1787	406 408	2184	446 448	2630 2643	495 498	3125 3141	<u>555</u> 558	3680 3699	616	4296 4318
2932	358	356	714	357	1071	359	1430	366	1796	410	2206	450	2656	501	3157	561	3718	622	4340
2933 2934	359 361	359 360	718 721	358 360	1076 1081	361 363	1437 1444	367 369	1804 1813	413 415	2217 2228	452 454	2669 2682	503 506	3172 3188	564 567	3736 3755	626 628	4362 4383
2935	363	362	725	362	1087	364	1451	371	1822	416	2238	457	2695	508	3203	570	3773	631	4404
2936 2937	364 366	364 365	728 731	364 366	1092	366 368	1458 1465	372 374	1830 1839	419 421	2249 2260	459 461	2708 2721	510 513	3218 3234	573 575	3791 3809	635 638	4426 4447
2938	368	367	735	367	1102	369	1471	376	1847	423	2270	463	2733	516	3249	578	3827	641	4468
2939 2940	369 371	369 370	738 741	369 371	1107 1112	371 373	1478 1485	378 379	1856 1864	425 427	2281 2291	465 468	2746 2759	51 8 521	3264 3280	581 583	3845 3863	644 647	4489 4510
2941	373	372	745	372	1117	374	1491	382	1873 1881	428	2301	470	2771	523	3294	587	3881 7800	650	4531
2942 2943	374 376	374 375	748 751	374 515	1122 1266	376 239	1498 1505	383 384	1889	431 433	2312 2322	472 474	278 4 2796	525 528	3309 3324	589 592	3898 3916	654 656	4552 4572
2944 2945	378	377 379	755	376 378	1131 1136	380 382	1511 1518	387 388	1898 1906	434 437	2332 2343	476 478	2808 2821	531 533	3339 3354	594 596	3933	660 664	4593 4614
2946	379 381	380	758 761	380	1141	383	1524	390	1914	439	2353	480	2833	535	3368	600	3950 3968	666	4634
2947 2948	383 384	381 383	764 767	382 384	1146 1151	385 386	1531 1537	391 394	1922 1931	441 442	2363 2373	482 485	2845 2858	538 539	3383 3397	602 606	3985 4003	669 671	4654 4674
2949	386	385	771	385	1156	388	1544	395	1939	444	2383	487	2870	542	3412	608	4020	674	4694
2950 2951	<u>387</u> 389	387 388	774 777	387 388	1161 1165	-389 392	1550 1557	<u>397</u> 398	1947 1955	446 448	2393 2403	489 491	2882	544 547	3426 3441	611	4054	677 680	4714 4734
2952	390	390	780	390	1170	393	1563	400	1963	450	2413	493	2906	549	3455	616	4071	683	4754
2953 2954	392 393	391 393	783 786	392 393	1175 1179	394 396	1569 1575	402 404	1971 1979	452 453	2423 2432	495 498	2918 2930	551 553	3469 3483	619 621	4088 4104	686 690	4774 4794
2955	395	395	790	394	1184	398	1582	405	1987	455	2442	499	2941	557	3498	623	4121	692	4813
2956 2957	397 398	396 398	793 796	396 398	1189 11 <i>9</i> 4	399 400	1588 1594	407 408	1995	457 460	2452 2462	501 503	2953 2965	559 561	3512 3526	626 628	4138 4154	695 698	4833 4852
2958	400	399	799	399	1198	403	1601	409	2010	461	2471 2481	506	2977	563	3540	631	4171	701	4872
2959 2960	401 403	401 402	802 805	40 1 402	1203 1207	404 406	1607 1613	411 413	2018 2026	463 465	2491	507 509	2988 3000	566 568	3554 3568	633 636	4187 4204	704 706	4891 4910
2961 2962	404 406	404 405	808 811	404 405	1212 1216	407 409	1619 1625	415 416	2034 2041	466 469	2500 2510	511 513	3011 3023	570 572	3581	639 641	4220 4236	709 712	4929 4948
2963	407	407	814	407	1221	410	1631	418	2049	470	2519	515	3034	575	3595 3609	644	4253	714	4967
2964 2965	409 410	408 410	817 - 820	409 410	1226 1230	411 413	1637 1643	420 421	2057 2064	472 474	2529 2538	517 519	3046 3057	576 579	3622 3636	646 649	4268 4285	718 720	4986 5005
2966	412	411	823	412	1235	414	1649	423	2072	475	2547	522	3069	580	3649	652	4301	723	5024
2967 2968	413 415	413 414	826 829	413 415	1239 1244	416 418	1655 1662	425 425	2080 2087	477 479	2557 2566	523 525	3080 3091	583 585	3663 3676	653 657	4316 4333	726 728	5042 5061
2969	416	416	832	416	1248	419	1667	428	2095	481	2576	526	3102	588	3690	658	4348	732	5080
2970 2971	418 419	417 419	835 838	417 419	1252 1257	421 422	1673 1679	429 431	2110	483 484	2585 2594	529 531	3114 3125	589 591	3703 3716	661 664	4364 4380	734 737	5098 5117
2972	421	420	841	420	1261	424	1685	432	2117	486	2603	533	3136	594	3730	665	4395	740	5135
2973 2974	422 423	422 423	844 846	422 424	1266 1270	425 427	1691 1697	433 435	2124 2132	488 489	2612 2621	535 537	3147 3158	596 598	3743 3756	668 671	4411 4427	742 745	5153 5172
2975	425	424	849	425	1274	429	1703	436	2139	49í	2630	539 541	3169	600	3769 3782	673	4442	748	5190
2976 2977	426 428	426 427	852 855	427 428	1279 1283	430 431	1709 1714	438 440	2147 2154	492 495	2639 2649	542	3180 3191	602 604	3782 3795	676 678	4458 4473	750 753	5208 5226
2978	429	429	858	429	1287	433	1720	441 442	2161	496	2657 2666	545	3202	606	3808	68o 683	4488	756	5244
2979 2980	431 432	430 432	861 864	431 432	1292 1296	434 436	1726 1732	444	2168 2176	498 499	2675	546 548	3212 3223	609 611	3821 3834	685	4504 4519	758 761	5262 5280
2981	433	434	867 869	433	1300 1304	437	1737	446 447	2183	501	2684	550	3234	613 615	3847 3860	687 689	4534 4549	763 767	5297 5316
2982 2983	435 436	434 436	872	435 437	1309	439 440	1743 1749	448	2190 2197	503 505	2693 2702	552 553	3245 3255	618	3873	692	4565	768	5333
2984 2985	438 439	437 439	875 878	438 439	1313 1317	441 443	1754 1760	450 452	2204 2212	507 508	2711 2720	555	3266 3277	619 621	3885 3898	694	4579 4594	772 774	5351 5368
2986	440	441	881	440	1321	445	1766	453	2219	509	2728	557 559 561	3287	623	3910	699	4609	777	5386
2987 2988	442 443	441 443	883 886	443 444	1326 1330	445 447	1771 1777	455 456	2226 2233	511 513	2737 2746	561 562	3298 3308	625 628	3923 3936	701 703	4624 4639	779 781	5403 5420
2989	445	444	889	445	1334	449	1783	457	2240	514	2754	565	3319	629	3948	706	4654	784	5438
990	446 447	446 447	892 894	446 448	1338 1342	450 452	1788 1794	459 460	2247 2254	516 518	2763 2772	<u>566</u> 568	3329 3340	632 633	3961 3973	708	4669 4683	786 789	5455 5472
2992	449	448	897	449	1346	453	1799	462	2261	519	2780	570	3350	635	3985	713	4698	792	5490
993	450	450	900	450	1350	455	1805	463	2268	521	2789	572	3361	637	3998	715	4713	793	5506

DISCHARGE RATING TABLE CFS Lucky Feak Dam Slide Gates

							L	icky r	eak Dan	3114	e Gates	•							
								Gat	e Open:	ing -	feet								
-	11		2		3		4		5		6		7_		8		9		10
Pool	Disch	Diff	Disch	Diff	Disch	Diff	Disch	Diff	Disch	Diff	Disch	Diff	Disch	Diff	Disch	Diff	Disch	Diff	Disch
2994	451	452	903	452	1355	455	1810	465	2275	522	2797	574		639		717	4727	797	5524
2995 2996	453 454	452 454	905 908	454 455	1359 1363	457 458	1816 1821	466 467	2282 2288	524 526	2806 2814	<u>575</u> 577	3381 3391	641 644	4022	720 721	4742 4756	798 802	5540 5558
2997	456	455	911	456	1367	459	1826	469	2295	528	2823	579	3402	645	4047	724	4771	804	5575
2998 2999	457 458	456 458	913 916	458 459	1371 1375	461 462	1832 1837	470 472	2302 2309	529 531	2831 2840	581 582	3412 3422	647 649	4059 4071	726 728	4785 4799	806 810	5591 5609
3000	<u>4</u> 60	459	919	460	1379	464	1843	473	2316	532	2848	584	3432	651	4083	731	4814	811	5625
3001 3002	461 462	460 462	921 924	462 463	1383 1387	465 466	1848 1853	474 476	2322 2329	534 536	2856 2865	586 587	3442 3452	653 655	4095 4107	733 735	4828 4842	814 816	5642 5658
3003	464	463	927	464	1391	468	1859	477	2336	537	2873	589	3462	657	4119	737	4856	819	5675
3004 3005	465 466	464 466	929 932	466 467	1395 1399	469 470	1864 1869	479 480	2343 2349	539 541	2882 2890	590 592	3472 3482	659 661	4131 4143	740 741	4871 4884	821 824	5692 5708
3006	467	468	935	468	1403	472	1875	481	2356	542	2898	594	3492	663	4155	744	4899	826	5725
3007 3008	469 470	468 470	937 940	470 471	1407 1411	473 474	1880 1885	483 484	2363 2369	543 545	2906 2914	596 598	3502 3512	665 667	4167 4179	746 748	4913 4927	828 831	5741 5758
3009	471	471	942	472	1414	477	1891	485	2376	547	2923	599	3522	669	4191	750	4941	833	5774
3010 3011	473 474	472 474	945 948	474 474	1419 1422	477 479	1896 1901	487 488	2383	548 550	2931 2939	601	3532 3542	670 672	4202 4214	752 754	4954 4968	836 839	5790 5807
3012	475	475	950	476	1426	480	1906	490	2396	551	2947	605	3552	674	4226	756	4982	841	5823
3013 3014	477 478	476 477	953 955	477 479	1430 1434	482 483	1912 1917	490 492	2402 2409	553 554	2955 2963	606 608	3561 3571	676 678	4237 4249	759 761	4996 5010	842 845	5838 5855
3015	479	479	958	480	1438	484	1922	494	2416	555	2971	610	_3581_	6 <u>8</u> 0	4261	762	5023	848	5871
3016 3017	480 481	481 482	961 963	481 483	1442 1446	485 486	1927 1932	495 497	2422 2429	557 558	2979 2987	612 613	3591 3600	681 683	4272 4283	765 768	5037 5051	850 852	5887 5903
3018	483	483	966	483	1449	488	1937	498	2435	560	2995	615	3610	685	4295	769	5064	855	5919
3019 3020	484 485	484 486	968 971	485 486	1453 1457	489 491	1942 1948	499 500	2441 2448	562 563	3003 3011	616 618	3619 3629	688 689	4307 4318	771 773	5078 5091	857 859	5935 59 5 0
3021	487	486	973	488	1461	492	1953	501	2454	565	3019	619	3638	692	4330	775	5105	862	5967
3022 3023	488 489	488 489	976 978	489 490	1465 1468	493 495	1958	503 504	2461 2467	566 568	3027 3035	621 623	3648 3658	693	4341 4352	777 780	5118	864 866	5982
3024	490	491	981	491	1472	496	1963 1968	505	2473	570	3043	624	3667	694 697	4364	781	5132 5145	869	5998 6014
3025 3026	492	491 493	983 986	494	1476 1480	497	1973	507	2480 2486	570	3050	627 628	3677 3686	698	4375 4386	783 786	5158	871 873	6029 6045
3027	494	494	988	495	1483	500	1978 1983	508 509	2492	572 574	3058 3066	629	3695	700 702	4397	788	5172 5185	875	6060
3028	495	496	991	496	1487	501	1988	511	2499	575	3074	631	3705	704	4409	789	5198	878	6076
3029 3030	497 498	496 498	993 996	498 499	14 91 14 95	502 503	1993 1998	512 513	2505 2511	577 578	3082 3089	632 634	3714 3723	706 708	44 2 0 4431	792 794	5212 5225	880 882	6092 6107
3031	499	499	998	500	1498	505	2003	515	2518	579	3097	636	3733	709	4442	796	5238	884	6122
3032 3033	500 502	501 501	1001 1003	501 503	1502 1506	506 507	2008 2013	516 517	2524 2530	581 582	3105 3112	637 639	3742 3751	711 713	4453 4464	798 800	5251 5264	887 889	6138 6153
3034	503	503	1006	503	1509	509	2018	518	2536	584	3120	641	3761	714	4475	802	5277	891	6168
3035 3036	504 505	504 505	1008	505 507	1513 1517	510 510	2023	519 522	2542 2549	586 586	3128 3135	642	3770 3779	716	4486 4497	804 806	5290 ·	894 896	6184
3037	506	507	1013	507	1520	512	2032	523	2555	588	3143	645	3788	720	4508	808	5316	898	6214
3038 3039	508 509	507 509	1015 1018	509 510	1524 1528	513 514	2037 2042	524 525	2561 2567	589 591	3150 3158	647 649	37 97 3807	722 723	4519 4530	810 812	5329 5342	900 902	6229 6244
3040	510	510	1020	511	1531	516	2047	526	2573	592	3165	65í	3816	725	4541	814	5355	904	6259
3041 3042	511 512	511 513	1022 1025	513 513	1535 1538	517 519	2052 2057	527 528	2579 2585	594 596	3173 3181	652 653	3825 3834	727 729	4552 4563	815 817	5367 5380	907 909	6274 6289
3043	514	513	1027	515	1542	520	2062	529	2591	5 97	3188	655	3843	731	4574	819	5393	911	6304
3044 3045	515 516	515 516	1030 1032	516 517	1546 1549	520 522	2066 2071	531 532	2597 2603	599 600	3196 3203	656 658	3852 3861	732 734	4584 4595	822 824	5406 5419	913 91 5	6319 6334
3046	517	517	1034	519	1553	523	2076	534	2610	600	3210	660	3870	736	4606	825	5431	919	6350
3047 3048	518 520	519 519	1037 1039	519 521	1556 1560	525 525	2081 2085	535 537	2616 2622	602 603	3218 3225	661 663	3879 3888	737 739	4616 4627	828 829	5444 5456	920 922	6364 6378
3049	521	520	1041	522	1563	527	2090	538	2628	605	3233	664	3897	741	4638	831	5469	924	6393
3050 3051	522 523	522 523	1044	523 524	1567 1570	528 530	2095	538 540	2633 2640	607 607	3240 3247	666 667	3906 3914	742 745	4648 4659	833 835	5481 5494	927 929	6408 6423
3052	524	525	1049	525	1574	530	2104	541	2645	610	3255	669	3924	745	4669	837	5506	931	6437
3053	525	526 526	1051	527	1578	531	2109	542 543	2651	611	3262	670 672	3932	748	4680	839 840	5519		6452 6466
3054 3055	527 528	526 528	1053 1056	528 529	1581 1585	533 533	2114 2118	543 545	2657 2663	612 614	3269 3277	672 673	3941 3950		4691 4701	843	5531 5544	937	6481
3056	529	529	1058	530	1588	535	2123	546	2669	615	3284	675	3959	753	4712		5556	940	6496
3057 3058	530 531	530 532	1060 1063	531 532	1591 1595	537 537	2128 2132	547 549	2675 2681	616 617	3291 3298	677 678	3968 3976	754 756	4722 4732	847 849	5569 5581		6510 6524
3059	532	533	1065	534	1599	538	2137	550	2687	619	3306	679	3985	758	4743	850	5593	999	6592
3060	533	534	1067	535	1602	540	2142	551	2693	620	3313	681_	3994	759	4753	852	5605	948	6553

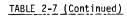
TABLE 2-7

LUCKY PEAK LAKE - ELEVATION CAPACITY TABLE

DAM LOCATION: BOISE RIVER BASIN, IDAHO - BOISE RIVER MILE 63.8

RESERVOIR ELEMENT:	CREST OF DAM 3,078 feet MS
	MAXIMUM DESIGN WATER SURFACE 3.072 feet MS
	TOP OF UNCONTROLLED SPILLWAY 3,060 feet MSI NORMAL FULL POOL 3,055 feet MSI
	TOP OF INACTIVE POOL 2,905 feet MSI
	STREAMBED AT DAM AXIS 2,824 feet MSI

	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
STORAGE ELEMENT:	SPILLWAY FREEBOARD3,055 to 3,060 feet MSL 5 feet SURCHARGE CAPACITY3,055 to 3,060 feet MSL13,905 acre-feet JOINT USE CAPACITY2,905 to 3,055 feet MSL 264,371 acre-feet INACTIVE CAPACITY2,824 to 2,905 feet MSL28,767 acre-feet
	TOTAL ACTIVE CAPACITY2,905 to 3,055 feet MSL264,371 acre-feet TOTAL CAPACITY2,824 to 3,055 feet MSL293,138 acre-feet TOTAL GROSS CAPACITY2,824 to 3,060 feet MSL307,043 acre-feet

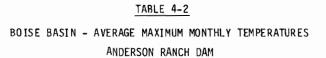

		A Committee of the Comm						
ELEVATION (Feet)	CAPACITY (Ac-Ft)	DIFF. PER. FT.	ELEVATION (Feet)	CAPACITY (Ac-Ft)	DIFF. PER. FT.	ELEVATION (Feet)	CAPACITY (Ac-Ft)	DIFF. PER. FT.
2905	0	000	2921	14387		2937	32128	
2906	808	808	2922	15395	1008	2938	33351	1223
2907	1628	820	2923	16416	1021	2939	34587	1236
2908	2459	831	2924	17451	1035	2940		1250
2909	3302	843	2925	18499	1048		35837	1264
2910	4158	856		-	1061	2941	37101	1278
2911		867	2926	19560	1075	2942	38379	1291
	5025	879	2927	20635	1089	2943	39670	1304
2912	5904	891	2928	21724	1102	2944	40974	
2913	6795	903	2929	22826	1115	2945	42292	1318
2914	7698	917	2930	23941		2946	43624	1332
2915	8615		2931	25070	1129	2947	44968	1344
2916	9544	929	2932	26213	1143	2948	46326	1358
2917	10487	943	2933	27369	1156	2949	47696	1370
2918	11442	955	2934	28539	1170			1385
2919	12411	969	•		1183	2950	49081	1396
2920		981	2935	29722	1196	2951	50477	1408
2320	13392	995	2936	30918	1210	2952	51885	1421
								1471

Sneet 2

TABLE 2-7 (Continued)

LUCKY PEAK LAKE - ELEVATION CAPACITY TABLE

					,			
ELEVATION (Feet)	CAPACITY (Ac-Ft)	DIFF. PER. FT.	ELEVATION (Feet)	CAPACITY (Ac-Ft)	DIFF. PER. FT.	ELEVATION (Feet)	CAPACITY (Ac-Ft)	DIFF. PER. FT.
2953	53306	1434	2980	96319	1766	3007	148411	
2954	54740	1446	2981	98085	1766	3008	150519	2108
2955	56186		2982	99863	1778	3009	152639	2120
2956	57644	1458	2983 .	101655	1792	3010	154773	2134
2957	59115	1471	2984	103459	1804	3011	156919	2146
2958	60599	1484	2985	105275	1816	3012	159079	2160
2959	62095	1496	2986	107104	1829	3013	161251	2172
2960	63603	1508	2987	108946	1842	3014	163436	2185
2961	65123	1520	2988	110800	1854	3015	165634	2198
2962	66656	1533	2989	112666	1866	3016	167844	2210
2963	68201	1545	2990	114545	1879	3017	170067	2223
2964	69758	1557	2991	116437	1892	3018	172303	2236
2965	71327	1569	2992	118341	1904	3019	174551	2248
2966	72908	1581	2993	120257	1916	3020	176812	2261
2967	74501	1593	2994	122186	1929	3021	179086	2274
2968	76106	1605	2995	124128	1942	3022	181372	2286
2969	77723	1617	2996	126082	1954	3023	183671	2299
2970	79352	1629	2997	128048	1966	3024	185983	2312
2971	80993	1641	2998	130027	1979	3025	188307	2324
2972	82646	1653	2999	132019	1992	3026	190645	2338
2973	84311	1665	3000	134023	2004	3027	192997	2352
2974	85989	1678	3001	136039	2016	3028	195362	2365
2975	87679	1690	3002	138069	2030	3029	197741	2379
2976	89381	1702	3003	140111	2042	3030	200134	2393
2977	91097	1716	3004	142167	2056	3031	202540	2406
2978	92825	1728	3005	144235	2068	3032	204960	2420
2979	94565	1740	3006	146317	2082	3033	207394	2434
		1754			2094		20/034	2447


LUCKY PEAK LAKE - ELEVATION CAPACITY TABLE

ACTIVE CAPACITY (ACRE-FEET)

	70
3034 209841 3042 229903 3050 250831	
2460 2568 26 3035 212301 3043 232471 3051 253510	-
2474 2582 26 3036 214775 3044 235053 3052 256203	
2488 2596 27 3037 217263 3045 237649 3053 258911	
2501 2609 27 3038 219764 3046 240258 3054 261634	23
2514 2623 27 3039 22278 3047 242881 3055 264371	37
2528 2636 3040 224806 3048 245517	
2542 2650 3041 227348 3049 248167	
2555 2664	

SURCHARGE CAPACITY (ACRE-FEET)

ELEVATION (Feet)	CAPACITY (Ac-Ft)	DIFF. PER. FT.	ELEVATION (Feet)	CAPACITY (Ac-Ft)	DIFF. PER. FT.	ELEVATION (Feet)	CAPACITY (Ac-Ft)	DIFF. PER. FT.
3055	0	0.750	3061	16730		3067	33981	
3056	2752	2752	3062	19569	2839	3068	36906	2925
3057	5519	2767	3063	22422	2853	3069	39846	2940
3058	8300	2781	3064	25290	2868	3070	42800	2954
3059	11095	2795	3065	28173	2883	3071	45769	2969
3060	13905	2810	3066	31070	2897			2983
3060	13905	2825	3000	31070	2911	3072	48752	

Water	e Maximu	1101101	,, <u>,</u> ,,,,,,,	, a var e	100910								W	ATER YEAR	R
Year	OCT_	NOV	DEC	<u>J</u> AN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	AVG	MAX	MIN
1948									80.8	87.9	88.6	79.5		-:-	~-
1949	70.1	43.5	28.7	16.9	32.9	47.5	66.6	72.9	77.9	91.1	92.4	83.7	60.4	92.4	16.9
1950	61.4	59.0	37.2	28.5	38.4	43.7	55.0	66.9	77.4	89.1	89.8	76.8	60.3	89.8	28.5
1951	67.7	48.7	40.6	33.5	38.8	43.3	63.4	69.9	76.3	92.6	86.5	79.9	61.8	92.6	33.5
1952	58.2	44.6	32.0	29.5	31.1	40.0	59.2	71.2	78.0	89.0	89.4	83.4	58.8	89.4	29.5
1953	73.9	46.2	37.6	41.5	43.3	50.5	57.8	64.6	74.4	93.1	89.2	82.5	62.9	93.1	37.6
1954	68.9	56.1		36.3	42.5	45.7	61.4	76.4	75.4	94.2	86.5	79.5			
1955	66.4	55.7	37.6	31.5	35.7	41.1	52.2	68.0	80.8	88.1	92.8	78.7	60.7	92.8	31.5
1956	66.7	41.6	37.9	35.9	31.9	45.6	62.3		79.6	92.0	87.2	82.1		,	
1957	59.8	47.0	39.1	29.5	39.7	47.5	58.1		79.9	91.1	89.0	82.5			
1958	61.5	44.6	38.7	35.0	42.4	44.5	54.6	79.3	79.0	88.88	92.3	77.6	61.5	92.3	35.0
1959	70.5	45.0	43.7	37.4	39.4	48.1	63.8	63.8	83.6	93.8	86.3	71.4	62.2	93.8	37.4
1960	62.3	51.0	41.3	32.8	35.4	45.1	60.4	68.4	84.5	96.4	86.8	81.5	62.2	96.4	32.8
1961	64.0	45.6	37.6	38.2	41.9	47.6	59.3	72.2	89.1	93.9	92.9	69.8	62.7	93.9	37.6
1962	60.8	44.4	32.9	30.7	38.1	42.4	65.5	66.1	80.4	88.7	86.6	80.9	59.8	88.7	30.7
1963	65.7	50.3	42.3	35.0	50.0	51.1	55.1	71.3	73.3	88.2	89.9	81.8	62.8	89.9	35.0
1964	69.1	45.9	36.6	32.0	36.2	40.2	55.6	69.2	74.3	92.3	86.8	75.2	59.5	92.3	32.0
1965	69.6	45.3	37.5	38.5	41.6	47.8	59.2	67.0	77.6	89.0	84.1	69.0	60.5	89.0	37.5
1966	73.5	52.1	38.4	36.7	39.4	49.5	62.0	77.0	79.0	93.8	89.6	83.0	64.5	93.8	36.7
1967	64.4	49.9	37.5	39.1	43.6	47.5	51.8	70.4	76.4	93.4	95.3	83.7	62.8	95.3	37.5
1968	64.5	50.1	34.9	35.0	45.5	54.9	58.4	69.2	80.3	94.8	79.6	76.2	62.0	94.8	34.9
1969	63.3	44.6	35.6	36.3	38.3	45.9	61.5	77.0	78.8	91.2	93.6	80.6	62.2	93.6	35.6
1970	57.9	52.0	38.3	36.2	44.5	47.6	52.4	71.2	82.1	91.7	94.3	73.3	61.8	94.3	36.2
1971	60.4	45.8	33.9	35.6	40.8	44.4	58.7	71.9	77.5	91.1	94.9	73.3	60.7	94.9	33.9 33.5 32.3
1972	60.4	43.7	33.5	34.2	39.5	50.5	57.4	74.4	82.4	90.0	91.2	72.2	60.8	91.2	33.5
1973	63.0	45.9	32.3	34.0	41.6	47.2	58.7	74.6	81.5	92.5	90.0	77.9	61.6	92.5	32.3
1974	65.1	42.2	39.1	32.9	38.5	46.1	60.1	68.2	87.8	90.5	88.7	82.0	61.8	90.5	32.9
1975	67.2	48.2	37.9	35.9	38.4	44.0	49.6	67.1	76.4	92.9	85.3	81.8	60.4	92.9	32.9 35.9
1976	61.3	44.2	39.1	35.8	39.9	41.9	57.5	75.0	77.7	92.3	83.0	78.9	60.6	92.3	35.8
1977	65.5	55.1	44.0	36.2	48.4	46.7	68.4	64.3	85.7	88.8	86.8	76.1	63.8	88.8	36.2 38.5
1978	67.5	46.3	38.5	39.1	39.8	53.3	57.4	67.4	80.2	88.6	87.0	73.9	61.6	88.6	38.5
1979	69.9	47.1	33.5	27.0	39.0	50.0	58.5	71.3	83.7	90.8	87.4	85.3	62.0	90.8	27.0
1980		45.8	40.5	34.5	42.6	47.7	64.3	68.7		89.4	85.2	77.0			
STATIS	TICS														
N	31	32	31	32	32	32	32	30	32	33	33	33			
Mean	65.2	47.7	37.4	34.1	40.0	46.5	58.9	70.5	79.7	91.2	88.8	78.5			
Max	73.9	59.0	44.0	41.5	50.0	54.9	68.4	79.3	89.1	96.4	95.3	85.3			
Min	57.9	41.6	28.7	16.9	31.1	40.0	49.6	63.8	73.3	87.9	79.6	69.0			

TABLE 4. int'd)

BOISE BASIN - AVERAGE MAXIMUM MONTHLY TEMPERATURES

ARROWROCK DAM

	e Maximu	m Month	nly Temp	erature	(Degre	es F.)									
Water Year	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	AVG	ATER YEAR MAX	MIN
1939	63.1	39.7	36.9	36.0	33.8	48.0	65.3	76.0	77.2	91.8	93.0	78.8	61.6	93.0	33.8
1940	61.7	52.0	43.2	37.9	42.7	54.9	60.4	77.6	88.2	93.9	94.5	76.5	65.3	94.5	37.9
1941	66.6	41.4	40.4	37.7	46.6	60.1	64.7	74.2	80.2	93.4	87.3	71.1	63.6	93.4	33.8 37.9 37.7 26.8 31.8 32.9 34.5
1942	61.0	48.7	37.9	26.8	37.5	49.2	61.7	63.0	75.3	93.4	91.0	79.8	60.4	93.4	26.8
1943	65.5	44.6	33.7	31.8	39.1	45.8	65.0	65.3	74.1	90.6	88.1	84.1	60.6	90.6	31.8
1944	63.4	46.6	37.5	32.9	40.2	47.1	57.7	71.6	72.9	88.1	87.1	77.9	60.3	88.1	32.9
1945	70.5	42.8	34.5	35.0	42.1	47.4	56.4	68.1	73.6	92.1	89.8	74.3	60.6	92.1	34.5
1946	67.9	42.1	32.8	28.6	34.7	49.4	63.9	69.2	79.9	91.9	90.1	76.1	60.6	91.9	28.6 29.3 36.0 13.3
1947	53.6	43.3	39.6	29.3	44.3	54.5	60.6	75.5	73.8	92.9	87.8	77.2	61.0	92.9	29.3
1948	64.4	40.5	36.3	36.0	40.0	44.6	56.9	68.9	80.4	86.6	87.3	77.9	60.0	87.3	36.0
1949	66.2	42.6	27.3	13.3	33.2	47.9	67.4	72.8	78.7	90.5	90.3	82.1	59.4	90.5	13.3
1950	57.5	53.3	35.6	30.4	38.5	45.6	58.5	66.9	75.3	89.2	88.4	78.4	59.8	89.2	30.4
1951	67.1	47.6	40.8	32.0	40.0	44.7	64.4	68.8	75.8	92.6	87.7	79.3	61.7	92.6	32 N
1952	57.9	43.9	32.7	30.3	33.3	43.5	65.2	70.5	77.8	88.6	90.0	82.6	59.7	90.0	30.3
1953	72.5	43.4	37.5	41.8	43.8	50.9	57.1	62.3	71.5	91.9	88.1	82.7	62.0	91.9	37.5
1954	67.5	52.5	35.2	37.2	44.1	47.0	61.6	73.8	72.2	91.3	85.1	78.1	62.1	91.3	35.2
1955	63.5	52.4	35.1	28.5	34.7	41.7	52.2	65.5	80.3	86.1	93.7	78 . 4 `	59.3	93.7	28.5
1956	64.8	39.1	37.7	36.6	31.2	49.2	61.2	69.8	78.0	91.1	86.5	80.8	60.5	91.1	30.3 37.5 35.2 28.5 31.2
1957	60.1	42.2	35.5	26.5	38.2	48.8	57.5	68.5	79.8	90.1	89.5	81.5	59.9	90.1	26.5 31.5
1958	60.1	41.7	37.5	31.5	44.5	46.9	55.1	78.1	77.8	89.4	92.8	77.7	61.1	92.8	31.5
1959	70.9	45.3	42.1	39.7	42.3	51.5	66.0	65.9	84.1	94.4	87.9	72.9	63.6	94.4	39.7 32.9
1960	61.6	47.9	37.8	32.9	38.2	50.8	63.5	68.7	84.1	97.5	86.8	82.3	62.7	97.5	32.9
1961	64.1	45.8	36.5	38.4	44.7	51.0	60.6	73.5	90.4	96.3	95.4	72.0	64.1	96.3	36.5
1962 1963	60.7	42.9	34.9	29.1	37.5	47.1	66.9	66.3	80.1	88.0	86.4	80.8	60.1	88.0	29.1 32.9
1963	63.9	49.0	41.3	32.9	50.8	52.6	56.6	71.0	74.1	87.6	89.5	82.6	62.7	89.5	32.9
1965	67.9 66.3	46.7	34.5	32.1	35.3	41.8	55.8	66.3	72.6	90.7	84.4	72.9	58.4	90.7	32.1
1966	70.3	44.4 51.9	38.1	36.5	41.3	47.9	59.0	65.6	75.6	87.5	84.8	68.7	59.6	87.5	36.5
1967	61.9	48.9	37.7 36.9	37.6 38.4	40.7 44.6	50.8 49.4	60.3	75.0	77.1	90.9	89.2	82.0	63.6	90.9	37.6
1968	60.8	48.3	33.3	34.9	45.2		51.2 55.7	68.7	75.7	92.8	94.8	82.9	62.2	94.8	36.9
1969	61.4	44.4	36.2	36.2	37.9	54.6 49.5	60.5	68.2 73.7	78.4	92.9	79.5	74.4	60.5	92.9	33.3
1970	56.6	48.0	36.8	35.0	46.8	48.1	52.0		77.5 79.7	88.4	90.9	79.5	61.3	90.9	36.2
1971	57.5	45.8	33.5	33.5	41.1	44.5	57.5	67.9 69.3	74.7	88.0	92.1 93.7	70.7	60.1	92.1	35.0
1972	58.2	42.5	33.1	32.2	36.4	51.0	55.8	71.1	78.8	88.3		71.6	59.3	93.7	33.5
1973	61.6	43.6	30.7	34.8	44.6	51.0	57.8	72.2	78 . 7	87.4 90.6	89.5 89.1	71.5 75.0	59.0	89.5	32.2 30.7
1974	63.2	41.6	39.3	29.6	39.4	46.8	56.8	66.0	84.7	87.6	86.1	80.5	60.8 60.1	90.6	20.6
1975	64.7	46.0	35.2	31.3	36.6	44.5	48.7	64.1	74.2	92.4	82.2	80.0	58.3	87.6 92.4	29.6 31.3
1976	59.5	44.0	34.7	32.2	36.8	41.4	55.8	71.8	74.6	88.4		76.3	50.5	92 • 4 	31.3
1977	63.0	50.2	37.6	27.5	43.9	46.2	65.8	62.3	84.3	88.0	88.0	75.3	61.0	88.0	27.5
1978	64.1	43.6	38.7	39.4	40.6	56.3	55.6	64.8	76.8	86.2	85.2	71.7	60.3	86.2	38.7
1979	67.3	44.7	33.1	25.8	38.9	50.3	56.3	69.5	80.3	89.8	87.3	84.3	60.6	89.8	25.8
1980	66.9	42.5	39.3	34.8	44.7	47.9	62.3	66.9	75.6	88.5	83.7	75.1	60.7	88.5	34.8
STATIS							- 0210	0015		00.0		7311			04.0
		4.0	••												
N	42	42	42	42	42	42	42	42	42	42	41	42			
Mean	63.5 72.5	45.4 53.3	36.4	33.0	40.3	48.6	59.4	69.4	78.0	90.4	88.6	77.6			
Max Min	53.6	39.1	43.2 27.3	41.8 13.3	50.8 31.2	60.1 41.4	67.4 48.7	78.1 62.3	90.4 71.5	97.5 86.1	95.4 79.5	84.3 68.7			
						'									

BOISE BASIN - AVERAGE MAXIMUM MONTHLY TEMPERATURES

LUCKY PEAK DAM

Water													h	ATER YEA	Ř
Year	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	AVG	MAX	MÍN
1951					47.3	51.3	69.4	73.4	79.5	95.8	91.1	83.8			
1952	63.8				41.5			75.3	83.0	91.9					
1953					49.3	58.5	61.8	67.3	75.7	94.9	91.5	86.5			
1954	72.5	60.4			52.0	52.6		81.0	79.8		86.1				
1955			39.5		38.7			69.4							
1956															
1957									84.9	93.9	91.7	86.3			
1958	64.9	48.9	43.5	39.9	52.2	52.5	60.6	82.5	82.0	91.6	95.3	82.6	66.4	95.3	39.9
1959	75.5	52.3	47.3	46.0	46.9	55.8	68.5	68.5	87.8	97.5	90.4	76.5	67.8	97.5	46.0
1960	67.3	53.6	43.3	35.9	42.6	55.2	66.7	72.0	88.5	100.4	89.1	86.4	66.8	100.4	35.9
1961	68.6	51.6	42.6	45.0	49.6	55.4	64.5	76.5	93.1	96.8	97.5	74.9	68.0	97.5	42.6
1962	65.1	49.6	39.3	31.9	41.3	51.2	71.2	70.4	84.6	91.5	90.9	84.7	64.3	91.5	31.9
1963	67.9	55.0	45.2	36.6	55.0	56.5	60.3	76.0	79.6	91.3	92.7	87.8	67.0	92.7	36.6
1964	73.2	52.1	37.4	36.9		47.6	59.0	68.8	75.5	93.2	87.1	76.0			
1965	71.8		43.4		46.8	52.0	62.9	69.0	78.5	90.5	86.7	72.0			
1966	73.8		' 		44.0	54.3	63.2	78.1	80.2	91.7	90.9	83.7		~-	
1967	67.6	,			49.0	54.8	55.4	71.3	78.7	95.0	96.5	85.9			
1968	66.8			41.7	49.6		59.2	71.2	81.6	94.8	81.2	77.2			
1969	65.9			41.5			65.1	76.6	79.7	90.8	92.0	81.5			٠
1970	61.0				51.3	52.7	54.9	72.0	83.0	91.9	93.8	72.9			
1971	61.6	50.7	39.5	39.0	45.2	48.8	60.2	72.8	77.2	90.7	95.7	74.1	63.0	95.7	39.0
1972	61.9	47.5	37.7	37.0	42.6	55.6	59.9	73.9	82.1	89.4	91.6	72.9	62.7	91.6	37.0
1973	64.8	48.4	34.4	39.1	47.8	54.0	60.8	75.3	81.4	91.2	89.2	76.9	63.6	91.2	34.4
1974	66.0	46.2	43.4	36.5	45.9	51.8	59.2	68.8	87.5	90.0	87.6	82.8	63.8	90.0	36.5
1975	64.0	51.2	38.2	35.7	42.6	49.5	53.0	68.6	76.6	93.5	84.2	82.5	61.6	93.5	35.7
1976	63.4	48.7	39.2	39.1	42.8	47.3	59.9	76.1	77.4	90.8	83.2	78.7	62.2	90.8	39.
1977	66.2	55.1	42.7	28.3	47.8	50.5	69.4	65.5	86.1	88.3	87.6	77.2	63.7	88.3	28.3
1978	67.0	48.2	43.7	43.6	44.6	60.6	61.0	69.1	80.1	90.4	87.6	75.3	64.3	90.4	43.6
1979	68.9	46.8	35.3	27.0	42.8	56.5	61.6	72.7	84.8	92.3	88.0	84.6	63.4	92.3	27.0
1980	67.6	_=			50.0	51.0	66.6	70.0	78.5	90.5	84.3	76.9			
STATIS	TICS														
N	25	17	18	18	26	24	25	28	28	27	27	26			
Mean	67.1	51.0	40.9	37.8	46.5	53.2	62.2	72.6	81.7	92.6	89.8	80.0			
Max	75.5	60.4	47.3	46.0	55.0	60.6	71.2	82.5	93.1	100.4	97.5	87.8			
Min	61.0	46.2	34.4	27.0	38.7	47.3	53.0	65.5	75.5	88.3	81.2	72.0			

BOISE BASIN - AVERAGE MAXIMUM MONTHLY TEMPERATURES

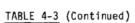
BOISE AIRPORT WSFO

Water	e Maximu	na Month	ny remp	eracure	vegre	es r.)							W	ATER YEAR	₹
Year	OCT_	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	_JUL	AUG	SEP	AVG	MAX	MIN
1941				40.2	48.1	58.1	62.0	71.0	75.4	90.5	84.6	71.1			
1942	62.7	51.7	42.1	28.5	39.3	51.2	63.6	64.2	73.6	91.9	89.0	78.7	61.4	91.9	28.5
1943	66.0	48.5	38.8	35.5	45.0	49.8	67.1	66.8	74.6	88.9	87.2	82.5	62.6	88.9	35.5
1944	65.4	49.3	40.7	34.0	41.6	49.5	60.1	72.3	72.1	87.3	86.9	77.7	61.4	87.3	34.0
1945	71.7	45.0	34.8	37.9	45.2	49.0	58.4	69.1	74.2	91.5	89.3	74.7	61.7	91.5	34.8
1946	69.4	47.2	38.0	36.9	42.0	53.8	65.8	71.1	80.2	91.0	89.4	76.0	63.4	91.0	36.9
1947	55.9	45.6	43.9	32.6	47.1	56.5	62.0	76.4	73.9	91.8	87.8	77.5	62.6	91.8	32.6
1948	66.5	43.5	38.5	41.8	41.2	47.7	59.1	69.0	79.9	86.2	86.2	76.5	61.3	86.2	38.5
1949	66.2	46.5	33.2	20.1	38.9	53.3	68.3	74.8	80.4	90.5	89.1	80.7	61.8	90.5	20.1
1950	58.5	55.1	38.7	33.2	44.6	48.7	59.7	67.9	77.0	88.7	88.3	76.5	61.4	88.7	33.2
1951	69.1	51.5	42.2	35.9	44.8	47.2	64.6	69.7	76.6	91.5	86.8	78.1	63.2	91.5	35.9
1952	59.8	47.5	34.1	33.7	38.3	45.3	66.2	71.0	77.2	88.7	88.5	80.9	60.9	88.7	33.7
1953	71.9	46.4	40.4	47.8	45.9	53.9	58.1	64.1	72.4	91.1	86.8	81.6	63.4	91.1	40.4
1954	66.5	55.7	38.4	44.1	48.3	50.7	63.0	75.2	74.2	91.5	82.9	76.7	63.9	91.5	38.4
1955	65.1	54.4	38.8	30.6	35.3	45.7	54.6	65.6	81.0	86.1	91.7	77.0	60.5	91.7	30.6
1956	66.4	43.5	41.8	40.5	35.8	53.0	64.0	72.0	78.5	90.8	84.8	79.5	62.6	90.8	35.8
1957	61.4	44.2	37.3	30.0	42.1	51.6	59.9	69.2	80.2	88.9	86.7	80.6	61.0	88.9	30.0
1958	60.2	45.8	40.7	37.9	50.8	50.5	57.7	78.2	78.0	88.7	90.5	76.2	62.9	90.5	37.9
1959	70.0	49.9	44.1	42.9	44.8	52.3	63.9	65.3	83.5	92.3	84.9	71.3	63.8	92.3	42.9
1960	62.2	48.2	39.1	32.5	41.3	53.3	62.1	68.4	85.0	97.3	84.1	81.9	63.0	97.3	32.5
1961	66.0	49.8	39.1	42.5	49.1	54.2	61.7	72.5	89.1	93.2	92.7	70.8	65.1	93.2	39.1
1962	60.8	46.7	37.1	28.0	38.0	48.5	67.1	68.1	80.7	87.6	85.9	80.8	60.8	87.6	28.0
1963	65.3	50.8	42.4	32.0	52.6	55.5	59.1	72.9	76.0	88.7	89.1	84.5	64.1	89.1	32.0
1964	69.1	51.7	34.2	33.8	34.3	46.6	58.2	68.7	74.0	91.3	84.5	74.1	60.0	91.3	33.8
1965	66.3	45.3	42.4	39.1	46.2	52.1	61.0	67.9	78.4	89.0	84.9	70.1	61.9	89.0	39.1
1966	70.5	53.0	37.6	39.9	42.6	55.1	62.7	77.2	79.5	90.6	88.3	81.2	64.9	90.6	37.6
1967	63.9	51.6	38.0	42.9	47.9	52.3	54.3	71.4	79.5	94.2	94.5	82.8	64.4	94.5	38.0
1968	63.7	49.5	35.4	37.5	49.9	58.0	60.2	71.6	81.8	94.1	80.8	76.7	63.3	94.1	35.4
1969	64.6	49.3	41.5	41.3	42.6	54.0	63.6	76.2	78.3	89.3	89.5	78.1	64.0	89.5	41.3
1970	57.5	50.3	41.3	41.6	50.8	51.5	54.3	70.5	81.4	92.0	93.1	71.8	63.0	93.1	41.3
1971	58.8	50.2	39.8	39.8	45.6	49.5	60.7	72.6	77.1	90.0	94.0	72.5	62.6	94.0	39.8
1972	60.4	47.8	36.7	37.7	44.3	56.4	58.3	74.9	81.3	89.6	90.1	71.5	62.4	90.1	36.7
1973	62.9	47.4	32.1	38.2	47.8	53.1	61.2	75.3	81.9	91.9	88.4	76.9	63.1	91.9	32.1
1974	64.1	48.0	44.4	36.1	46.6	51.1	61.3	68.8	88.0	89.6	87.6	81.8	64.0	89.6	36.1
1975	64.3	50.4	40.5	36.1	43.5	50.4	53.9	69.0	78.3	94.3	84.3	82.4	62.3	94.3	36.1 37.2
1976	63.0	49.2	37.2	38.8	42.0	46.6	59.2	74.6	77.8	89.5	81.6	77.5	61.4	89.5	37.2
1977	64.7	52.5	41.8	26.1	44.6	51.2	69.2	65.1	84.9	88.3	87.6	75.5	62.6	88.3	26.1
1978	65.8	49.0	43.5	43.5	45.1	59.9	58.6	67.2	79.4	88.7	86.4	74.8	63.5	88.7	43.5
1979	69.0	46.9	35.5	25.3	41.7	54.2	60.4	71.9	82.2	90.4	85.7	83.5	62.2	90.4	25.3
1980	66.9	44.4	43.9	37.3	47.2	51.3	65.2	68.5	76.7	89.5	83.7	76.4	62.6	89.5	43.5 25.3 37.3
STATIS	STICS														
N	39	39	39	40	40	40	40	40	40	40	40	40			
Mean	64.7	48.8	39.2	36.4	44.1	51.8	61.3	70.7	78.9	90.4	87.5	77.5			
Max	71.9	55.7	44.4	47.8	52.6	59.9	69.2	78.2	89.1	97.3	94.5	84.5			
Min	55.9	43.5	32.1	20.1	34.3	45.3	53.9	64.1	72.1	86.1	80.8	70.1			

IDAHO CITY

later												:	W	ATER YEA	R
ear	OCT	NOV	DEC	JAN_	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	AVG	MAX	MII
937	72.3	54.7	39.6	23.8	36.6	51.8	56.1	74.7	78.0	92.2	90.4	84.9	62.9	92.2	23.8
938	71.1	50.1	40.7	39.9	44.0	47.1	63.0	68.6	80.6	87.2	89.5	86.3	64.0	89.5	39.9 37.1 41.1 40.9 33.0 34.8
939	65.8	42.1	40.3	40.0	37.1	53.5	68.1	77.8	77.4	92.1	94.3	81.7	64.2	94.3	37.
940	66.0	56.7	45.2	41.1	44.5	55.6	62.4	78.7	88.6	92.0	94.2	76.5	66.8	94.2	41.
941	66.3	42.2	40.9	41.2	43.8	57.4	61.2	71.1	75.9	90.5	84.9	71.7	62.3	90.5	40.9
942	64.5	50.9	40.2	33.0	37.4	49.8	64.7	65.6	76.4	94.2	91.6	82.0	62.5	94.2	33.0
943	65.8	47.6	35.7	34.8	44.1	46.5	65.8	66.7	73.6	89.4	88.0	84.5	61.9	89.4	34.8
944	64.6	51.3	43.0	38.8	41.4	46.6	58.5	72.3	72.1	86.5	86.6	79.1	61.7	86.6	38.
945	74.4	43.9	39.4	39.2	41.6	48.6	57.5	69.0	72.8	90.6	89.3	74.8	61.8	90.6	39.
946	69.5	41.7	35.1	35.4	38.0	47.1	62.5	68.4	76.6	91.1	90.0	77.3	61.1	91.1	35.
947	53.9	42.5	41.4	33.2	45.7	53.9	60.5	75.1	72.9	90.2	87.2	77.3	61.2	90.2	33.
948	66.3	42.9	38.5	39.9	39.9	44.2	56.2	68.5	79.5	85.4	86.3	78.9	60.5	86.3	38.
949	69.5	42.2	30.5	22.4	34.6	48.4	66.9	72.6	80.2	89.6	89.5	83.0	60.8	89.6	22.
950	60.9	58.4	37.3	29.6	43.8	45.7	58.2	66.6	75.4	86.6	86.7	76.2	60.5	86.7	29.
951	66.7	48.8	41.6	35.0	41.8	44.6	63.5	68.1	73.9	89.4	84.3	80.3	61.5	89.4	38. 39. 35. 33. 38. 22. 29. 35. 37. 37. 33.
952	58.4	46.1	32.7	33.1	38.5	43.4	64.1	70.4	75.1	86.4	86.9	83.7	59.9	86.9	32.
953	76.8	49.9	37.6	42.8	44.8	51.8	57.6	62.7	72.8	90.6	87.3	83.0	63.1	90.6	37.
954	70.8	54.2	37.3	37.3	47.4	48.2	61.6	73.7	71.6	89.0	81.7	79.9	62.7	89.0	37.
955	68.3	57.3	38.9	33.7	38.3	42.8	52.7	66.3	78.1	82.5	90.4	77.0	60.5	90.4	33.
956	66.9	41.1	38.5	38.5	35.5	47.9	63.2	70.9	75.4	86.6	84.1	81.2	60.8	86.6	35.
957		43.7	37.9	29.5	40.1	46.0	57.1	67.7	78.1	87.4	85.7	79.8			
958	57.9	43.3	36.7	34.4	42.5	45.2	52.8	76.4	75.4	84.9	88.5	75.6	59.5	88.5	34. 37.
959	69.0	44.6	41.2	37.2	39.4	46.8	61.8	62.7	80.2	90.9	82.8	68.4	60.4	90.9	37.
960	60.2	48.3	39.8	30.7	35.4	46.2	58.6	65.4	80.1	92.7	83.0	80.3	60.1	92.7	30.
961	62.9	43.8	37.5	40.5	40.5	47.1	57.1 63.7	69.3	84.5	90.9	90.6	68.9	61.1	90.9	37.
962	58.8	42.7	32.9	31.3	37.8	43.4	63.7	63.6	77.4	84.9	83.1	78.8	58.2	84.9	30. 37. 31. 32. 31. 33. 36. 33. 35. 32.
963	61.9	47.9	40.4	32.8	49.2	49.8	52.4	68.3	71.5	83.4	86.1	79.0	60.2	86.1	32.
964	67.1	43.6	34.7	31.8	37.7	40.5	54.7	66.9	71.9	88.2	81.5	73.5	57.7	88.2	31.
965	68.8	43.6	33.3	33.7	40.2	45.8	57.6	65.3	77.4	84.0	81.9	67.2	58.2	84.0	33.
966	70.3	49.3	38.2	36.1	41.1	50.8	61.0	75.2	75.9	89.9	88.3	81.3	63.1	89.9	36.
967	63.5	47.7	37.5	36.7	44.6	47.5	50.4	68.9	73.9	90.1	93.8	82.5	61.4	93.8	36.
968	61.2	48.4	33.8	36.5	46.5	54.8	56.0	66.2	77.3	91.2	77.1	73.2	60.2	91.2	33.
969	61.4	43.0	34.1	33.5	38.4	47.4	61.7	73.4	74.5	87.0	90.3	78.0	60.2	90.3	33.
970	56.7	50.3	37.3	35.0	46.8	47.0	51.9	68.3	78.4	87.1	91.1	70.7	60.1	91.1	35.
971	58.2	43.5	32.2	34.4	40.9	44.5	58.8	69.5	73.3	86.4	91.0	70.2	58.6	91.0	32.
972	60.5	43.0	31.7	33.0	39.3	51.3	54.7	70.8	77.3	85.2	87.5	70.4	58.7	87.5	31.
973	63.2	44.4	30.7	33.6	44.3	48.5	57.3	71.3	78.6	89.8	86.5	74.6	60.2	89.8	30.
974	62.8	40.5	36.8	32.1	41.8	45.5	58.1	66.2	84.4	86.2	84.9	80.9	60.0	86.2	32.
975	66.6	46.9	35.9	34.3	38.9	44.5	49.1	64.6	72.7	88.2	80.7	79.1	58.5	88.2	34.
976	59.0	43.0	38.4	36.9	40.0	43.9	57.5	73.0	73.5	86.9	77.7	76.7	58.9	86.9	36
977	64.7	53.5	42.0	35.1	48.7	44.2	64.2	58.7	80.5	83.3	83.7	71.2	60.8	83.7	35.
978	65.0	43.1	37.6	37.4	41.7	55.9	57.1	64.5	76.7	83.9	83.4	71.9	59.9	83.9	30. 32. 34. 36. 35. 37. 28.
979	69.3	45.1	31.3	28.8	39.1	50.4	57.3	68.8	80.6	88.6	84.8	82.3	60.5	88.6	28.
980	65.2	44.1	38.5	34.1	45.2	46.8	63.1	67.6	75.1	86.1		75.4			
STATIS	STICS														
N	43	44	44	44	44	44	44	44	44	44	43	44			
Mean	65.0	46.6	37.4	34.8	41.3	47.9	59.1	69.1	76.7	88.2	86.7	77.5			
1ax	76.8	58.4	45.2	42.8	49.2	57.4	68.1	78.7	88.6	94.2 82.5	94.3	86.3			
אסוי							49.1				77.1	67.2			

ANDERSON RANCH DAM


Water	007												h	ATER YEA	IR .
Year	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	AVG	MAX	MIN
1948									50.1	51.7	51.1	44.8	~-		
1949	36.4	25.7	12.6	-4.8	16.1	29.2	35.2	44.4	46.3	53.9	54.4	46.5	33.0	54.4	-4.8
1950	32.4	33.1	19.8	14.0	19.2	24.7	32.6	36.3	45.6	53.5	52.6	47.1	34.2	53.5	14.0
1951	40.3	31.8	27.5	17.0	22.7	22.3	34.9	43.7	46.0	56.6	55.6	47.6	37.2	56.6	17.0
1952	37.8	28.9	18.6	14.7	10.5	21.5	33.3	42.8	49.0	55.6	55.6	49.2	34.8	55.6	10.5
1953	41.8	25.5	24.8	30.9	23.8	29.3	33.8	38.3	45.8	56.1	55.6	49.2	37.9	56.1	23.8
1954	41.2	35.5	23.1	23.1	25.7	26.3	36.1	44.7	46.2	58.0	53.3	47.1	38.4	58.0	23.1
L955	37.3	33.8	22.3	14.7	15.1	20.8	31.6	40.9	48.9	56.1	56.7	46.5	35.4	56.7	14.7
1956	39.2	26.1	23.8	23.0	12.4	23.0	35.2		48.5	56.7	53.8	47.5			
1957	38.4	27.6	23.7	11.9	20.2	27.8	35.2		50.2	56.0	54.8	48.4			
1958	39.9	26.9	25.2	19.7	27.1	24.8	34.1	46.5	50.6	56.1	58.7	47.4	38.1	58.7	19.7
1959	40.3	29.3	30.4	24.8	24.1	28.2	35.9	39.5	52.0	56.4	53.7	46.8	38.5	56.4	24.1
1960	39.7	28.9	23.8	19.1	18.7	26.5	35.6	40.5	50.9	61.0	52.4	50.0	37.3	61.0	18.7
1961	38.3	31.6	22.2	21.7	28.6	30.0	34.1	43.4	55.1	58.1	61.5	44.4	39.1	61.5	21.7
1962	37.0	27.6	20.0	12.5	21.7	21.5	35.1	42.5	48.7	54.8	53.1	47.8	35.2	54.8	12.5
1963	40.9	32.7	27.0	19.4	30.7	29.3	33.7	45.3	48.3	52.9	55.9	52.3	39.0	55.9	19.4
1964	44.2	31.1	21.2	16.4	14.3	21.3	32.2	40.8	48.3	55.4	52.2	43.4	35.1	55.4	14.3
1965 1966	39.9	28.8	22.2	24.1	23.0	24.1	36.3	40.3	48.5	54.9	53.9	42.2	36.5	54.9	22.2 22.2
	40.0	34.7	24.1	22.5	22.2	26.4	32.9	44.1	47.7	56.0	55.2	51.4	38.1	56.0	22.2
1967 1968	36.5	33.5	23.5	26.0	24.8	29.2	32.7	40.7	49.8	58.7	59.4	52.7	39.0	59.4	23.5
1966	39.2	32.7	18.5	19.3	27.0	31.3	32.9	40.9	49.8	57.8	53.1	45.9	37.4	57.8	23.5 18.5
1909	35.6	30.4	23.7	21.1	20.3	20.8	34.9	44.5	50.2	53.6	55.6	46.1	36.4	55.6	20.3
1971	34.0	29.4	23.8	23.3	25.1	27.5	30.8	41.0	49.7	56.3	55.6	41.7	36.5	56.3	23.3
1972	35.7 36.5	32.7 29.0	20.5	20.9	23.0	22.7	34.2	42.3	48.0	54.9	58.2	41.9	36.3	58.2	23.3 20.5
1973	39.8	32.3	18.6	18.8	22.6	29.5	33.8	43.0	51.3	54.1	57.1	44.6	36.6	57.1	18.6
1974	38.5	29.8	18.4 24.7	20.6 16.8	22.6	28.3	34.9	43.0	50.0	57.3	56.0	46.9	37.5	57.3	18.4
1975	37.5	29.7	20.7	15.3	18.6	29.1	34.1	40.3	50.9	56.0	51.8	45.5	36.3	56.0	16.8
1976	39.1	27.0	26.2		21.4	27.2	32.0	39.6	47.8	60.0	52.4	47.4	35.9	60.0	15.3
1977	37.6	30.9	22.2	20.3 17.5	21.0 25.1	20.1	33.9	43.3	47.0	57.6	52.4	49.6	36.5	57.6	20.1
1978	38.4	29.2	27.2	25.3	23.1	26.7	37.2	40.0	54.7	56.4	57.2	47.1	37.7	57.2	20.1 17.5
1979	38.0	27.4	16.8	10.0	21.6	30.7	36.6	40.7	48.6	56.5	52.0	44.9	37.8	56.5	23.4
1980		24.5	24.5	19.9	26.2	27.6 26.9	34.1 36.8	42.6 43.2	50.2	56.9	56.1	49.9	35.9	56.9	10.0
STATIST	rics						30.0	73.2		55.5	52.3	47.9			
NI .	21	20	20												
N Moan	31	32	32	32	32	32	32	30	32	33	33	33			
Mean	38.4	29.9	22.6	18.7	21.8	26.1	34.3	42.0	49.2	56.1	54.8	47.0			
Max Min	44.2 32.4	35.5 24.5	30.4 12.6	30.9 -4.8	30.7 10.5	31.3 20.1	37.2 30.8	46.5 36.3	55.1	61.0	61.5	52.7			
									45.6						

ARROWROCK DAM

	e Minimu	ım Monti	nly Temp	erature	(Degre	es F.)							·	ATED VEAL	
Water Year	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	AVG	ATER YEAR MAX	MIN
1939	38.8	23.2	22.5	17.9	11.4	24.2	35.6	44.2	45.1	56.6	56.6	45.7	35.2	56.6	11.4
1940	36.0	25.5	27.7	24.0	26.1	30.6	36.3	44.1	50.3	56.5	55.7	48.8	38.5	56.5	24.0 21.2
1941	38.8	24.7	23.6	21.2	25.4	29.0	34.7	43.4	48.1	57.5	56.5	43.9	37.2	57.5	21.2
1942	36.7	30.2	26.1	12.3	18.7	25.2	35.4	39.6	45.8	56.5	54.5	45.8	35.6	56.5	12.3 16.4
1943	35.5	28.6	22.0	16.4	19.2	23.2	38.1	39.9	46.1	54.7	52.5	47.9	35.3	54.7	16.4
1944	39.3	28.5	24.4	14.6	23.1	24.1	33.9	42.2	46.8	53.0	52.3	46.1	35.7	53.0	14.6 22.3
1945	38.4	30.9	22.3	23.6	26.1	27.0	32.6	43.3	46.7	55.6	53.7	42.9	36.9	55.6	22.3
1946	37.4	28.9	18.9	13.1	15.9	29.0	37.1	42.8	48.6	57.3	55.3	44.5	35.7	57.3	13.1 12.2 19.7
1947	34.0	29.8	28.6	12.2	25.1	31.9	37.0	46.7	48.6	55.5	54.4	46.6	37.5	55.5	12.2
1948	40.7	26.7	22.6	19.7	19.7	24.9	34.5	42.0	51.8	52.3	53.2	46.6	36.2	53.2	19.7
1949	36.5	26.9	11.4	-8.8	15.1	28.5	36.2	44.3	47.2	54.6	55.9	48.2	33.0	55.9	-8.8
1950	31.9	30.8	20.2	14.5	19.5	27.2	34.9	38.8	47.5	54.9	54.6	49.0	35.3	54.9	14.5
1951	40.1	31.7	29.3	16.0	23.2	.22.7	35.4	43.0	46.4	56.3	54.7	45.3	37.0	56.3	16.0
1952	37.1	27.1	18.6	15.4	14.8	23.5	36.5	42.9	48.7	53.3	55.0	46.9	35.0	55.0	14.8
1953	37.7	22.5	24.3	30.7	25.7	29.7	33.4	39.6	46.2	55.3	53.8	47.9	37.2	55.3	22.5
1954	37.0	33.2	22.8	25.3	27.6	27.2	35.5	44.2	46.5	56.0	52.0	44.3	37.6	56.0	22.8
1955	33.7	31.4	20.3	12.0	12.9	21.5	32.0	40.7	49.8	54.9	55.6	44.6	34.1	55.6	12.0
1956	36.7	24.7	24.2	24.4	14.4	26.3	36.5	44.8	48.4	56.9	52.9	44.6	36.2	56.9	12.0 14.4
1957	36.6	25.7	22.2	9.9	20.1	29.5	36.6	46.0	50.4	57.5	58.5	48.8	36.8	58.5	9.9
1958	36.8	24.4	25.6	18.6	29.0	28.3	35.3	47.1	52.5	57.1	58.7	46.4	38.3	58.7	18.6
1959	39.1	30.3	31.0	27.6		30.3	36.9	40.0			53.0		39.3		27.6
					28.1	20.3			51.6	57.7		46.2		57.7	2/ • 0
1960	39.2	27.6	23.3	20.0	21.7	29.1	36.6	41.2	50.9	61.5	51.9	49.0	37.7	61.5	20.0
1961	36.8	31.3	22.6	22.9	30.7	32.3	34.3	43.3	53.9	56.9	60.4	44.0	39.1	60.4	22.6
1962	36.7	27.7	22.7	13.3	24.3	26.8	37.7	43.6	48.9	55.5	52.9	46.4	36.4	55.5	13.3
1963	38.9	32.7	28.7	17.8	31.0	31.2	35.5	46.6	49.6	54.2	55.3	52.1	39.5	55.3	17.8
1964	44.2	32.9	22.9	18.5	15.8	21.8	33.2	41.5	50.5	57.6	53.1	43.3	36.3	57.6	15.8
1965	37.4	29.0	25.0	25.3	25.2	25.3	38.5	41.6	49.8	56.5	54.5	43.0	37.6	56.5	25.0
1966	40.0	34.3	25.2	25.1	23.8	29.3	35.2	45.1	49.3	55.3	53.6	50.1	38.9	55.3	23.8
1967	34.1	33.0	24.7	26.4	26.6	29.7	32.3	41.1	50.2	58.9	56.9	49.7	38.6	58.9	24.7
1968	34.8	31.7	19.5	19.5	27.5	31.3	31.7	40.7	49.6	56.1	51.8	44.1	36.5	56.1	19.5
1969	35.8	30.3	23.5	23.4	23.9	25.6	36.6	44.5	50.9	54.9	53.3	45.0	37.3	54.9	23.4
1970	31.2	27.5	24.3	24.7	26.6	28.9	30.1	41.0	50.8	55.3	54.1	38.7	36.1	55.3	24.3
1971	32.7	31.9	21.0	19.7	22.0	22.9	33.9	42.5	48.3	56.2	59.4	41.0	36.0	59.4	19.7
1972	35.2	29.8	22.1	20.4	22.7	29.8	33.2	42.5	51.7	54.9	57.2	41.6	36.8	57.2	20.4
1973	37.4	30.4	18.9	21.7	28.0	31.1	34.8	43.2	49.6	57.1	54.0	44.6	37.6	57.1	18.9
1974	35.9	30.7	27.5	16.2	21.0	28.0	33.4	39.1	52.3	56.3	54.3	45.4	36.7	56.3	16.2
1975	37.6	30.3	22.7	18.3	22.4	27.4	31.3	38.6	46.8	59.3	51.9	45.3	36.0	59.3	18.3
1976	38.8	27.1	23.4	19.1	18.8	21.1	32.4	42.6	45.9	56.9		46.2			
1977	34.0	26.9	18.7	14.7	20.1	25.1	35.8	37.7	52.6	53.3	54.5	43.4	34.7	54.5	14.7
1978	34.3	27.1	26.9	25.8	26.8	32.1	36.0	39.8	47.0	56.0	52.1	45.0	37.4	56.0	25 0
1979	36.2	25.9	16.2	7.4	22.2	27.8	33.1	42.5	48.9	56.2	55.2	48.9	35.0	56.2	25.8 7.4
1980	42.2	26.3	27.0	22.2	30.0	31.3	39.0								22.2
1300	42.2	20.3	27.0	24.4	30.0	31.3	39.0	44.3	46.7	56.6	50.8	47.4	38.7	56.6	22.2
STATIS	STICS														
N	42	42	42	42	42	42	42	42	42	42	41	42			
Mean	37.0	28.8	23.2	18.6	22.7	27.4	35.0	42.4	42 49.0	56.1	54.6	42 45 . 8			
Max	44.2	34.3	31.0	30.7	31.0	32.3	39.0	47.1	53.9	61.5	60.4	45.8 52.1			
Min	31.2	22.5	11.4	-8.8	11.4	21.1	30.1	37.7	45.1	52.3	50.8	38.7			
rt i i i	31.2	22.3	11.4	-0.0	11.4	21.1	20.1	3/./	43.1	52.3	20.0	30.7			

LUCKY PEAK DAM

Water		-											W	ATER YEAR	R
Year	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	AVG	MAX	MIN
1951					27.6	28.5	37.8	45.1	47.3	58.7	57.9	48.3			
1952	37.2				22.0			45.2	49.8	56.4					
1953					28.7	31.8	34.5	39.3	45.2	56.1	55.1	51.4			
1954	41.7	36.0			30.5	27.8			47.3		51.2		'		
1955					21.2	27.5	34.9	42.1							
956															
L957									54.5	59.0	57.3	52.4			
958	40.5	28.3	27.9	23.5	33.8	31.7	37.5	51.7	54.9	60.0	61.1	47.9	41.6	61.1	23.5
959	41.2	31.0	28.8	27.0	27.8	28.6	35.7	38.3	50.2	56.3	51.1	48.7	38.7	56.3	27.0
960	41.6	28.9	24.6	20.2	25.8	33.6	38.1	43.0	52.2	62.9	52.4	50.6	39.5	62.9	20.2
961	42.0	34.2	25.1	26.3	33.5	35.2	37.1	45.4	58.3	62.0	64.3	47.2	42.6	64.3	25.1
962	39.6	29.8	24.1	14.0	25.9	29.9	40.6	44.2	52.0	57.7	55.8	51.8	38.8	57.7	14.0
963	41.7	33.3	28.4	16.5	33.4	32.3	36.5	48.0	50.0	54.9	57.2	57.8	40.8	57.8	16.5
964	48.0	36.5	23.9	21.1		26.4	34.7	41.5	52.0	60.1	55.4	46.6			
965	42.2		26.5		26.5	26.2	39.2	42.0	51.8	60.3	59.1	45.5			
966	44.1				23.5	31.1	37.9	48.1	52.8	58.9	59.0	54.9			
967	39.1				28.2	31.1	34.4	42.7	52.4	62.6	63.3	56.7			
1968	40.8			22.7	31.4		33.0	43.0	51.0	60.5	56.6	49.1			
1969	39.7			23.1			36.9	46.5	53.2	57.8	56.9	51.7			
970	35.4				30.4	30.7	30.9	43.8	55.2	59.9	59.7	44.2			
971	37.6	34.6	24.6	25.9	27.6	27.8	36.3	45.4	50.9	59.0	63.2	44.9	39.8	63.2	24.6
1972	36.5	30.4	23.0	22.4	26.5	33.8	34.4	45.4	53.3	55.9	60.2	46.5	39.0	60.2	22.4
973	41.6	33.7	19.1	23.9	30.5	31.5	35.9	45.2	50.7	59.4	57.8	49.1	39.9	59.4	19.
1974	39.7	34.4	29.9	20.0	28.7	33.0	35.6	41.3	53.4	56.9	55.4	49.1	39.8	56.9	20.0
975	39.7	34.6	24.8	18.6	26.9	28.3	31.6	39.7	48.7	62.5	55.7	51.5	38.6	62.5	18.6
1976	40.8	29.0	24.6	23.9	25.4	26.5	35.1	42.7	44.7	56.8	53.7	50.3	37.8	56.8	23.9
1977	37.2	30.1	20.1	11.6	22.5	25.8	35.2	39.5	54.0	53.6	59.1	48.5	36.4	59.1	11.0
1978	41.2	29.7	30.4	29.6	30.0	34.8	40.0	41.6	49.8	56.6	53.5	47.6	40.4	56.6	29.6
1979	39.3	26.4	19.4	9.0	27.3	31.6	36.3	42.6	48.4	56.9	58.2	50.6	37.2	58.2	9.0
1980	42.7	27.2			33.8	30.3	39.1	46.0	48.7	57.9	53.5	49.8			
STATIS	TICS														
N	25	18	17	18	26	25	26	27	28	27	27	26			
Mean	40.4	31.6	25.0	21.1	28.1	30.2	36.1	43.7	51.2	58.5	57.2	49.7			
Max	48.0	36.5	30.4	29.6	33.8	35.2	40.6	51.7	58.3	62.9	64.3	57.8			
Min	35.4	26.4	19.1	9.0	21.2	25.8	30.9	38.3	44.7	53.6	51.1	44.2			

TABLE 4-3 (tinued)

BOISE BASIN - AVERAGE MINIMUM MONTHLY TEMPERATURES

BOISE AIRPORT WSFO

Year OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP AVG MAX MIN 1941 26,3 35,8 32,8 39,3 41,8 47,9 59,5 56,8 47,6 38,2 59,5 12,6 1943 39,1 30,8 28,1 20,8 28,8 30,0 40,9 41,2 48,7 57,6 54,6 50,8 39,1 57,6 20,6 1944 42,4 30,8 24,9 16,1 26,5 27,2 37,7 44,8 49,4 57,2 54,5 49,8 38,4 57,2 16,1 1945 44,2 32,3 26,4 29,9 31,1 33,7 44,8 49,4 57,5 57,1 46,0 39,3 58,7 72,1 16,1 1946 44,1 23,2 28,5 13,9 29,0 33,3 36,7 48,1	Water	e Minimu	m Month	y lemp	erature	(Degre	es F.)				-			W	ATER YEAR	₹
1942 39.1 32.4 27.9 12.8 23.8 29.3 40.0 41.8 47.9 59.5 56.8 47.6 38.2 59.5 12.6 1944 42.4 30.8 28.1 20.8 26.8 30.0 40.9 41.2 48.7 57.6 54.6 50.8 39.1 57.6 20.6 1944 42.4 32.4 23.2 42.3 26.4 29.9 31.1 33.7 44.2 48.0 58.3 57.5 55.5 51.3 36.5 56.3 27.2 16.1 1946 44.2 32.4 23.4 23.3 26.4 29.9 31.1 33.7 44.2 48.0 58.3 57.5 55.1 39.5 56.3 32.1 1946 41.1 32.1 23.6 21.1 25.6 33.7 37.9 44.2 48.0 55.5 58.7 57.1 46.0 39.3 55.7 21.1 1947 34.4 29.8 28.5 13.9 29.0 33.3 36.7 48.1 49.6 58.4 56.6 48.2 38.9 58.4 21.1 1949 38.4 27.5 17.7 0.5 22.5 33.0 38.5 48.2 50.9 58.3 57.5 54.5 47.2 38.5 54.5 22.1 1949 38.4 27.5 17.7 0.5 22.5 33.0 38.5 48.2 50.9 58.3 57.0 49.8 38.1 57.6 17.1 1951 44.6 33.7 30.3 22.2 28.9 27.0 38.5 48.2 50.9 58.3 58.2 50.5 37.0 58.9 59.9 22.1 1952 38.6 29.8 20.8 19.5 22.5 28.2 38.7 44.1 51.1 58.3 57.2 49.8 38.2 59.9 27.0 38.1 1952 38.6 29.8 23.6 29.8 20.8 19.5 22.5 28.2 38.7 44.1 51.1 58.3 57.6 49.8 38.2 59.9 22.1 1953 41.9 23.6 27.7 34.2 26.9 30.8 34.1 40.2 50.2 58.3 56.4 59.2 53.5 46.4 39.4 59.2 24.1 28.9 29.3 27.9 36.7 44.6 48.6 59.2 53.5 46.4 39.4 59.2 24.1 28.9 29.3 27.9 36.7 44.6 48.6 59.2 53.5 46.4 39.4 59.2 53.5 46.4 19.0 26.7 33.4 41.6 52.3 56.4 57.5 47.9 36.9 57.5 18.1 1955 38.6 22.8 28.9 26.4 18.9 30.8 33.1 41.4 0.2 46.3 57.0 56.2 50.3 39.1 57.0 23.1 1958 38.8 27.0 28.0 28.0 25.0 33.6 33.6 33.6 37.8 41.6 52.3 56.4 57.5 47.9 36.9 57.5 18.1 1957 38.7 22.1 28.7 29.1 28.7 29.5 29.7 37.4 40.1 51.8 57.4 59.2 53.5 46.4 39.4 59.2 53.5 46.1 39.9 57.5 18.1 1958 38.8 27.0 28.0 25.0 33.6 33.6 33.8 37.8 41.9 53.6 59.5 59.5 54.6 48.8 39.2 59.5 18.1 1957 38.7 24.2 24.2 24.2 24.2 24.2 24.2 24.2 24		OCT_	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	_ AUG	SEP	AVG		MIN
1942 39.1 32.4 27.9 12.8 23.8 29.3 40.0 41.8 47.9 59.5 56.8 47.6 38.2 59.5 12.6 1944 42.4 30.8 28.1 20.8 26.8 30.0 40.9 41.2 48.7 57.6 54.6 50.8 39.1 57.6 20.6 1944 42.4 32.4 23.2 42.3 26.4 29.9 31.1 33.7 44.2 48.0 58.3 57.5 55.5 51.3 36.5 56.3 27.2 16.1 1946 44.2 32.4 23.4 23.3 26.4 29.9 31.1 33.7 44.2 48.0 58.3 57.5 55.1 39.5 56.3 32.1 1946 41.1 32.1 23.6 21.1 25.6 33.7 37.9 44.2 48.0 55.5 58.7 57.1 46.0 39.3 55.7 21.1 1947 34.4 29.8 28.5 13.9 29.0 33.3 36.7 48.1 49.6 58.4 56.6 48.2 38.9 58.4 21.1 1949 38.4 27.5 17.7 0.5 22.5 33.0 38.5 48.2 50.9 58.3 57.5 54.5 47.2 38.5 54.5 22.1 1949 38.4 27.5 17.7 0.5 22.5 33.0 38.5 48.2 50.9 58.3 57.0 49.8 38.1 57.6 17.1 1951 44.6 33.7 30.3 22.2 28.9 27.0 38.5 48.2 50.9 58.3 58.2 50.5 37.0 58.9 59.9 22.1 1952 38.6 29.8 20.8 19.5 22.5 28.2 38.7 44.1 51.1 58.3 57.2 49.8 38.2 59.9 27.0 38.1 1952 38.6 29.8 23.6 29.8 20.8 19.5 22.5 28.2 38.7 44.1 51.1 58.3 57.6 49.8 38.2 59.9 22.1 1953 41.9 23.6 27.7 34.2 26.9 30.8 34.1 40.2 50.2 58.3 56.4 59.2 53.5 46.4 39.4 59.2 24.1 28.9 29.3 27.9 36.7 44.6 48.6 59.2 53.5 46.4 39.4 59.2 24.1 28.9 29.3 27.9 36.7 44.6 48.6 59.2 53.5 46.4 39.4 59.2 53.5 46.4 19.0 26.7 33.4 41.6 52.3 56.4 57.5 47.9 36.9 57.5 18.1 1955 38.6 22.8 28.9 26.4 18.9 30.8 33.1 41.4 0.2 46.3 57.0 56.2 50.3 39.1 57.0 23.1 1958 38.8 27.0 28.0 28.0 25.0 33.6 33.6 33.6 37.8 41.6 52.3 56.4 57.5 47.9 36.9 57.5 18.1 1957 38.7 22.1 28.7 29.1 28.7 29.5 29.7 37.4 40.1 51.8 57.4 59.2 53.5 46.4 39.4 59.2 53.5 46.1 39.9 57.5 18.1 1958 38.8 27.0 28.0 25.0 33.6 33.6 33.8 37.8 41.9 53.6 59.5 59.5 54.6 48.8 39.2 59.5 18.1 1957 38.7 24.2 24.2 24.2 24.2 24.2 24.2 24.2 24	1941				26.3	35.8	32.8	38.2	45.9	50.4	60.4	57.3	44.7			
1943		39.1	32.4	27.9					41.8	47.9	59.5		47.6	38.2	59.5	12.8
1945 44,2 32,4 23,3 26,4 29,9 31,1 33,7 34,2 48,0 58,3 57,5 45,1 39,5 58,3 23,1 1946 41,1 32,1 23,6 21,1 25,6 33,7 37,9 44,2 50,5 58,7 57,1 46,0 39,3 58,7 21,1 1947 34,4 29,8 28,5 13,9 29,0 33,3 36,7 48,1 49,6 58,4 56,6 48,2 38,9 58,4 13,9 1948 43,8 28,7 24,2 24,2 24,9 28,1 37,0 43,6 53,1 54,5 54,5 47,2 38,5 54,5 22,1 1949 38,4 27,5 17,7 0,5 22,5 33,0 38,5 48,2 50,9 58,3 58,2 50,5 37,0 58,3 7,0 1950 34,4 34,1 23,4 17,5 25,9 30,9 35,4 40,2 50,2 57,8 57,0 49,8 38,1 57,8 17,1 1951 44,6 33,7 30,3 22,2 28,9 27,0 36,7 43,8 48,0 59,9 57,6 49,1 40,2 59,9 22,1 1952 38,6 29,8 20,8 19,5 22,5 28,2 38,7 44,1 51,1 58,3 57,2 49,8 38,2 58,3 19,5 1953 41,9 23,6 27,7 34,2 26,9 30,8 34,1 40,2 46,3 57,0 56,2 50,3 39,1 57,0 23,1 1954 39,2 34,9 24,1 28,9 29,3 27,9 36,7 44,6 48,4 59,2 53,5 46,4 39,4 59,2 24,1 19,0 26,6 32,6 32,6 32,6 22,3 16,4 19,0 26,7 33,4 41,6 52,3 56,4 57,5 47,9 36,9 57,5 16,1 1956 40,2 27,6 28,9 26,4 18,9 30,8 37,1 46,9 50,5 5,5 54,6 48,8 39,2 59,5 18,1 1958 34,8 7 26,4 24,0 12,9 26,8 32,8 37,8 57,1 15,1 58,5 54,5 47,7 50,0 38,3 57,5 59,5 58,5 18,1 1960 37,0 21,2 16,7 15,4 25,8 32,5 35,8 40,5 52,7 64,0 53,8 59,2 59,5 18,1 1960 37,0 21,2 16,7 15,4 25,8 32,5 35,8 40,5 52,7 64,0 53,8 50,0 37,1 64,0 15,1 1960 39,3 31,3 21,8 23,3 33,4 36,3 34,8 43,5 43,2 56,6 59,3 62,9 43,5 40,3 57,5 56,8 14,1 1963 40,8 31,9 28,4 14,5 34,0 33,0 37,4 48,7 51,8 57,4 54,7 50,0 38,3 57,5 56,8 14,1 1963 40,8 31,9 28,4 14,5 34,0 33,0 37,4 48,7 51,8 57,4 58,9 45,0 37,1 64,0 15,0 15,0 15,0 15,0 15,0 15,0 15,0 15				28.1		26.8	30.0	40.9		48.7	57.6		50.8	39.1	57.6	20.8
1945 44,2 32,4 23,3 26,4 29,9 31,1 33,7 34,2 48,0 58,3 57,5 45,1 39,5 58,3 23,1 1946 41,1 32,1 23,6 21,1 25,6 33,7 37,9 44,2 50,5 58,7 57,1 46,0 39,3 58,7 21,1 1947 34,4 29,8 28,5 13,9 29,0 33,3 36,7 48,1 49,6 58,4 56,6 48,2 38,9 58,4 13,9 1948 43,8 28,7 24,2 24,2 24,9 28,1 37,0 43,6 53,1 54,5 54,5 47,2 38,5 54,5 22,1 1949 38,4 27,5 17,7 0,5 22,5 33,0 38,5 48,2 50,9 58,3 58,2 50,5 37,0 58,3 7,0 1950 34,4 34,1 23,4 17,5 25,9 30,9 35,4 40,2 50,2 57,8 57,0 49,8 38,1 57,8 17,1 1951 44,6 33,7 30,3 22,2 28,9 27,0 36,7 43,8 48,0 59,9 57,6 49,1 40,2 59,9 22,1 1952 38,6 29,8 20,8 19,5 22,5 28,2 38,7 44,1 51,1 58,3 57,2 49,8 38,2 58,3 19,5 1953 41,9 23,6 27,7 34,2 26,9 30,8 34,1 40,2 46,3 57,0 56,2 50,3 39,1 57,0 23,1 1954 39,2 34,9 24,1 28,9 29,3 27,9 36,7 44,6 48,4 59,2 53,5 46,4 39,4 59,2 24,1 19,0 26,6 32,6 32,6 32,6 22,3 16,4 19,0 26,7 33,4 41,6 52,3 56,4 57,5 47,9 36,9 57,5 16,1 1956 40,2 27,6 28,9 26,4 18,9 30,8 37,1 46,9 50,5 5,5 54,6 48,8 39,2 59,5 18,1 1958 34,8 7 26,4 24,0 12,9 26,8 32,8 37,8 57,1 15,1 58,5 54,5 47,7 50,0 38,3 57,5 59,5 58,5 18,1 1960 37,0 21,2 16,7 15,4 25,8 32,5 35,8 40,5 52,7 64,0 53,8 59,2 59,5 18,1 1960 37,0 21,2 16,7 15,4 25,8 32,5 35,8 40,5 52,7 64,0 53,8 50,0 37,1 64,0 15,1 1960 39,3 31,3 21,8 23,3 33,4 36,3 34,8 43,5 43,2 56,6 59,3 62,9 43,5 40,3 57,5 56,8 14,1 1963 40,8 31,9 28,4 14,5 34,0 33,0 37,4 48,7 51,8 57,4 54,7 50,0 38,3 57,5 56,8 14,1 1963 40,8 31,9 28,4 14,5 34,0 33,0 37,4 48,7 51,8 57,4 58,9 45,0 37,1 64,0 15,0 15,0 15,0 15,0 15,0 15,0 15,0 15				24.9			27.2	37.7	44.8		57.2	54.5	49.8	38.4	57.2	16.1
1946 41.1 32.1 23.6 21.1 25.6 33.7 37.9 44.2 50.5 58.7 57.1 46.0 39.3 58.7 21. 1948 43.8 28.7 24.2 24.2 22.9 28.1 37.0 43.6 53.1 54.5 54.5 47.2 38.5 54.5 22.9 1949 38.4 27.5 17.7 0.5 22.5 33.0 38.5 48.2 50.9 58.3 58.2 50.5 37.0 58.3 0.1 1950 34.4 34.1 23.4 17.5 25.9 30.9 38.5 48.2 50.9 58.8 57.0 49.8 38.1 57.8 17. 1951 44.6 33.7 30.3 22.2 28.9 27.0 36.7 43.8 48.0 59.9 57.6 49.1 40.2 59.9 22. 1952 38.6 29.8 20.8 19.5 22.5 28.2 38.7 44.1 51.1 58.3 57.2 49.8 38.2 58.3 19. 1953 41.9 23.6 27.7 34.2 26.9 30.8 34.1 40.2 46.3 57.0 56.2 50.3 39.1 57.0 23. 1954 39.2 34.9 24.1 28.9 29.3 27.9 36.7 44.6 48.4 59.2 53.5 46.4 39.4 59.2 24. 1955 36.6 32.6 22.3 16.4 19.0 26.7 33.4 41.6 52.3 56.4 57.4 47.9 36.9 57.5 16. 1956 38.7 26.4 24.0 12.9 26.8 32.8 37.5 47.1 51.8 57.4 54.7 50.0 38.3 57.4 12. 1958 38.8 27.0 28.0 25.0 33.6 30.8 37.8 50.4 54.0 59.3 61.2 47.8 41.1 61.2 25. 1959 40.5 30.5 29.1 28.7 29.5 29.7 37.4 40.1 53.7 59.3 61.2 47.8 41.1 61.2 25. 1960 37.0 21.2 16.7 15.4 25.8 32.5 33.6 33.6 33.8 37.8 50.4 54.0 59.3 62.9 43.5 40.3 57.0 56.2 57.8 40.9 57.8 14.1 61.2 25. 1960 37.0 21.2 16.7 15.4 25.8 32.5 33.6 33.6 33.8 37.8 50.2 56.8 55.7 55.1 40.4 40.2 59.7 28.1 196.9 33.3 13.2 18. 23.3 33.3 33.4 41.6 52.7 56.6 59.3 50.3 39.1 57.0 62.9 21.1 196.2 37.3 24.6 14.2 26.4 28.6 37.6 43.8 50.2 56.8 55.4 57.8 57.0 38.3 50.0 37.1 64.0 15. 196.9 39.3 31.3 21.8 23.3 33.3 33.4 43.6 34.5 43.2 56.6 59.3 61.2 47.8 41.1 61.2 25. 196.9 39.3 31.3 21.8 23.3 33.3 33.4 41.5 52.6 65.5 55.8 55.8 50.3 39.4 57.0 56.8 57.8 57.8 57.8 57.8 57.8 57.8 57.8 57							31.1			48.0	58.3			39.5	58.3	23.3
1952 38.6 29.8 20.8 19.5 22.5 28.2 38.7 44.1 51.1 58.3 57.0 56.2 50.3 39.1 57.0 23.1 1954 39.2 34.9 24.1 28.9 29.3 27.9 36.7 44.6 48.4 59.2 53.5 46.4 39.4 59.2 24.1 28.9 29.3 27.9 36.7 44.6 48.4 59.2 53.5 46.4 39.4 59.2 25.1 1955 36.6 32.6 22.3 16.4 19.0 26.7 33.4 41.6 52.3 56.4 57.5 47.9 36.9 57.5 16.1 1956 40.2 27.6 28.9 26.4 18.9 30.8 37.1 46.9 50.5 59.5 54.6 48.8 39.2 59.5 18.1 1957 38.7 26.4 24.0 12.9 26.8 32.8 37.5 47.1 51.8 57.4 54.7 50.0 38.3 57.4 12.1 1958 38.8 27.0 28.0 25.0 33.6 30.8 37.8 50.4 54.0 59.3 61.2 47.8 41.1 61.2 25.1 1958 38.8 27.0 28.0 25.0 33.6 30.8 37.8 50.4 54.0 59.3 61.2 47.8 41.1 61.2 25.1 1959 40.5 30.5 29.1 28.7 29.5 29.7 37.4 40.1 53.7 59.7 55.1 48.1 40.2 59.7 28.1 1960 37.0 21.2 16.7 15.4 25.8 32.5 35.8 40.5 52.7 64.0 53.8 50.0 37.1 64.0 15.1 1962 37.3 27.3 24.6 14.2 26.4 28.6 37.6 43.8 50.2 56.8 59.3 62.9 43.5 40.3 62.9 21.1 1962 37.3 27.3 24.6 14.2 26.4 28.6 37.6 43.8 50.2 56.8 55.5 49.6 37.7 56.8 14.1 1964 46.5 35.6 22.0 18.2 18.3 28.5 32.4 41.4 51.0 58.4 55.6 57.8 57.3 40.9 57.8 14.1 1964 46.5 35.6 22.0 18.2 18.3 28.5 32.4 41.4 51.0 58.4 53.9 45.0 37.6 58.4 18.1 1965 39.5 28.5 27.9 29.1 27.5 26.2 39.4 41.9 50.9 57.6 55.8 55.8 55.8 39.6 55.8 22.1 1967 34.9 34.4 24.5 29.5 28.6 31.6 33.4 41.5 52.6 62.7 61.5 54.4 40.8 62.7 24.1 1968 40.2 34.6 22.5 24.9 23.9 31.3 35.6 45.7 50.4 55.8 55.8 55.3 39.6 50.9 37.6 58.4 18.1 1966 40.2 34.6 28.7 27.3 29.8 31.0 37.4 48.5 54.5 58.5 59.4 63.1 45.8 41.1 63.1 27.1 1972 37.6 31.6 22.5 24.9 23.9 31.3 33.3 44.5 55.6 55.8 55.8 55.8 55.8 55.8 55.8 50.2 39.6 55.8 22.1 1967 34.9 34.4 24.5 29.5 28.6 31.6 33.4 41.5 52.6 62.7 61.5 54.4 40.8 62.7 24.1 1968 37.7 31.9 20.2 21.4 32.2 33.8 32.4 44.0 53.9 60.5 56.8 55.8 55.3 50.2 40.9 56.5 20.1 1977 36.9 29.2 16.8 10.3 30.3 32.3 33.3 34.6 33.9 34.6 35.0 46.3 55.8 57.4 58.9 46.0 39.8 62.7 24.1 1977 36.9 29.2 16.8 10.3 30.3 32.3 33.3 34.6 33.9 37.0 44.5 55.5 57.1 58.9 46.0 39.8 62.3 20.1 1977 36.9 29.2 16.8 11.9 22.9 28.4 38.9 42.0 55.5 55.5 57.1 58.5 44.9 39.9 59.5 58.9 23.1 1977 36.9 29.2 16.8 11.9 22.9 28.4 3				23.6	21.1	25.6				50.5		57.1		39.3	58.7	21.1
1952 38.6 29.8 20.8 19.5 22.5 28.2 38.7 44.1 51.1 58.3 57.0 56.2 50.3 39.1 57.0 23.1 1954 39.2 34.9 24.1 28.9 29.3 27.9 36.7 44.6 48.4 59.2 53.5 46.4 39.4 59.2 24.1 28.9 29.3 27.9 36.7 44.6 48.4 59.2 53.5 46.4 39.4 59.2 25.1 1955 36.6 32.6 22.3 16.4 19.0 26.7 33.4 41.6 52.3 56.4 57.5 47.9 36.9 57.5 16.1 1956 40.2 27.6 28.9 26.4 18.9 30.8 37.1 46.9 50.5 59.5 54.6 48.8 39.2 59.5 18.1 1957 38.7 26.4 24.0 12.9 26.8 32.8 37.5 47.1 51.8 57.4 54.7 50.0 38.3 57.4 12.1 1958 38.8 27.0 28.0 25.0 33.6 30.8 37.8 50.4 54.0 59.3 61.2 47.8 41.1 61.2 25.1 1958 38.8 27.0 28.0 25.0 33.6 30.8 37.8 50.4 54.0 59.3 61.2 47.8 41.1 61.2 25.1 1959 40.5 30.5 29.1 28.7 29.5 29.7 37.4 40.1 53.7 59.7 55.1 48.1 40.2 59.7 28.1 1960 37.0 21.2 16.7 15.4 25.8 32.5 35.8 40.5 52.7 64.0 53.8 50.0 37.1 64.0 15.1 1962 37.3 27.3 24.6 14.2 26.4 28.6 37.6 43.8 50.2 56.8 59.3 62.9 43.5 40.3 62.9 21.1 1962 37.3 27.3 24.6 14.2 26.4 28.6 37.6 43.8 50.2 56.8 55.5 49.6 37.7 56.8 14.1 1964 46.5 35.6 22.0 18.2 18.3 28.5 32.4 41.4 51.0 58.4 55.6 57.8 57.3 40.9 57.8 14.1 1964 46.5 35.6 22.0 18.2 18.3 28.5 32.4 41.4 51.0 58.4 53.9 45.0 37.6 58.4 18.1 1965 39.5 28.5 27.9 29.1 27.5 26.2 39.4 41.9 50.9 57.6 55.8 55.8 55.8 39.6 55.8 22.1 1967 34.9 34.4 24.5 29.5 28.6 31.6 33.4 41.5 52.6 62.7 61.5 54.4 40.8 62.7 24.1 1968 40.2 34.6 22.5 24.9 23.9 31.3 35.6 45.7 50.4 55.8 55.8 55.3 39.6 50.9 37.6 58.4 18.1 1966 40.2 34.6 28.7 27.3 29.8 31.0 37.4 48.5 54.5 58.5 59.4 63.1 45.8 41.1 63.1 27.1 1972 37.6 31.6 22.5 24.9 23.9 31.3 33.3 44.5 55.6 55.8 55.8 55.8 55.8 55.8 55.8 50.2 39.6 55.8 22.1 1967 34.9 34.4 24.5 29.5 28.6 31.6 33.4 41.5 52.6 62.7 61.5 54.4 40.8 62.7 24.1 1968 37.7 31.9 20.2 21.4 32.2 33.8 32.4 44.0 53.9 60.5 56.8 55.8 55.3 50.2 40.9 56.5 20.1 1977 36.9 29.2 16.8 10.3 30.3 32.3 33.3 34.6 33.9 34.6 35.0 46.3 55.8 57.4 58.9 46.0 39.8 62.7 24.1 1977 36.9 29.2 16.8 10.3 30.3 32.3 33.3 34.6 33.9 37.0 44.5 55.5 57.1 58.9 46.0 39.8 62.3 20.1 1977 36.9 29.2 16.8 11.9 22.9 28.4 38.9 42.0 55.5 55.5 57.1 58.5 44.9 39.9 59.5 58.9 23.1 1977 36.9 29.2 16.8 11.9 22.9 28.4 3															58.4	13.9
1952 38.6 29.8 20.8 19.5 22.5 28.2 38.7 44.1 51.1 58.3 57.0 56.2 50.3 39.1 57.0 23.1 1954 39.2 34.9 24.1 28.9 29.3 27.9 36.7 44.6 48.4 59.2 53.5 46.4 39.4 59.2 24.1 28.9 29.3 27.9 36.7 44.6 48.4 59.2 53.5 46.4 39.4 59.2 25.1 1955 36.6 32.6 22.3 16.4 19.0 26.7 33.4 41.6 52.3 56.4 57.5 47.9 36.9 57.5 16.1 1956 40.2 27.6 28.9 26.4 18.9 30.8 37.1 46.9 50.5 59.5 54.6 48.8 39.2 59.5 18.1 1957 38.7 26.4 24.0 12.9 26.8 32.8 37.5 47.1 51.8 57.4 54.7 50.0 38.3 57.4 12.1 1958 38.8 27.0 28.0 25.0 33.6 30.8 37.8 50.4 54.0 59.3 61.2 47.8 41.1 61.2 25.1 1958 38.8 27.0 28.0 25.0 33.6 30.8 37.8 50.4 54.0 59.3 61.2 47.8 41.1 61.2 25.1 1959 40.5 30.5 29.1 28.7 29.5 29.7 37.4 40.1 53.7 59.7 55.1 48.1 40.2 59.7 28.1 1960 37.0 21.2 16.7 15.4 25.8 32.5 35.8 40.5 52.7 64.0 53.8 50.0 37.1 64.0 15.1 1962 37.3 27.3 24.6 14.2 26.4 28.6 37.6 43.8 50.2 56.8 59.3 62.9 43.5 40.3 62.9 21.1 1962 37.3 27.3 24.6 14.2 26.4 28.6 37.6 43.8 50.2 56.8 55.5 49.6 37.7 56.8 14.1 1964 46.5 35.6 22.0 18.2 18.3 28.5 32.4 41.4 51.0 58.4 55.6 57.8 57.3 40.9 57.8 14.1 1964 46.5 35.6 22.0 18.2 18.3 28.5 32.4 41.4 51.0 58.4 53.9 45.0 37.6 58.4 18.1 1965 39.5 28.5 27.9 29.1 27.5 26.2 39.4 41.9 50.9 57.6 55.8 55.8 55.8 39.6 55.8 22.1 1967 34.9 34.4 24.5 29.5 28.6 31.6 33.4 41.5 52.6 62.7 61.5 54.4 40.8 62.7 24.1 1968 40.2 34.6 22.5 24.9 23.9 31.3 35.6 45.7 50.4 55.8 55.8 55.3 39.6 50.9 37.6 58.4 18.1 1966 40.2 34.6 28.7 27.3 29.8 31.0 37.4 48.5 54.5 58.5 59.4 63.1 45.8 41.1 63.1 27.1 1972 37.6 31.6 22.5 24.9 23.9 31.3 33.3 44.5 55.6 55.8 55.8 55.8 55.8 55.8 55.8 50.2 39.6 55.8 22.1 1967 34.9 34.4 24.5 29.5 28.6 31.6 33.4 41.5 52.6 62.7 61.5 54.4 40.8 62.7 24.1 1968 37.7 31.9 20.2 21.4 32.2 33.8 32.4 44.0 53.9 60.5 56.8 55.8 55.3 50.2 40.9 56.5 20.1 1977 36.9 29.2 16.8 10.3 30.3 32.3 33.3 34.6 33.9 34.6 35.0 46.3 55.8 57.4 58.9 46.0 39.8 62.7 24.1 1977 36.9 29.2 16.8 10.3 30.3 32.3 33.3 34.6 33.9 37.0 44.5 55.5 57.1 58.9 46.0 39.8 62.3 20.1 1977 36.9 29.2 16.8 11.9 22.9 28.4 38.9 42.0 55.5 55.5 57.1 58.5 44.9 39.9 59.5 58.9 23.1 1977 36.9 29.2 16.8 11.9 22.9 28.4 3					24.2	22.9		37.0					47.2	38.5	54.5	22.9
1952 38.6 29.8 20.8 19.5 22.5 28.2 38.7 44.1 51.1 58.3 57.0 56.2 50.3 39.1 57.0 23.1 1954 39.2 34.9 24.1 28.9 29.3 27.9 36.7 44.6 48.4 59.2 53.5 46.4 39.4 59.2 24.1 28.9 29.3 27.9 36.7 44.6 48.4 59.2 53.5 46.4 39.4 59.2 25.1 1955 36.6 32.6 22.3 16.4 19.0 26.7 33.4 41.6 52.3 56.4 57.5 47.9 36.9 57.5 16.1 1956 40.2 27.6 28.9 26.4 18.9 30.8 37.1 46.9 50.5 59.5 54.6 48.8 39.2 59.5 18.1 1957 38.7 26.4 24.0 12.9 26.8 32.8 37.5 47.1 51.8 57.4 54.7 50.0 38.3 57.4 12.1 1958 38.8 27.0 28.0 25.0 33.6 30.8 37.8 50.4 54.0 59.3 61.2 47.8 41.1 61.2 25.1 1958 38.8 27.0 28.0 25.0 33.6 30.8 37.8 50.4 54.0 59.3 61.2 47.8 41.1 61.2 25.1 1959 40.5 30.5 29.1 28.7 29.5 29.7 37.4 40.1 53.7 59.7 55.1 48.1 40.2 59.7 28.1 1960 37.0 21.2 16.7 15.4 25.8 32.5 35.8 40.5 52.7 64.0 53.8 50.0 37.1 64.0 15.1 1962 37.3 27.3 24.6 14.2 26.4 28.6 37.6 43.8 50.2 56.8 59.3 62.9 43.5 40.3 62.9 21.1 1962 37.3 27.3 24.6 14.2 26.4 28.6 37.6 43.8 50.2 56.8 55.5 49.6 37.7 56.8 14.1 1964 46.5 35.6 22.0 18.2 18.3 28.5 32.4 41.4 51.0 58.4 55.6 57.8 57.3 40.9 57.8 14.1 1964 46.5 35.6 22.0 18.2 18.3 28.5 32.4 41.4 51.0 58.4 53.9 45.0 37.6 58.4 18.1 1965 39.5 28.5 27.9 29.1 27.5 26.2 39.4 41.9 50.9 57.6 55.8 55.8 55.8 39.6 55.8 22.1 1967 34.9 34.4 24.5 29.5 28.6 31.6 33.4 41.5 52.6 62.7 61.5 54.4 40.8 62.7 24.1 1968 40.2 34.6 22.5 24.9 23.9 31.3 35.6 45.7 50.4 55.8 55.8 55.3 39.6 50.9 37.6 58.4 18.1 1966 40.2 34.6 28.7 27.3 29.8 31.0 37.4 48.5 54.5 58.5 59.4 63.1 45.8 41.1 63.1 27.1 1972 37.6 31.6 22.5 24.9 23.9 31.3 33.3 44.5 55.6 55.8 55.8 55.8 55.8 55.8 55.8 50.2 39.6 55.8 22.1 1967 34.9 34.4 24.5 29.5 28.6 31.6 33.4 41.5 52.6 62.7 61.5 54.4 40.8 62.7 24.1 1968 37.7 31.9 20.2 21.4 32.2 33.8 32.4 44.0 53.9 60.5 56.8 55.8 55.3 50.2 40.9 56.5 20.1 1977 36.9 29.2 16.8 10.3 30.3 32.3 33.3 34.6 33.9 34.6 35.0 46.3 55.8 57.4 58.9 46.0 39.8 62.7 24.1 1977 36.9 29.2 16.8 10.3 30.3 32.3 33.3 34.6 33.9 37.0 44.5 55.5 57.1 58.9 46.0 39.8 62.3 20.1 1977 36.9 29.2 16.8 11.9 22.9 28.4 38.9 42.0 55.5 55.5 57.1 58.5 44.9 39.9 59.5 58.9 23.1 1977 36.9 29.2 16.8 11.9 22.9 28.4 3				17.7	0.5					50.9			50.5	37.0	58.3	0.5
1952 38.6 29.8 20.8 19.5 22.5 28.2 38.7 44.1 51.1 58.3 57.0 56.2 50.3 39.1 57.0 23.1 1954 39.2 34.9 24.1 28.9 29.3 27.9 36.7 44.6 48.4 59.2 53.5 46.4 39.4 59.2 24.1 28.9 29.3 27.9 36.7 44.6 48.4 59.2 53.5 46.4 39.4 59.2 25.1 1955 36.6 32.6 22.3 16.4 19.0 26.7 33.4 41.6 52.3 56.4 57.5 47.9 36.9 57.5 16.1 1956 40.2 27.6 28.9 26.4 18.9 30.8 37.1 46.9 50.5 59.5 54.6 48.8 39.2 59.5 18.1 1957 38.7 26.4 24.0 12.9 26.8 32.8 37.5 47.1 51.8 57.4 54.7 50.0 38.3 57.4 12.1 1958 38.8 27.0 28.0 25.0 33.6 30.8 37.8 50.4 54.0 59.3 61.2 47.8 41.1 61.2 25.1 1958 38.8 27.0 28.0 25.0 33.6 30.8 37.8 50.4 54.0 59.3 61.2 47.8 41.1 61.2 25.1 1959 40.5 30.5 29.1 28.7 29.5 29.7 37.4 40.1 53.7 59.7 55.1 48.1 40.2 59.7 28.1 1960 37.0 21.2 16.7 15.4 25.8 32.5 35.8 40.5 52.7 64.0 53.8 50.0 37.1 64.0 15.1 1962 37.3 27.3 24.6 14.2 26.4 28.6 37.6 43.8 50.2 56.8 59.3 62.9 43.5 40.3 62.9 21.1 1962 37.3 27.3 24.6 14.2 26.4 28.6 37.6 43.8 50.2 56.8 55.5 49.6 37.7 56.8 14.1 1964 46.5 35.6 22.0 18.2 18.3 28.5 32.4 41.4 51.0 58.4 55.6 57.8 57.3 40.9 57.8 14.1 1964 46.5 35.6 22.0 18.2 18.3 28.5 32.4 41.4 51.0 58.4 53.9 45.0 37.6 58.4 18.1 1965 39.5 28.5 27.9 29.1 27.5 26.2 39.4 41.9 50.9 57.6 55.8 55.8 55.8 39.6 55.8 22.1 1967 34.9 34.4 24.5 29.5 28.6 31.6 33.4 41.5 52.6 62.7 61.5 54.4 40.8 62.7 24.1 1968 40.2 34.6 22.5 24.9 23.9 31.3 35.6 45.7 50.4 55.8 55.8 55.3 39.6 50.9 37.6 58.4 18.1 1966 40.2 34.6 28.7 27.3 29.8 31.0 37.4 48.5 54.5 58.5 59.4 63.1 45.8 41.1 63.1 27.1 1972 37.6 31.6 22.5 24.9 23.9 31.3 33.3 44.5 55.6 55.8 55.8 55.8 55.8 55.8 55.8 50.2 39.6 55.8 22.1 1967 34.9 34.4 24.5 29.5 28.6 31.6 33.4 41.5 52.6 62.7 61.5 54.4 40.8 62.7 24.1 1968 37.7 31.9 20.2 21.4 32.2 33.8 32.4 44.0 53.9 60.5 56.8 55.8 55.3 50.2 40.9 56.5 20.1 1977 36.9 29.2 16.8 10.3 30.3 32.3 33.3 34.6 33.9 34.6 35.0 46.3 55.8 57.4 58.9 46.0 39.8 62.7 24.1 1977 36.9 29.2 16.8 10.3 30.3 32.3 33.3 34.6 33.9 37.0 44.5 55.5 57.1 58.9 46.0 39.8 62.3 20.1 1977 36.9 29.2 16.8 11.9 22.9 28.4 38.9 42.0 55.5 55.5 57.1 58.5 44.9 39.9 59.5 58.9 23.1 1977 36.9 29.2 16.8 11.9 22.9 28.4 3				23.4	17.5		30.9					57.0	49.8	38.1	57.8	17.5
1952 38.6 29.8 20.8 19.5 22.5 28.2 38.7 44.1 51.1 58.3 57.0 56.2 50.3 39.1 57.0 23.1 1954 39.2 34.9 24.1 28.9 29.3 27.9 36.7 44.6 48.4 59.2 53.5 46.4 39.4 59.2 24.1 28.9 29.3 27.9 36.7 44.6 48.4 59.2 53.5 46.4 39.4 59.2 25.1 1955 36.6 32.6 22.3 16.4 19.0 26.7 33.4 41.6 52.3 56.4 57.5 47.9 36.9 57.5 16.1 1956 40.2 27.6 28.9 26.4 18.9 30.8 37.1 46.9 50.5 59.5 54.6 48.8 39.2 59.5 18.1 1957 38.7 26.4 24.0 12.9 26.8 32.8 37.5 47.1 51.8 57.4 54.7 50.0 38.3 57.4 12.1 1958 38.8 27.0 28.0 25.0 33.6 30.8 37.8 50.4 54.0 59.3 61.2 47.8 41.1 61.2 25.1 1958 38.8 27.0 28.0 25.0 33.6 30.8 37.8 50.4 54.0 59.3 61.2 47.8 41.1 61.2 25.1 1959 40.5 30.5 29.1 28.7 29.5 29.7 37.4 40.1 53.7 59.7 55.1 48.1 40.2 59.7 28.1 1960 37.0 21.2 16.7 15.4 25.8 32.5 35.8 40.5 52.7 64.0 53.8 50.0 37.1 64.0 15.1 1962 37.3 27.3 24.6 14.2 26.4 28.6 37.6 43.8 50.2 56.8 59.3 62.9 43.5 40.3 62.9 21.1 1962 37.3 27.3 24.6 14.2 26.4 28.6 37.6 43.8 50.2 56.8 55.5 49.6 37.7 56.8 14.1 1964 46.5 35.6 22.0 18.2 18.3 28.5 32.4 41.4 51.0 58.4 55.6 57.8 57.3 40.9 57.8 14.1 1964 46.5 35.6 22.0 18.2 18.3 28.5 32.4 41.4 51.0 58.4 53.9 45.0 37.6 58.4 18.1 1965 39.5 28.5 27.9 29.1 27.5 26.2 39.4 41.9 50.9 57.6 55.8 55.8 55.8 39.6 55.8 22.1 1967 34.9 34.4 24.5 29.5 28.6 31.6 33.4 41.5 52.6 62.7 61.5 54.4 40.8 62.7 24.1 1968 40.2 34.6 22.5 24.9 23.9 31.3 35.6 45.7 50.4 55.8 55.8 55.3 39.6 50.9 37.6 58.4 18.1 1966 40.2 34.6 28.7 27.3 29.8 31.0 37.4 48.5 54.5 58.5 59.4 63.1 45.8 41.1 63.1 27.1 1972 37.6 31.6 22.5 24.9 23.9 31.3 33.3 44.5 55.6 55.8 55.8 55.8 55.8 55.8 55.8 50.2 39.6 55.8 22.1 1967 34.9 34.4 24.5 29.5 28.6 31.6 33.4 41.5 52.6 62.7 61.5 54.4 40.8 62.7 24.1 1968 37.7 31.9 20.2 21.4 32.2 33.8 32.4 44.0 53.9 60.5 56.8 55.8 55.3 50.2 40.9 56.5 20.1 1977 36.9 29.2 16.8 10.3 30.3 32.3 33.3 34.6 33.9 34.6 35.0 46.3 55.8 57.4 58.9 46.0 39.8 62.7 24.1 1977 36.9 29.2 16.8 10.3 30.3 32.3 33.3 34.6 33.9 37.0 44.5 55.5 57.1 58.9 46.0 39.8 62.3 20.1 1977 36.9 29.2 16.8 11.9 22.9 28.4 38.9 42.0 55.5 55.5 57.1 58.5 44.9 39.9 59.5 58.9 23.1 1977 36.9 29.2 16.8 11.9 22.9 28.4 3					22.2					48.0	59.9		49.1		59.9	22.2
1953											58.3		49.8			19.5
1954 39,2 34,9 24,1 28,9 29,3 27,9 36,7 44,6 48,4 59,2 53,5 46,4 39,4 59,2 24,1955 36,6 32,6 22,3 16,4 18,9 30,8 37,1 46,9 50,5 59,5 54,6 48,8 39,2 59,5 18,1957 38,7 26,4 24,0 12,9 26,8 32,8 37,5 47,1 51,8 57,4 54,7 50,0 38,3 57,4 12,1958 38,8 27,0 28,0 25,0 33,6 30,8 37,8 50,4 54,0 59,3 61,2 47,8 41,1 61,2 25,1959 40,5 30,5 29,1 28,7 29,5 29,7 37,4 40,1 53,7 59,7 55,1 48,1 40,2 59,7 28,1960 37,0 21,2 16,7 15,4 25,8 32,5 35,8 40,5 52,7 64,0 53,8 50,0 37,1 64,0 15,1961 39,3 11,3 21,8 23,3 33,3 34,6 34,5 43,2 56,6 59,3 62,9 43,5 40,3 62,9 21,1962 37,3 27,3 24,6 14,2 26,4 28,6 37,6 43,8 50,2 56,6 59,3 62,9 43,5 40,3 62,9 21,1962 37,3 27,3 24,6 14,2 26,4 28,6 37,6 43,8 50,2 56,6 55,5 49,6 37,7 56,8 14,1964 46,5 35,6 22,0 18,2 18,3 28,5 32,4 41,9 50,9 57,6 57,3 44,1 39,2 57,6 68,4 18,1965 39,5 28,5 27,9 29,1 27,5 26,2 39,4 41,9 50,9 57,6 57,3 44,1 39,2 57,6 26,1966 42,2 35,6 22,5 24,9 23,9 31,3 35,6 45,7 50,9 57,6 57,3 44,1 39,2 57,6 26,1966 42,2 35,6 22,5 24,9 23,9 31,3 35,6 45,7 50,4 55,8 51,2 39,6 55,8 22,1967 34,9 34,4 24,5 29,5 28,6 31,6 33,4 41,5 52,6 62,7 61,5 54,4 40,8 62,7 24,1968 37,7 31,9 20,2 21,4 32,2 33,8 32,4 44,0 53,9 57,4 56,5 57,3 44,1 39,2 57,6 26,1969 40,2 34,6 28,7 27,3 29,8 31,0 37,4 48,9 54,9 54,2 56,5 55,3 50,2 40,9 56,5 27,1970 34,3 29,1 27,2 28,0 29,3 30,8 37,7 47,3 52,6 65,5 53,3 50,2 40,9 56,5 27,1970 34,3 29,1 27,2 28,0 29,3 30,8 37,7 47,3 52,6 59,4 63,1 45,8 41,1 63,1 27,2 28,0 29,3 30,8 37,7 47,3 52,6 59,4 63,1 45,8 41,1 63,1 27,2 28,0 29,3 30,8 37,7 47,3 52,6 59,4 63,1 45,8 41,1 63,1 27,2 28,0 29,3 30,8 37,7 47,3 52,6 59,4 63,1 45,8 41,1 63,1 27,2 28,0 29,3 30,8 37,7 47,3 52,6 59,4 63,1 45,8 41,1 63,1 27,2 28,0 29,3 30,8 37,7 47,3 52,6 59,4 63,1 45,8 41,1 63,1 27,2 28,0 29,3 30,8 37,7 47,3 52,6 59,4 63,1 45,8 41,1 63,1 27,2 28,0 29,3 30,8 37,7 47,3 52,6 59,4 63,1 45,8 41,1 63,1 27,2 28,0 29,3 30,8 32,4 44,0 53,9 47,5 56,5 57,5 49,3 39,8 58,9 23,1973 40,5 33,5 40,5 32,4 44,5 56,5 57,5 49,3 39,8 59,2 57,5 49,3 39,9 59,2 15,1 1976 40,5 30,5 31,0 30,2 31,0 30,5 31,3 31,3 33,4 44,5 56,3 50	1953	41.9			34.2	26.9		34.1	40.2			56.2	50.3	39.1	57.0	23.6
1955 36.6 32.6 22.3 16.4 19.0 26.7 33.4 41.6 52.3 56.4 57.5 47.9 36.9 57.5 16.1956 40.2 27.6 28.9 26.4 18.9 30.8 37.1 46.9 50.5 59.5 59.5 54.6 48.8 39.2 59.5 18.1957 38.7 26.4 24.0 12.9 26.8 32.8 37.5 47.1 51.8 57.4 54.7 50.0 38.3 57.4 12.1958 38.8 27.0 28.0 25.0 33.6 30.8 37.8 50.4 54.0 59.3 61.2 47.8 41.1 61.2 25.1959 40.5 30.5 29.1 28.7 29.5 29.7 37.4 40.1 53.7 59.7 55.1 48.1 40.2 59.7 28.1960 37.0 21.2 16.7 15.4 25.8 32.5 35.8 40.5 52.7 64.0 53.8 50.0 37.1 64.0 15.1961 39.3 31.3 21.8 23.3 33.3 34.6 34.5 43.2 56.6 59.3 62.9 43.5 40.3 62.9 21.1962 37.3 27.3 24.6 14.2 26.4 28.6 37.6 43.8 50.2 56.8 55.5 49.6 37.7 56.8 14.1963 40.8 31.9 28.4 14.5 34.0 33.0 37.4 48.7 51.8 55.6 57.8 57.3 40.9 57.8 14.1964 46.5 35.6 22.0 18.2 18.3 28.5 32.4 41.4 51.0 58.4 53.9 45.0 37.6 58.4 18.1965 39.5 28.5 27.9 29.1 27.5 26.2 39.4 41.9 50.9 57.6 57.3 44.1 39.2 57.6 26.1966 42.2 35.6 22.5 24.9 23.9 31.3 35.6 45.7 50.4 55.8 55.8 51.2 39.6 55.8 22.1967 34.9 34.4 24.5 29.5 28.6 31.6 33.4 44.5 55.0 62.7 61.5 54.4 40.8 62.7 24.1968 37.7 31.9 20.2 21.4 32.2 33.8 32.4 44.0 53.9 60.5 56.6 49.2 39.5 60.5 20.1969 40.2 34.6 28.7 27.3 29.8 31.0 37.4 45.9 54.2 56.5 55.3 50.2 39.5 60.5 20.1971 36.2 36.1 27.2 28.0 29.3 30.8 37.4 44.5 50.6 62.7 61.5 54.4 40.8 62.7 24.1968 37.7 31.9 20.2 21.4 32.2 33.8 32.4 44.0 53.9 60.5 56.6 49.2 39.5 60.5 20.1971 36.2 36.1 27.2 28.0 29.3 30.8 37.4 44.5 56.6 57.3 44.1 39.2 57.6 60.5 20.1971 36.2 36.1 27.2 28.0 29.3 30.8 37.4 44.5 56.6 57.3 44.1 45.8 40.9 56.5 27.1971 36.2 36.6 26.7 61.5 54.4 40.8 62.7 24.1 28.7 34.6 35.0 46.3 53.8 57.4 58.9 46.0 39.8 58.9 23.1 27.9 30.7 31.6 31.3 33.3 44.5 56.6 57.3 50.2 30.9 56.5 27.1971 36.2 36.6 58.4 43.8 40.2 60.5 27.1971 36.2 36.6 58.4 43.8 40.2 60.5 27.5 28.1 28.7 34.9 34.9 34.9 34.7 35.9 34.9 34.9 34.9 34.9 34.9 34.9 34.9 34								36.7					46.4		59.2	24.1
1956 40.2 27.6 28.9 26.4 18.9 30.8 37.1 46.9 50.5 59.5 54.6 48.8 39.2 59.5 18.1957 38.7 26.4 24.0 12.9 26.8 32.8 37.5 47.1 51.8 57.4 54.7 50.0 38.3 57.4 12.1958 38.8 27.0 28.0 25.0 33.6 30.8 37.8 50.4 54.0 59.3 61.2 47.8 41.1 61.2 25.1959 40.5 30.5 29.1 28.7 29.5 29.7 37.4 40.1 53.7 59.7 55.1 48.1 40.2 59.7 28.1960 37.0 21.2 16.7 15.4 25.8 32.5 35.8 40.5 52.7 64.0 53.8 50.0 37.1 64.0 15.1961 39.3 31.3 21.8 23.3 33.3 34.6 34.5 43.2 56.6 59.3 62.9 43.5 40.3 62.9 21. 1962 37.3 27.3 24.6 14.2 26.4 28.6 37.6 43.8 50.2 56.8 55.5 49.6 37.7 56.8 14. 1964 46.5 35.6 22.0 18.2 18.3 28.5 32.4 41.4 51.0 58.4 55.6 57.8 57.3 40.9 57.8 14. 1964 46.5 35.6 22.5 24.9 23.9 31.3 35.6 41.9 50.9 57.6 57.3 44.1 39.2 57.6 22. 1967 34.9 34.4 24.5 29.5 28.6 31.6 33.4 41.5 52.6 62.7 61.5 58.4 51.2 39.6 55.8 22. 1967 34.9 34.4 24.5 29.5 28.6 31.6 33.4 41.5 52.6 62.7 61.5 54.4 40.8 62.7 24. 1968 37.7 31.9 20.2 21.4 32.2 33.8 32.4 44.0 53.9 62.5 56.5 55.3 50.2 40.9 55.6 55.2 2.1 1969 40.2 34.6 28.7 27.3 29.8 31.0 37.4 45.9 54.2 56.5 55.3 50.2 40.9 39.5 66.5 27. 1970 34.3 29.1 27.9 30.7 31.6 31.3 32.4 44.0 53.9 66.5 56.5 56.3 50.2 40.9 56.5 27. 1970 34.3 29.1 27.9 30.7 31.6 31.3 32.4 44.0 53.9 66.5 56.6 49.2 39.5 66.5 27. 1970 34.3 29.1 27.9 30.7 31.6 31.0 37.4 45.9 54.2 56.5 55.3 50.2 40.9 56.5 27. 1970 34.3 29.1 27.9 30.7 31.6 31.3 32.4 44.0 53.9 66.5 56.6 49.2 39.5 66.5 27. 1970 34.3 29.1 27.9 30.7 31.6 31.3 32.4 44.0 53.9 66.5 56.6 49.2 39.5 66.5 27. 1970 34.3 29.1 27.9 30.7 31.6 31.3 32.9 37.0 45.6 59.4 63.1 45.8 41.1 63.1 27. 1971 36.2 36.1 27.2 28.0 29.3 30.8 37.7 47.3 52.6 59.4 63.1 45.8 41.1 63.1 27. 1972 37.6 31.6 23.7 24.1 28.7 34.6 35.0 46.3 53.8 57.4 58.9 46.0 39.8 58.9 23. 1973 40.5 33.5 15.5 23.2 31.0 32.9 37.0 45.6 55.8 57.1 59.5 44.8 43.8 40.2 60.6 27. 1976 41.6 29.7 25.6 25.5 26.3 27.5 35.4 43.9 47.3 56.7 53.8 50.7 38.7 56.7 25. 1977 36.6 26.5 18.4 7.1 28.7 34.6 32.9 34.6 32.9 37.0 45.6 55.5 57.1 59.5 44.4 37.9 40.7 56.9 30. 1979 36.6 26.5 18.4 7.1 28.6 32.2 32.3 30.8 39.9 45.9 43.6 51.2 57.8 56.6 51.1 37.1 57.8 7. 1980 41.8												57.5	47.9	36.9	57.5	16.4
1959 40.5 30.5 29.1 28.7 29.5 29.7 37.4 40.1 53.7 59.7 55.1 48.1 40.2 59.7 28. 1960 37.0 21.2 16.7 15.4 25.8 32.5 35.8 40.5 52.7 64.0 53.8 50.0 37.1 64.0 15. 1961 39.3 31.3 21.8 23.3 33.3 34.6 34.5 43.2 56.6 59.3 62.9 43.5 40.3 62.9 21. 1962 37.3 27.3 24.6 14.2 26.4 28.6 37.6 43.8 50.2 56.8 55.5 49.6 37.7 56.8 14. 1963 40.8 31.9 28.4 14.5 34.0 33.0 37.4 48.7 51.8 55.6 57.8 57.3 40.9 57.8 14. 1964 46.5 35.6 22.0 18.2 18.3 28.5 32.4 41.4 51.0 58.4 53.9 45.0 37.6 58.4 18. 1965 39.5 28.5 27.9 29.1 27.5 26.2 39.4 41.9 50.9 57.6 57.3 44.1 39.2 57.6 26. 1966 42.2 35.6 22.5 24.9 23.9 31.3 35.6 45.7 50.4 55.8 55.8 51.2 39.6 55.8 22. 1967 34.9 34.4 24.5 29.5 28.6 31.6 33.4 41.5 52.6 62.7 61.5 54.4 40.8 62.7 24. 1968 37.7 31.9 20.2 21.4 32.2 33.8 32.4 44.0 53.9 60.5 56.6 49.2 39.5 60.5 20. 1969 40.2 34.6 28.7 27.3 29.8 31.0 37.4 45.9 54.2 56.5 55.3 50.2 40.9 56.5 27. 1970 34.3 29.1 27.9 30.7 31.6 31.3 33.3 44.5 56.3 60.6 58.4 43.8 40.2 66.6 27. 1971 36.2 36.1 27.2 28.0 29.3 30.8 37.7 47.3 52.6 59.4 63.1 45.8 41.1 63.1 27. 1972 37.6 31.6 23.7 24.1 28.7 34.6 35.0 45.5 56.3 57.4 58.9 46.0 39.8 58.9 23. 1973 40.5 33.5 15.5 23.2 31.0 32.9 37.0 45.6 53.3 59.2 57.5 49.3 39.9 59.2 15. 1974 40.7 35.4 32.4 22.6 30.8 34.0 38.1 42.0 55.4 58.0 55.8 48.8 41.2 58.0 22. 1975 40.1 33.0 25.8 20.3 30.3 32.5 35.1 42.0 55.4 58.0 55.8 48.8 41.2 58.0 22. 1975 40.1 33.0 25.8 20.3 30.3 32.5 35.1 42.0 55.4 58.0 55.8 48.8 41.2 58.0 22. 1975 40.1 33.0 25.8 20.3 30.3 32.5 35.1 43.3 50.4 62.3 55.7 48.6 39.8 62.3 20. 1976 40.1 33.0 25.8 20.3 30.3 30.8 37.4 48.9 40.5 56.7 55.8 50.7 48.6 39.8 62.3 20. 1977 36.9 29.2 16.8 11.9 22.9 28.4 38.9 42.2 55.5 57.1 59.5 48.4 37.3 39.9 59.2 15. 1978 40.5 30.2 31.0 30.5 31.3 37.4 38.4 41.4 49.5 56.6 56.7 55.8 56.7 55.8 56.7 25.5 56.3 20.2 31.0 30.5 31.3 37.4 38.4 41.4 49.5 56.6 56.7 55.8 56.7 55.8 56.7 25.5 56.3 20.2 32.3 30.8 39.9 45.9 45.9 48.4 56.3 50.7 48.7 39.2 56.3 23.																18.9
1959 40.5 30.5 29.1 28.7 29.5 29.7 37.4 40.1 53.7 59.7 55.1 48.1 40.2 59.7 28. 1960 37.0 21.2 16.7 15.4 25.8 32.5 35.8 40.5 52.7 64.0 53.8 50.0 37.1 64.0 15. 1961 39.3 31.3 21.8 23.3 33.3 34.6 34.5 43.2 56.6 59.3 62.9 43.5 40.3 62.9 21. 1962 37.3 27.3 24.6 14.2 26.4 28.6 37.6 43.8 50.2 56.8 55.5 49.6 37.7 56.8 14. 1963 40.8 31.9 28.4 14.5 34.0 33.0 37.4 48.7 51.8 55.6 57.8 57.3 40.9 57.8 14. 1964 46.5 35.6 22.0 18.2 18.3 28.5 32.4 41.4 51.0 58.4 53.9 45.0 37.6 58.4 18. 1965 39.5 28.5 27.9 29.1 27.5 26.2 39.4 41.9 50.9 57.6 57.3 44.1 39.2 57.6 26. 1966 42.2 35.6 22.5 24.9 23.9 31.3 35.6 45.7 50.4 55.8 55.8 51.2 39.6 55.8 22. 1967 34.9 34.4 24.5 29.5 28.6 31.6 33.4 41.5 52.6 62.7 61.5 54.4 40.8 62.7 24. 1968 37.7 31.9 20.2 21.4 32.2 33.8 32.4 44.0 53.9 60.5 56.6 49.2 39.5 60.5 20. 1969 40.2 34.6 28.7 27.3 29.8 31.0 37.4 45.9 54.2 56.5 55.3 50.2 40.9 56.5 27. 1970 34.3 29.1 27.9 30.7 31.6 31.3 33.3 44.5 56.3 60.6 58.4 43.8 40.2 66.6 27. 1971 36.2 36.1 27.2 28.0 29.3 30.8 37.7 47.3 52.6 59.4 63.1 45.8 41.1 63.1 27. 1972 37.6 31.6 23.7 24.1 28.7 34.6 35.0 45.5 56.3 57.4 58.9 46.0 39.8 58.9 23. 1973 40.5 33.5 15.5 23.2 31.0 32.9 37.0 45.6 53.3 59.2 57.5 49.3 39.9 59.2 15. 1974 40.7 35.4 32.4 22.6 30.8 34.0 38.1 42.0 55.4 58.0 55.8 48.8 41.2 58.0 22. 1975 40.1 33.0 25.8 20.3 30.3 32.5 35.1 42.0 55.4 58.0 55.8 48.8 41.2 58.0 22. 1975 40.1 33.0 25.8 20.3 30.3 32.5 35.1 42.0 55.4 58.0 55.8 48.8 41.2 58.0 22. 1975 40.1 33.0 25.8 20.3 30.3 32.5 35.1 43.3 50.4 62.3 55.7 48.6 39.8 62.3 20. 1976 40.1 33.0 25.8 20.3 30.3 30.8 37.4 48.9 40.5 56.7 55.8 50.7 48.6 39.8 62.3 20. 1977 36.9 29.2 16.8 11.9 22.9 28.4 38.9 42.2 55.5 57.1 59.5 48.4 37.3 39.9 59.2 15. 1978 40.5 30.2 31.0 30.5 31.3 37.4 38.4 41.4 49.5 56.6 56.7 55.8 56.7 55.8 56.7 25.5 56.3 20.2 31.0 30.5 31.3 37.4 38.4 41.4 49.5 56.6 56.7 55.8 56.7 55.8 56.7 25.5 56.3 20.2 32.3 30.8 39.9 45.9 45.9 48.4 56.3 50.7 48.7 39.2 56.3 23.	1957				12.9			37.5					50.0	38.3	57.4	12.9
1959 40.5 30.5 29.1 28.7 29.5 29.7 37.4 40.1 53.7 59.7 55.1 48.1 40.2 59.7 28. 1960 37.0 21.2 16.7 15.4 25.8 32.5 35.8 40.5 52.7 64.0 53.8 50.0 37.1 64.0 15. 1961 39.3 31.3 21.8 23.3 33.3 34.6 34.5 43.2 56.6 59.3 62.9 43.5 40.3 62.9 21. 1962 37.3 27.3 24.6 14.2 26.4 28.6 37.6 43.8 50.2 56.8 55.5 49.6 37.7 56.8 14. 1963 40.8 31.9 28.4 14.5 34.0 33.0 37.4 48.7 51.8 55.6 57.8 57.3 40.9 57.8 14. 1964 46.5 35.6 22.0 18.2 18.3 28.5 32.4 41.4 51.0 58.4 53.9 45.0 37.6 58.4 18. 1965 39.5 28.5 27.9 29.1 27.5 26.2 39.4 41.9 50.9 57.6 57.3 44.1 39.2 57.6 26. 1966 42.2 35.6 22.5 24.9 23.9 31.3 35.6 45.7 50.4 55.8 55.8 51.2 39.6 55.8 22. 1967 34.9 34.4 24.5 29.5 28.6 31.6 33.4 41.5 52.6 62.7 61.5 54.4 40.8 62.7 24. 1968 37.7 31.9 20.2 21.4 32.2 33.8 32.4 44.0 53.9 60.5 56.6 49.2 39.5 60.5 20. 1969 40.2 34.6 28.7 27.3 29.8 31.0 37.4 45.9 54.2 56.5 55.3 50.2 40.9 56.5 27. 1970 34.3 29.1 27.9 30.7 31.6 31.3 33.3 44.5 56.3 60.6 58.4 43.8 40.2 66.6 27. 1971 36.2 36.1 27.2 28.0 29.3 30.8 37.7 47.3 52.6 59.4 63.1 45.8 41.1 63.1 27. 1972 37.6 31.6 23.7 24.1 28.7 34.6 35.0 45.5 56.3 57.4 58.9 46.0 39.8 58.9 23. 1973 40.5 33.5 15.5 23.2 31.0 32.9 37.0 45.6 53.3 59.2 57.5 49.3 39.9 59.2 15. 1974 40.7 35.4 32.4 22.6 30.8 34.0 38.1 42.0 55.4 58.0 55.8 48.8 41.2 58.0 22. 1975 40.1 33.0 25.8 20.3 30.3 32.5 35.1 42.0 55.4 58.0 55.8 48.8 41.2 58.0 22. 1975 40.1 33.0 25.8 20.3 30.3 32.5 35.1 42.0 55.4 58.0 55.8 48.8 41.2 58.0 22. 1975 40.1 33.0 25.8 20.3 30.3 32.5 35.1 43.3 50.4 62.3 55.7 48.6 39.8 62.3 20. 1976 40.1 33.0 25.8 20.3 30.3 30.8 37.4 48.9 40.5 56.7 55.8 50.7 48.6 39.8 62.3 20. 1977 36.9 29.2 16.8 11.9 22.9 28.4 38.9 42.2 55.5 57.1 59.5 48.4 37.3 39.9 59.2 15. 1978 40.5 30.2 31.0 30.5 31.3 37.4 38.4 41.4 49.5 56.6 56.7 55.8 56.7 55.8 56.7 25.5 56.3 20.2 31.0 30.5 31.3 37.4 38.4 41.4 49.5 56.6 56.7 55.8 56.7 55.8 56.7 25.5 56.3 20.2 32.3 30.8 39.9 45.9 45.9 48.4 56.3 50.7 48.7 39.2 56.3 23.	1958				25.0	33.6		37.8	50.4		59.3	61.2	47.8	41.1	61.2	25.0
1960 37.0 21.2 16.7 15.4 25.8 32.5 35.8 40.5 52.7 64.0 53.8 50.0 37.1 64.0 15. 1961 39.3 31.3 21.8 23.3 33.3 34.6 34.5 43.2 56.6 59.3 62.9 43.5 40.3 62.9 21. 1962 37.3 27.3 24.6 14.2 26.4 28.6 37.6 43.8 50.2 56.8 55.5 49.6 37.7 56.8 14. 1963 40.8 31.9 28.4 14.5 34.0 33.0 37.4 48.7 51.8 55.6 57.8 57.3 40.9 57.8 14. 1964 46.5 35.6 22.0 18.2 18.3 28.5 32.4 41.4 51.0 58.4 53.9 45.0 37.6 58.4 18. 1965 39.5 28.5 27.9 29.1 27.5 26.2 39.4 41.9 50.9 57.6 57.3 44.1 39.2 57.6 26. 1966 42.2 35.6 22.5 24.9 23.9 31.3 35.6 45.7 50.4 55.8 55.8 51.2 39.6 55.8 22. 1967 34.9 34.4 24.5 29.5 28.6 31.6 33.4 41.5 52.6 62.7 61.5 54.4 40.8 62.7 24. 1968 37.7 31.9 20.2 21.4 32.2 33.8 32.4 44.0 53.9 60.5 56.6 49.2 39.5 60.5 20. 1969 40.2 34.6 28.7 27.3 29.8 31.0 37.4 45.9 54.2 56.5 55.3 50.2 40.9 56.5 27. 1970 34.3 29.1 27.9 30.7 31.6 31.3 33.3 44.5 56.3 60.6 58.4 43.8 40.2 60.6 27. 1971 36.2 36.1 27.2 28.0 29.3 30.8 37.7 47.3 52.6 59.4 63.1 45.8 41.1 63.1 27. 1972 37.6 31.6 23.7 24.1 28.7 34.6 35.0 46.3 53.8 57.4 58.9 46.0 39.8 58.9 23. 1973 40.5 33.5 15.5 23.2 31.0 32.9 37.0 45.6 53.3 59.2 57.5 49.3 39.9 59.2 15. 1974 40.7 35.4 32.4 22.6 30.8 34.0 38.1 42.0 55.4 58.0 55.8 48.8 41.2 58.0 22. 1975 40.1 33.0 25.8 20.3 30.8 37.7 47.3 52.6 59.4 63.1 45.8 41.1 63.1 27. 1977 36.9 29.2 16.8 11.9 22.9 28.4 38.9 42.2 55.5 57.1 59.5 48.6 39.8 62.3 20. 1976 41.6 29.7 25.6 25.5 56.3 27.5 35.4 43.9 47.3 56.7 53.8 50.7 38.7 56.7 25. 1977 36.9 29.2 16.8 11.9 22.9 28.4 38.9 42.2 55.5 57.1 59.5 48.4 37.3 59.5 11. 1978 40.5 30.2 31.0 30.5 31.3 37.4 38.4 41.4 49.5 56.9 53.4 47.9 40.7 56.9 30. 1979 36.6 26.5 18.4 7.1 26.8 32.2 36.9 43.6 51.2 57.8 56.6 51.1 37.1 57.8 7. 1980 41.8 25.0 27.6 23.2 32.3 30.8 39.9 45.9 48.4 56.3 50.7 48.7 39.2 56.3 23. STATISTICS N 39 39 39 39 40 40 40 40 40 40 40 40 40 40 40 40 40					28.7			37.4						40.2		28.7
1961 39,3 31,3 21.8 23,3 33,3 34.6 34,5 43.2 56.6 59,3 66.9 43.5 40.3 62.9 21. 1962 37.3 27.3 24.6 14.2 26.4 28.6 37.6 43.8 50.2 56.8 55.5 49.6 37.7 56.8 14. 1963 40.8 31.9 28.4 14.5 34.0 33.0 37.4 48.7 51.8 55.6 57.8 57.3 40.9 57.8 14. 1964 46.5 35.6 22.0 18.2 18.3 28.5 32.4 41.4 51.0 58.4 53.9 45.0 37.6 58.4 18. 1965 39.5 28.5 27.9 29.1 27.5 26.2 39.4 41.9 50.9 57.6 57.3 44.1 39.2 57.6 26. 1966 42.2 35.6 22.5 24.9 23.9 31.3 35.6 45.7 50.4 55.8 55.8 55.8 51.2 39.6 55.8 22. 1967 34.9 34.4 24.5 29.5 28.6 31.6 33.4 41.5 52.6 62.7 61.5 54.4 40.8 62.7 24. 1968 37.7 31.9 20.2 21.4 32.2 33.8 32.4 44.0 53.9 60.5 56.6 49.2 39.5 60.5 20. 1969 40.2 34.6 28.7 27.3 29.8 31.0 37.4 45.9 54.2 56.5 55.3 50.2 40.9 56.5 27. 1971 36.2 36.1 27.2 28.0 29.3 30.8 37.7 47.3 52.6 59.4 63.1 45.8 41.1 63.1 27. 1972 37.6 31.6 23.7 24.1 28.7 34.6 35.0 46.3 53.8 57.4 58.9 46.0 39.8 58.9 23. 1973 40.5 33.5 15.5 23.2 31.0 32.9 37.0 45.6 53.3 59.2 57.5 49.3 39.9 59.2 15. 1974 40.7 35.4 32.4 22.6 30.8 34.0 38.1 42.0 55.4 58.0 55.8 48.8 41.2 58.0 22. 1975 40.1 33.0 25.8 20.3 30.8 34.0 38.1 42.0 55.4 58.0 55.8 48.8 41.2 58.0 22. 1976 41.6 29.7 25.6 25.5 26.3 27.5 35.4 43.9 47.3 56.7 53.8 55.7 49.3 39.9 59.2 15. 1977 36.9 29.2 16.8 11.9 22.9 28.4 38.9 42.2 55.5 57.1 59.5 48.4 37.3 59.5 11. 1978 40.5 30.2 31.0 30.5 31.3 37.4 38.9 42.2 55.5 57.1 59.5 48.4 37.3 59.5 11. 1978 40.5 30.2 31.0 30.5 31.3 37.4 38.9 42.2 55.5 57.1 59.5 48.4 37.3 59.5 11. 1978 40.5 30.2 31.0 30.5 31.3 37.4 38.9 42.2 55.5 57.1 59.5 48.4 37.3 59.5 56.3 23. STATISTICS N 39 39 39 40 40 40 40 40 40 40 40 40 40 40 40 40								35.8						37.1		15.4
1963 40.8 31.9 28.4 14.5 34.0 33.0 37.4 48.7 51.8 55.6 57.8 57.3 40.9 57.8 14. 1964 46.5 35.6 22.0 18.2 18.3 28.5 32.4 41.4 51.0 58.4 53.9 45.0 37.6 58.4 18. 1965 39.5 28.5 27.9 29.1 27.5 26.2 39.4 41.9 50.9 57.6 57.3 44.1 39.2 57.6 26. 1966 42.2 35.6 22.5 24.9 23.9 31.3 35.6 45.7 50.4 55.8 55.8 51.2 39.6 55.8 22. 1967 34.9 34.4 24.5 29.5 28.6 31.6 33.4 41.5 52.6 62.7 61.5 54.4 40.8 62.7 24. 1968 37.7 31.9 20.2 21.4 32.2 33.8 32.4 44.0 53.9 60.5 56.6 49.2 39.5 60.5 20. 1969 40.2 34.6 28.7 27.3 29.8 31.0 37.4 45.9 54.2 56.5 56.6 49.2 39.5 60.5 27. 1970 34.3 29.1 27.9 30.7 31.6 31.3 33.3 44.5 56.3 60.6 58.4 43.8 40.2 60.6 27. 1971 36.2 36.1 27.2 28.0 29.3 30.8 37.7 47.3 52.6 59.4 63.1 45.8 41.1 63.1 27. 1972 37.6 31.6 23.7 24.1 28.7 34.6 35.0 46.3 53.8 57.4 58.9 46.0 39.8 58.9 23. 1973 40.5 33.5 15.5 23.2 31.0 32.9 37.0 45.6 53.3 59.2 57.5 49.3 39.9 59.2 15. 1974 40.7 35.4 32.4 22.6 30.8 34.0 38.1 42.0 55.4 58.0 55.8 48.8 41.2 58.0 22. 1976 41.6 29.7 25.6 25.5 26.3 27.5 35.4 43.9 47.3 56.7 55.7 48.6 39.8 62.3 20. 1976 40.6 29.7 25.6 25.5 26.3 27.5 35.4 43.9 47.3 56.7 58.0 55.8 48.4 37.3 59.5 11. 1978 40.5 30.2 31.0 30.5 31.3 37.4 38.4 41.4 49.5 56.9 56.6 51.1 37.1 57.8 11. 1978 40.5 30.2 31.0 30.5 31.3 37.4 38.4 41.4 49.5 56.9 56.6 51.1 37.1 57.8 11. 1978 40.5 30.2 31.0 30.5 31.3 37.4 38.4 41.4 49.5 56.9 56.6 51.1 37.1 57.8 7. 1980 41.8 25.0 27.6 23.2 32.3 30.8 39.9 45.9 48.4 56.3 50.7 48.7 39.2 56.3 23.	1961	39.3	31.3			33.3	34.6		43.2	56.6			43.5		62.9	21.8
1963 40.8 31.9 28.4 14.5 34.0 33.0 37.4 48.7 51.8 55.6 57.8 57.3 40.9 57.8 14. 1964 46.5 35.6 22.0 18.2 18.3 28.5 32.4 41.4 51.0 58.4 53.9 45.0 37.6 58.4 18. 1965 39.5 28.5 27.9 29.1 27.5 26.2 39.4 41.9 50.9 57.6 57.3 44.1 39.2 57.6 26. 1966 42.2 35.6 22.5 24.9 23.9 31.3 35.6 45.7 50.4 55.8 55.8 51.2 39.6 55.8 22. 1967 34.9 34.4 24.5 29.5 28.6 31.6 33.4 41.5 52.6 62.7 61.5 54.4 40.8 62.7 24. 1968 37.7 31.9 20.2 21.4 32.2 33.8 32.4 44.0 53.9 60.5 56.6 49.2 39.5 60.5 20. 1969 40.2 34.6 28.7 27.3 29.8 31.0 37.4 45.9 54.2 56.5 56.6 49.2 39.5 60.5 27. 1970 34.3 29.1 27.9 30.7 31.6 31.3 33.3 44.5 56.3 60.6 58.4 43.8 40.2 60.6 27. 1971 36.2 36.1 27.2 28.0 29.3 30.8 37.7 47.3 52.6 59.4 63.1 45.8 41.1 63.1 27. 1972 37.6 31.6 23.7 24.1 28.7 34.6 35.0 46.3 53.8 57.4 58.9 46.0 39.8 58.9 23. 1973 40.5 33.5 15.5 23.2 31.0 32.9 37.0 45.6 53.3 59.2 57.5 49.3 39.9 59.2 15. 1974 40.7 35.4 32.4 22.6 30.8 34.0 38.1 42.0 55.4 58.0 55.8 48.8 41.2 58.0 22. 1976 41.6 29.7 25.6 25.5 26.3 27.5 35.4 43.9 47.3 56.7 55.7 48.6 39.8 62.3 20. 1976 40.6 29.7 25.6 25.5 26.3 27.5 35.4 43.9 47.3 56.7 58.0 55.8 48.4 37.3 59.5 11. 1978 40.5 30.2 31.0 30.5 31.3 37.4 38.4 41.4 49.5 56.9 56.6 51.1 37.1 57.8 11. 1978 40.5 30.2 31.0 30.5 31.3 37.4 38.4 41.4 49.5 56.9 56.6 51.1 37.1 57.8 11. 1978 40.5 30.2 31.0 30.5 31.3 37.4 38.4 41.4 49.5 56.9 56.6 51.1 37.1 57.8 7. 1980 41.8 25.0 27.6 23.2 32.3 30.8 39.9 45.9 48.4 56.3 50.7 48.7 39.2 56.3 23.				24.6	14.2			37.6								14.2
1965 39.5 28.5 27.9 29.1 27.5 26.2 39.4 41.9 50.9 57.6 57.3 44.1 39.2 57.6 26. 1966 42.2 35.6 22.5 24.9 23.9 31.3 35.6 45.7 50.4 55.8 55.8 51.2 39.6 55.8 22. 1967 34.9 34.4 24.5 29.5 28.6 31.6 33.4 41.5 52.6 62.7 61.5 54.4 40.8 62.7 24. 1968 37.7 31.9 20.2 21.4 32.2 33.8 32.4 44.0 53.9 60.5 56.6 49.2 39.5 60.5 20. 1969 40.2 34.6 28.7 27.3 29.8 31.0 37.4 45.9 54.2 56.5 55.3 50.2 40.9 56.5 27. 1970 34.3 29.1 27.9 30.7 31.6 31.3 33.3 44.5 56.3 60.6 58.4 43.8 40.2 60.6 27. 1971 36.2 36.1 27.2 28.0 29.3 30.8 37.7 47.3 52.6 59.4 63.1 45.8 41.1 63.1 27. 1972 37.6 31.6 23.7 24.1 28.7 34.6 35.0 46.3 53.8 57.4 58.9 46.0 39.8 58.9 23. 1973 40.5 33.5 15.5 23.2 31.0 32.9 37.0 45.6 53.3 59.2 57.5 49.3 39.9 59.2 15. 1974 40.7 35.4 32.4 22.6 30.8 34.0 38.1 42.0 55.4 58.0 55.8 48.8 41.2 58.0 22. 1975 40.1 33.0 25.8 20.3 30.3 33.3 55.1 43.3 50.4 62.3 55.7 48.6 39.8 62.3 20. 1975 40.1 33.0 25.8 20.3 30.3 33.5 35.1 43.3 50.4 62.3 55.7 48.6 39.8 62.3 20. 1977 36.9 29.2 16.8 11.9 22.9 28.4 38.9 42.2 55.5 57.1 59.5 48.4 37.3 59.5 11. 1978 40.5 30.2 31.0 30.5 31.3 37.4 38.4 41.4 49.5 56.9 53.4 47.9 40.7 56.9 30. 1979 36.6 26.5 18.4 7.1 26.8 32.2 36.9 43.6 51.2 57.8 56.6 51.1 37.1 57.8 7. 1980 41.8 25.0 27.6 23.2 32.3 30.8 39.9 45.9 48.4 56.3 50.7 48.7 39.2 56.3 23.		40.8		28.4				37.4								14.5
1965 39.5 28.5 27.9 29.1 27.5 26.2 39.4 41.9 50.9 57.6 57.3 44.1 39.2 57.6 26. 1966 42.2 35.6 22.5 24.9 23.9 31.3 35.6 45.7 50.4 55.8 55.8 51.2 39.6 55.8 22. 1967 34.9 34.4 24.5 29.5 28.6 31.6 33.4 41.5 52.6 62.7 61.5 54.4 40.8 62.7 24. 1968 37.7 31.9 20.2 21.4 32.2 33.8 32.4 44.0 53.9 60.5 56.6 49.2 39.5 60.5 20. 1969 40.2 34.6 28.7 27.3 29.8 31.0 37.4 45.9 54.2 56.5 55.3 50.2 40.9 56.5 27. 1970 34.3 29.1 27.9 30.7 31.6 31.3 33.3 44.5 56.3 60.6 58.4 43.8 40.2 60.6 27. 1971 36.2 36.1 27.2 28.0 29.3 30.8 37.7 47.3 52.6 59.4 63.1 45.8 41.1 63.1 27. 1972 37.6 31.6 23.7 24.1 28.7 34.6 35.0 46.3 53.8 57.4 58.9 46.0 39.8 58.9 23. 1973 40.5 33.5 15.5 23.2 31.0 32.9 37.0 45.6 53.3 59.2 57.5 49.3 39.9 59.2 15. 1974 40.7 35.4 32.4 22.6 30.8 34.0 38.1 42.0 55.4 58.0 55.8 48.8 41.2 58.0 22. 1975 40.1 33.0 25.8 20.3 30.3 33.3 55.1 43.3 50.4 62.3 55.7 48.6 39.8 62.3 20. 1975 40.1 33.0 25.8 20.3 30.3 33.5 35.1 43.3 50.4 62.3 55.7 48.6 39.8 62.3 20. 1977 36.9 29.2 16.8 11.9 22.9 28.4 38.9 42.2 55.5 57.1 59.5 48.4 37.3 59.5 11. 1978 40.5 30.2 31.0 30.5 31.3 37.4 38.4 41.4 49.5 56.9 53.4 47.9 40.7 56.9 30. 1979 36.6 26.5 18.4 7.1 26.8 32.2 36.9 43.6 51.2 57.8 56.6 51.1 37.1 57.8 7. 1980 41.8 25.0 27.6 23.2 32.3 30.8 39.9 45.9 48.4 56.3 50.7 48.7 39.2 56.3 23.	1964	46.5	35.6	22.0	18.2		28.5	32.4			58.4		45.0			18.2
1966								39.4								26.2
1967 34.9 34.4 24.5 29.5 28.6 31.6 33.4 41.5 52.6 62.7 61.5 54.4 40.8 62.7 24. 1968 37.7 31.9 20.2 21.4 32.2 33.8 32.4 44.0 53.9 60.5 56.6 49.2 39.5 60.5 20. 1969 40.2 34.6 28.7 27.3 29.8 31.0 37.4 45.9 54.2 56.5 55.3 50.2 40.9 56.5 27. 1970 34.3 29.1 27.9 30.7 31.6 31.3 33.3 44.5 56.3 60.6 58.4 43.8 40.2 60.6 27. 1971 36.2 36.1 27.2 28.0 29.3 30.8 37.7 47.3 52.6 59.4 63.1 45.8 41.1 63.1 27. 1972 37.6 31.6 23.7 24.1 28.7 34.6 35.0 46.3 53.8 57.4 58.9 46.0 39.8 58.9 23. 1973 40.5 33.5 15.5 23.2 31.0 32.9 37.0 45.6 53.3 59.2 57.5 49.3 39.9 59.2 15. 1974 40.7 35.4 32.4 22.6 30.8 34.0 38.1 42.0 55.4 58.0 55.8 40.8 41.2 58.0 22. 1975 40.1 33.0 25.8 20.3 30.3 32.5 35.1 43.3 50.4 62.3 55.7 48.6 39.8 62.3 20. 1976 41.6 29.7 25.6 25.5 26.3 27.5 35.4 43.9 47.3 56.7 53.8 50.7 38.7 56.7 25. 1977 36.9 29.2 16.8 11.9 22.9 28.4 38.9 42.2 55.5 57.1 59.5 48.4 37.3 59.5 11. 1978 40.5 30.2 31.0 30.5 31.3 37.4 38.4 41.4 49.5 56.9 53.4 47.9 40.7 56.9 30. 1979 36.6 26.5 18.4 7.1 26.8 32.2 36.9 43.6 51.2 57.8 56.6 51.1 37.1 57.8 7. 1980 41.8 25.0 27.6 23.2 32.3 30.8 39.9 45.9 48.4 56.3 50.7 48.7 39.2 56.3 23. STATISTICS N 39 39 39 40 40 40 40 40 40 40 40 40 40 40 40 40	1966	42.2	35.6	22.5	24.9	23.9	31.3		45.7	50.4	55.8	55.8		39.6	55.8	22.5
1968	1967	34.9		24.5	29.5		31.6	33.4		52.6				40.8		24.5
1969	1968			20.2	21.4		33.8	32.4		53.9	60.5	56.6	49.2	39.5		20.2
1970				28.7								55.3		40.9		27.3
1971 36.2 36.1 27.2 28.0 29.3 30.8 37.7 47.3 52.6 59.4 63.1 45.8 41.1 63.1 27. 1972 37.6 31.6 23.7 24.1 28.7 34.6 35.0 46.3 53.8 57.4 58.9 46.0 39.8 58.9 23. 1973 40.5 33.5 15.5 23.2 31.0 32.9 37.0 45.6 53.3 59.2 57.5 49.3 39.9 59.2 15. 1974 40.7 35.4 32.4 22.6 30.8 34.0 38.1 42.0 55.4 58.0 55.8 48.8 41.2 58.0 22. 1975 40.1 33.0 25.8 20.3 30.3 32.5 35.1 43.3 50.4 62.3 55.7 48.6 39.8 62.3 20. 1976 41.6 29.7 25.6 25.5 26.3 27.5 35.4 43.9 47.3 56.7 53.8 50.7 38.7 56.7 51.0 1977 36.9 29.2 16.8 11.9 22.9 28.4 38.9 42.2 55.5 57.1 59.5 48.4 37.3 59.5 11. 1978 40.5 30.2 31.0 30.5 31.3 37.4 38.4 41.4 49.5 56.9 53.4 47.9 40.7 56.9 30. 1979 36.6 26.5 18.4 7.1 26.8 32.2 36.9 43.6 51.2 57.8 56.6 51.1 37.1 57.8 7. 1980 41.8 25.0 27.6 23.2 32.3 30.8 39.9 45.9 48.4 56.3 50.7 48.7 39.2 56.3 23. STATISTICS N 39 39 39 40 40 40 40 40 40 40 40 40 40 40 40 40	1970	34.3	29.1			31.6				56.3			43.8		60.6	27.9
1972	1971	36.2	36.1	27.2	28.0	29.3			47.3		59.4		45.8		63.1	27.2
1973	1972	37.6	31.6	23.7	24.1			35.0								23.7
1974	1973	40.5	33.5	15.5	23.2			37.0		53.3	59.2			39.9		15.5
1975	1974					30.8				55.4				41.2		22.6
1976	1975		33.0	25.8		30.3		35.1	43.3	50.4		55.7	48.6	39.8		20.3
1977 36.9 29.2 16.8 11.9 22.9 28.4 38.9 42.2 55.5 57.1 59.5 48.4 37.3 59.5 11. 1978 40.5 30.2 31.0 30.5 31.3 37.4 38.4 41.4 49.5 56.9 53.4 47.9 40.7 56.9 30. 1979 36.6 26.5 18.4 7.1 26.8 32.2 36.9 43.6 51.2 57.8 56.6 51.1 37.1 57.8 7. 1980 41.8 25.0 27.6 23.2 32.3 30.8 39.9 45.9 48.4 56.3 50.7 48.7 39.2 56.3 23. STATISTICS N 39 39 39 40 40 40 40 40 40 40 40 40 40 40 40 40	1976	41.6	29.7	25.6	25.5		27.5	35.4					50.7	38.7		25.5
1978	1977						28.4			55.5		59.5				11.9
1979 36.6 26.5 18.4 7.1 26.8 32.2 36.9 43.6 51.2 57.8 56.6 51.1 37.1 57.8 7.1 1980 41.8 25.0 27.6 23.2 32.3 30.8 39.9 45.9 48.4 56.3 50.7 48.7 39.2 56.3 23. STATISTICS N 39 39 39 40 40 40 40 40 40 40 40 40 40 40 40 40	1978	40.5	30.2													30.2
1980 41.8 25.0 27.6 23.2 32.3 30.8 39.9 45.9 48.4 56.3 50.7 48.7 39.2 56.3 23. STATISTICS N 39 39 39 40 40 40 40 40 40 40 40 40 40 40 Mean 39.4 30.7 24.8 21.5 27.6 30.9 36.7 44.1 51.3 58.4 56.6 48.5 Max 46.5 36.1 32.4 34.2 35.8 37.4 40.9 50.4 56.6 64.0 63.1 57.3	1979	36.6			7.1	26.8			43.6	51.2						7.1
N 39 39 39 40 40 40 40 40 40 40 40 40 40 40 40 40	1980	41.8	25.0			32.3	30.8	39.9	45.9							23.2
Mean 39.4 30.7 24.8 21.5 27.6 30.9 36.7 44.1 51.3 58.4 56.6 48.5 Max 46.5 36.1 32.4 34.2 35.8 37.4 40.9 50.4 56.6 64.0 63.1 57.3	STATIS	STICS														
Mean 39.4 30.7 24.8 21.5 27.6 30.9 36.7 44.1 51.3 58.4 56.6 48.5 Max 46.5 36.1 32.4 34.2 35.8 37.4 40.9 50.4 56.6 64.0 63.1 57.3	N	39	39	30	40	40	40	40	40	40	40	40	40			
Max 46.5 36.1 32.4 34.2 35.8 37.4 40.9 50.4 56.6 64.0 63.1 57.3																
Min 34.3 21.2 15.5 0.5 18.3 26.2 32.4 40.1 46.3 54.5 50.7 43.5											6/L O	62 1				
											54.5	50.7	43.5			

IDAHO CITY

	e Minimu	m Month	ly Temp	erature	(Degre	es F.)								TED VEA	
Water		1101/	250	7.0.11		MAD	400	MAY	71151	110	ALIC	CED	AVG	ATER YEA	MIN
Year	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	AVG	MAX	MIN
1937	24.9	12.9	14.1	-5.0	9.7	20.2	25.8	31.7	37.1	45.0	37.8	35.4	24.1	45.0	-5.0
1937	27.1	25.5	16.2	14.2	19.2	21.0	27.3	31.6	38.7	45.5	40.3	39.7	28.9	45.5	14.2
1939	33.3	16.4	17.0	13.4	9.2	19.8	27.3	34.6	35.7	45.5	42.7	35.2	27.5	45.5	9.2
1940	29.6	19.5	24.0	19.1	20.9	25.2	30.0	34.0	39.5	44.9	42.0	42.1	30.9	44.9	9.2 19.1
1941	32.4	20.3	18.5	17.6	22.1	23.1	27.4	36.0	40.3	45.1	45.1	32.4	30.0	45.1	17.6
1942	27.6	22.1	18.4	7.1	6.6	16.8	26.6	32.6	35.6	42.0	41.0	33.1	25.8	42.0	17.6 6.6
1943	28.6	22.9	17.6	3.8	10.5	15.7	31.6	32.6	38.6	42.8	39.9	35.1	26.6	42.8	3.8
1944	31.4	21.7	17.0	7.2	16.2	16.6	28.5	32.7	38.5	42.8	39.6	36.2	27.4	42.8	7.2
1945	30.8	26.7	15.5	17.1	20.1	21.0	24.7	35.4	39.2	43.5	43.2	32.9	29.2	43.5	7.2 15.5 4.7
1946	28.7	22.2	13.4	4.7	8.4	20.9	28.8	34.3	39.4	46.5	42.9	34.7	27.1	46.5	4.7
1947	27.0	22.7	21.7	4.9	18.6	25.8	27.9	37.5	39.0	41.6	40.1	34.1	28.4	41.6	4.9
1948	33.5	19.9	16.9	10.8	12.9	15.7	28.3	35.8	43.5	41.2	39.4	33.5	27.6	43.5	4.9 10.8 -15.6
1949	25.6	19.8	3.0	-15.6	10.9	21.8	26.2	36.8	37.3	42.4	42.1	35.2	23.8	42.4	-15.6
1950	23.6	23.2	10.9	6.7	10.8	18.1	25.0	27.4	37.2	41.9	42.1	38.6	25.5	42.1	6.7
1951	33.2	26.4	22.9	8.3	17.0	13.7	26.7	34.4	35.7	43.1	41.9	31.5	27.9	43.1	8.3
1952	30.1	20.6	11.2	8.3	5.8	14.8	25.7	34.6	40.7	42.1	40.6	34.0	25.7	42.1	5.8 12.7
1953	25.5	12.7	17.3	22.8	14.8	21.0	25.5	32.0	37.1	41.3	42.0	35.5	27.3	42.0	12.7
1954	28.3	26.9	11.1	16.6	17.7	19.4	28.5	33.3	37.8	44.3	39.2	31.0	27.8	44.3	11.1
1955	23.4	22.4	11.0	4.6	5.3	12.4	25.7	32.1	37.9	43.9	39.1	32.4	24.2	43.9	4.6 7.0
1956	28.2	17.8	15.3	13.5	7.0	16.2	26.1	36.5	37.7	42.5	38.5	29.8	25.8	42.5	7.0
1957			15.4	4.9	16.9	23.7	28.9	39.2	40.5	43.9	40.7	36.2			
1958	30.7	18.3	18.3	12.7	23.7	20.6	29.3	38.7	44.8	45.9	47.0	35.7	30.5	47.0	12.7
1959	28.5	23.2	24.9	19.7	21.6	21.7	27.9	32.5	41.7	44.3	41.6	38.5	30.5	44.3	19.7
1960	31.4	19.6	14.3	13.5	13.4	21.7	29.5	32.5	40.1	49.1	41.2	38.1	28.7	49.1	13.4 14.7 5.9
1961	29.7	24.7	14.7	15.4	24.8	25.0	27.7	35.2	44.9	45.7	50.7	34.5	31.1	50.7	14.7
1962	29.2	19.8	15.4	5.9	17.9	18.9	29.0	35.6	40.0	43.8	41.4	36.0	27.7	43.8	5.9
1963	32.5	25.5	21.0	12.3	25.3	23.1	28.2	38.2	42.7	42.4	43.5	42.7	31.5	43.5	12.3 8.4
1964	35.3	26.7	15.7	11.9	8.4	17.8	25.8	32.3	42.5	46.1	41.8	34.3	28.2	46.1	8.4
1965	29.5	21.1	19.3	20.6	17.0	16.6	32.0	33.7	40.7	45.3	45.4	32.1	29.4	45.4	16.6
1966	29.7	27.1	15.6	16.1	14.0	20.6	26.9	34.7	39.4	42.1	43.5	40.6	29.2	43.5	14.0
1967	26.9	26.4	19.2	21.2	19.5	23.9	27.6	33.0	42.1	48.0	46.3	41.9	31.3	48.0	19.2 13.2
1968	29.9	25.0	13.2	13.7	23.3	25.6	25.0	31.9	40.1	45.4	44.5	38.1	29.6	45.4	13.2
1969	29.0	26.0	18.8	17.6	16.1	16.7	28.6	36.6	41.5	44.0	42.3	38.2	29.6	44.0	16.1 18.5
1970	26.9	22.2	18.5	20.5	20.1	22.8	24.5	34.1	43.3	47.1	43.7	32.6	29.7	47.1	18.5
1971	26.3	27.5	11.5	15.0	16.8	19.8	27.9	35.7	40.5	45.2	47.8	32.4	28.9	47.8	11.5
1972	28.0	22.9	15.4	13.4	10.4	22.6	27.0	34.7	42.8	42.8	46.0	34.4	28.4	46.0	10.4
1973 1974	30.8	25.3	13.4	15.5	20.6	23.1	26.7	34.5	40.9	45.9	44.2	38.0	29.9	45.9	13.4 12.3
1974	30.6 30.5	28.0 25.2	22.2 16.3	12.3 14.8	15.0	24.3	28.6 25.4	32.9 32.5	41.4	45.8	42.4 43.4	34.4 35.5	29.8 29.5	45.8 50.5	14.0
1975					19.3	22.0			38.8	50.5					14.8 14.5
1977	31.9 26.5	21.4	19.4 13.4	14.5 9.3	15.3	14.8	27.4	34.6	37.6	47.0	43.7 45.8	40.3	29.0 28.2	47.0	9.3
1978	28.9	21.7 23.4	21.9	21.6	17.6 23.7	19.2 26.5	26.6 31.6	32.1 34.6	44.1 39.3	44.9 46.2	42.7	37.2 38.9	31.6	45.8 46.2	21.6
1979	27.4	21.8	5.8	3.5	16.8	22.7	29.4	35.4	39.5	45.5	47.5	37.7	27.8	47.5	3.5
1980	32.3	19.0	20.5	15.0	23.4	24.0	31.2	37.8		46.2	47.5	39.2		47.5	J.J
1900	32.3	19.0	20.5	15.0	23.4	24.0	31.2	3/ .0	40.4	40.2		39.4			- -
STATI	STICS														
N	43	43	44	44	44	44	44 .	44	44	44	43	44			
Меап	29.2	22.4	16.3	11.8	16.0	20.4	27.6	34.3	39.9	44.6	42.7	35.9 42.7			
Max	35.3	28.0	24.9	22.8	25.3	26.5	32.0	39.2	44.9	50.5	50.7	42.7			
Min	23.4	12.7	3.0	-15.6	5.3	12.4	24.5	27.4	35.6	41.2	37.8	29.8			

TABLE 4-4

BOISE BASIN - TOTAL MONTHLY PRECIPITATION (Inches)

ANDERSON RANCH DAM

Elevation = 3,882

	_ 				E10	evation	= 3,88	۷				
Water												
Year	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1942				1.74	3.16	0.57	1.23	2.27	0.59	0.04	0.08	0.07
1943	0.52	5.72	10.37	3.39	1.63	2.75	1.49	0.63	1.04	0.10	0.00	0.00
1943	2.35				1.83		2.84	0.03			0.00	0.10
	2.35	0.81	0.66	1.08		0.58			2.46		0.00	
1945	0.49	2.57	1.84	1.02	4.08		0.51	2.62	1.68	0.06	0.00	0.65
1946	0.85	3.46	5.66	2.96	2.84	2.88	0.25	1.64	0.15	0.28	0.03	1.00
1947	2.74	2.50	2.19	1.20	0.90	3.10	0.59	0.91	1.85	0.04	0.13	0.05
1948	2.76	1.12	0.73	1.93	2.51	1.29	1.58	0.64	1.19	0.21	0.00	0.00
1949	0.58 0.93	2.76	3.46	0.81	3.81	0.51	0.07 0.36	2.12	0.66	0.07	0.03	0.59
1950	0.93	1.90	1.32	3.84	2.27	4.43	0.36	0.88		0.37	0.40	3.17
1951	1.06	3.63	3.19	3.60 3.83	3.76	1.01	1.65	0.76	0.56	0.34	0.41	0.01
1952	2.71	3.12	6.34	3.83	8.15	1.75	0.69	1.44	1.41	0.28	0.01	0.00
1953	0.00	1.37	3.30	4.08	1.63	0.90	0.96	3.22	1.78	0.00	0.18	0.11
1954	0.22	2.48	1.87	4.07	1.53	1.76	1.05	0.20	2.03	0.55	0.25	0.41
1955	0.42	1.55	2.01	1.59	0.97	1.50	2.10	1.22	1.36	0.12	0.00	0.49
1956	1.19	3.49	6.80	5.65	2.56	0.84	0.55	1.72	0.70	0.00	0.10	0.11
1957	3.66	0.68	2.56	2.53	3.28	2.99	2.02	3.45 2.13	0.35	0.02	0.10	0.00
1958	0.69	1.33	4.11	3.09	2.86	2.21	3.11	2.13	1.20	0.97	0.37	0.02
1959	0.25	3.54	2.34	3.69	2.31	2.45	0.37	1.93	0.36	0.18	0.26	4.17
1960	1.97	0.90	2.78	2.02	3.53	3.63	0.32	1.02	0.00	0.00	0.51	0.42
961	0.80	4.28	0.89	1.29	1.26	2.18	0.66	0.25	0.44	0.28	0.15	1.54
962	2.73	2.53	2.66	1.50	3.33	2.63	1.09	2.11	0.55	0.49	0.40	0.65
1963	1.14	2.63	1.06	2.06	3.29	1.26	1.09 2.95	1.64	3.78	0.07	0.96	1.91
1964	0.55	5.77	1.19	4.49	0.26	1.91	1.34	0.77	2.69	0.12	0.03	0.39
1965	0.19	4.12	9.49	4.87	0.55	0.62	3.48	0.87	1.39	0.21	2.96	0.77
1966	0.09	2.64	1.09	2.47	0.72	2.00	1.22	0.76	0.07	0.04	0.00	0.31
1967	0.59	2.47	2.80	5.55	0.79	1.36	2 05	0.66	3.02	1.29	0.00	0.23
1968	1.65	2.74	2.04	1.47	4.73	0.52	2.05 0.29	0.80	1.31	0.12	3.10	0.59
1969	0.78	3.04	4.64	7.52	1.66	0.16	0.21	0.08	2.46	0.12	0.00	1.83
970	0.89	0.38	4.98	11.14	0.64	1.70	0.31 1.53	0.84	3.69	0.74	0.49	0.76
971	2.49		4.62	6.33	1.89		0.40	1.35	1 02	0.74	0.49	0.41
		6.81		D.33	2.09	3.03	1 22		1.83			1.27
972	1.16	3.31	3.79	5.82	2.28	3.20	1.23	1.05	0.77	0.00	0.44	0.07
973	1.62	1.71	4.03	2.38	1.47	0.75	0.86	0.72	0.56	0.52	0.12	0.87
974	1.01	5.76	5.41 3.37	3.61	1.64	3.52	1.30 1.34	0.31	0.57	0.09	0.20	0.00
975	0.92	1.51	3.3/	3.03	5.60	5.24	1.34	0.66	0.64	1.30	0.71	0.26
976	4.00	2.36	3.26	3.26	2.99	1.30	1.48	0.50	0.55	0.22	1.80	1.71
977	0.58	0.00	0.01	0.54	0.42	1.20	0.08	2.19	0.80	1.39	1.30	0.69
978	0.32	4.17	6.67	3.78	3.44	0.95	2.39	0.66	0.43	1.36	0.40	2.46
979	0.02	0.86	2.36	3.26	2.33	0.20	0.74	1.28	0.19	0.37	1.52	0.18
980	1.61	1.96	1.95	5.33	2.40	1.41	0.99	2.08	0.75	0.28	0.10	2.05
TATIS	TICS											
1717125	38	38	38	39	39	39	39	39	39	39	39	39
ean	1.22	2.68	3.36	3.38	2.44	1.87	1.22	1.25	1.19	0.34	0.45	0.78
ax.	4.00	6.81	10.37	11.14	8.15	5.24	3.48	3.45	3.78	1.39	3.10	4.17
in.	0.00	0.00	0.01	0.54	0.26	0.16	0.07	0.08	0.00	0.00	0.00	0.00
	0.00	0.00	0.01	0.54	0.20	0.10	0.07	0.00	0.00	0.170	0.00	0.00

BOISE BASIN - TOTAL MONTHLY PRECIPITATION (Inches)

ARROWROCK DAM

E.	evation	= 3	,275
_		_	,

						vacion	= 3,2/5					
Water Year	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1601	001	1101	DEC	UAN	LED	MAR	AFR	PIAT	0011	UUL	Aud	JLI
1912			2.09	4.99	2.49	2.00	2.40	2.33	1.27	0.87	0.24	0.87
1913	1.56	0.65	2.01	2.75	0.12	3.60	0.45	0.10	2.22	3.31	0.29	0.79
1914	2.80	4.28	3.35	2.99	1.84	0.20	1.71	1.55	0.32	1.03	0.00	0.49
1915	1.70	0.33	0.60	1.96	2.59	0.95	2.65	4.19	1.47	0.56	0.00	0.41
1916	0.18	4.10	5.13	5.06	7.99	1.38	0.50	1.27	1.70	0.83	0.55	0.00
1917	0.88	2.70	2.40	2.73	2.10	3.45	3.70	1.70	0.00	0.00	0.00	1.00
1918	0.13	2.65	6.05	3.40	0.60	2.45	0.35	0.65	0.10	0.00	0.25	2.16
1919	0.85	0.60	0.60	2.60	4.15	2.90	1.30	0.40	0.00	0.00	0.00	0.35
1920	1.90	4.85	1.30	1.50	0.30	2.50	2.05	0.53	1.42	0.00	0.38	0.79
1921	1.86	3.93	3.58	2.35	2.44	1.20	1.60	2.29	0.30	0.00	0.00	0.62
1922	0.32	6.10	2.41	1.14	0.79	2.46	1.48	0.46	0.68	0.20	1.29	0.00
1923	0.56	0.95	2.79	3.85	0.27	0.62	1.38	1.64	2.41	0.27	0.63	0.67
1924	2.37	1.08	1.31	0.70	1.34	0.50	0.40	0.00	0.14	0.03	0.00	0.14
1925	2.37	1.56	3.43	4.15	3.19	0.72	3.09	0.44	1.80	0.47	0.33	0.85
1926	2.08	1.98	2.06	0.88	3.99	0.48	1.18	1.42	0.16	0.29	1.08	0.00
1927	0.10	5.53	2.48	3.20	5.56	1.35	0.46	2.03	1.20	0.00	0.46	1.06
1928	1.24	6.99	1.89	2.41	0.44	3.78	1.03	0.63	0.16	0.10	0.12	0.56
1929	1.21	0.98	2.52	4.43	1.55	1.58	2.13	0.30	0.96	0.00	0.37	0.26
1930	0.43	0.00	2.41	2.46	2.91	2.05	1.54	2.20	0.11	0.00	0.87	0.78
1931	1.34	2.41	0.41	1.62	1.18	3.78	1.53	0.00	0.09	0.00	0.06	0.58
1932	0.77	2.77	1.79	1.91	1.27	5.09 1.13	1.63	1.79	1.47	1.19	0.05	0.00
1933	0.84	2.73	2.04	2.53	3.14	1.13	0.67	1.84	0.27	0.00	0.00	0.12
1934 1935	1.23 2.19	0.28 3.00	2.79 2.68	2.24 1.45	1.50 1.14	1.75	0.56	0.35	1.06 0.05	0.05	0.06 0.00	0.16 0.00
1936	0.15	1.18	1.02	5.54	4.60	1.26 1.46	3.55 1.12	0.87 0.59	1.68	0.30	0.00	0.30
1937	0.00	0.00	1.45	2.83	3.11	1.50	2.24	0.59	0.56	0.30	0.00	0.30
1938	1.36	3.17	3.65	3.08	1.03	4.36	0.73	2.71	2.35	2.09	0.00	0.14
1939	1.57	3.40	1.60	1.85	2.89	0.80	0.60	0.15	0.21	0.26	0.11	1.38
1940	2.00	0.03	1.97	3.17	4.13	2.89	3.04	0.08	0.08	0.31	0.05	2.43
1941	1.78	2.39	2.11	2.68	1.66	0.53	2.23	2.67	2.49	0.50	1.18	0.13
1942	1.13	1.51	4.20	1.45	2.32	0.63	1.50	2.54	0.62	0.00	0.08	0.00
1943	0.48	6.32	7.38	3.84	1.78	2.85	1.75	0.55	1.35	0.13	0.00	0.00
1944	2.46	1.22	0.58	0.61	2.35	0.87	2.81	0.15	2.59	0.00	0.00	0.07
1945	0.61	3.16	1.89	1.54	4.45	2.55	0.80	3.24	1.49	0.07	0.04	0.47
1946	0.75	3.51	5.90	3.85	3.54	2.19	0.66	1.04	0.13	0.01	0.12	0.40
1947	2.11	3.28	1.81	2.01	0.94	3.36	0.87	0.97	1.38	0.00	0.05	0.63
1948	2.79	1.62	1.34	2.43	3.04	1.78	2.52	0.77	1.80	0.18	0.00	0.22
1949	0.55	2.34	5.23	0.78	5.97	0.73	0.04	1.48	0.67	0.00	0.09	0.21
1950	1.80	2.09	1.93	4.58	2.13	4.53	0.62	1.35	0.81	0.17	0.42	1.14
1951	1.01	3.00	3.15	4.26	4.24	1.76	1.66	0.95	0.91	0.22	0.18	0.01

BOISE BASIN - TOTAL MONTHLY PRECIPITATION (Inches)

ARROWROCK DAM (Continued)

	E3	evation	= 3	.275
--	----	---------	-----	------

Water												
Year	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1952	3.07	3.53	5.01	2.46	2.82	1.51	0.61	1.15	0.92	0.41	0.00	0.01
1953	0.00	0.77	2.20	6.94	1.79	2.32	1.25	2.96	1.79	0.00	0.26	0.05
1954	0.16	3.31	2.13	2.92	1.03	2.04	0.97	0.65	2.25	0.08	0.08	0.23
1955	0.31	1.54	2.56	1.43	0.81	1.48	3.31	1.59	1.06	0.18	0.00	0.35
1956	1.46	3.28	5.49	4.56	2.48	0.82	1.40	2.56	1.02	0.59	0.11	0.01
1957	3.69	0.45	2.32	1.97	3.72	3.20	1.82	2.63	0.15	0.00	0.00	0.03
1958	0.99	1.73	4.95	3.15	3.11	1.89	3.29	1.06	3.46	0.59	0.15	0.17
1959	0.21	3.11	2.37	3.42	1.86	2.00	0.35	2.96	0.13	0.00	0.37	3.74
1960	2.17	0.88	1.65	1.94	4.09	3.12	0.46	1.96	0.02	0.34	0.68	0.78
1961	0.72	4.09	1.22	1.05	2.17	2.39	0.62	0.83	0.40	0.12	0.34	1.01
1962	3.57	2.86	2.44	1.56	2.20	2.82	1.14	2.21	0.62	0.01	0.06	0.65
1963	1.55	2.50	0.50	1.56	3.11	0.78	2.61	1.71	2.35	0.00	0.39	1.35
1964	0.70	5.07	1.05	4.20	0.19	1.46	1.13	0.88	1.26	0.47	0.11	1.15
1965	0.33	4.55	7.57	5.05	0.65	0.89	3.94	1.14	1.36	0.19	1.27	1.30
1966	0.28	2.85	0.96	2.36	0.82	1.92	1.10	0.16	0.25	0.02	0.00	0.10
1967	0.48	2.67	2.44	3.89	1.04	1.00	1.52	0.62	2.73	0.11	0.00	0.57
1968	1.74	1.37	0.92	0.95	4.19	0.77	0.67	0.98	0.79	0.01	3.85	0.12
1969	1.06	3.17	4.05	5.20	1.55	0.30	1.03	0.34	1.57	0.09	0.00	0.38
1970	0.43	0.68	3.22	9.09	1.07	0.91	1.27	1.63	2.52	0.88	0.02	0.88
1971	2.23	4.95	3.84	5.19	1.66	2.93	0.25	0.62	2.15	0.10	0.05	0.34
1972	0.77	4.54	4.19	5.51	2.15	2.33	1.47	0.90	1.11	0.05	0.41	1.09
1973	0.70	2.49	3.12	1.78	0.98	1.02	2.11	0.70	0.44	0.04	0.08	0.72
1974	1.28	5.36	4.37	1.86	2.01	2.66	0.78	0.09	0.57	0.57	0.33	0.00
1975	1.08	2.02	3.22	1.57	4.24	3.79	1.71	0.64	0.72	0.47	0.23	0.27
1976	3.08	1.44	3.53	4.07	1.73	0.73	1.68	0.48	1.40	0.10	1.99	1.66
1977	0.50	0.06	0.12	0.72	0.54	1.41	0.19	2.26	1.29	0.54	0.71	0.72
1978	0.37	3.74	4.49	2.61	3.08	1.44	3.15	0.44	1.02	1.53	0.28	1.41
1979	0.00	0.87	1.78	2.17	1.97	0.72	1.02	1.28	0.35	0.00	0.86	0.39
1980	2.13	1.64	1.15	4.27	2.77	1.98	0.77	3.18	0.69	0.07	0.01	3.00

N	68	68	69	69	69	69	69	69	69	69	69	69
Mean	1.24	2.56	2.70	2.92	2.33	1.89	1.48	1.27	1.07	0.31	0.32	0.62
Max.	3.69	6.99	7.57	9.09	7.99	5.09	3.94	4.19	3.46	3.31	3.85	3.74
Min.	0.00	0.00	0.12	0.61	0.12	0.20	0.04	0.00	0.00	0.00	0.00	0.00

TABLE 4-4 (Continued)

BOISE BASIN - TOTAL MONTHLY PRECIPITATION (Inches)

LUCKY PEAK DAM

_ C 1	evation	_	2	0/0
	levation	_	۷,	.O4V

Link						EVACION		· <u>·</u>				
Water	0CT	NOV	DEC	3 / 10	EED	MAR	ADD	MAV	31181	1111	ALIC	SEP
<u>Year</u>	001	NUV	DEC	JAN	FEB	PIAK	APR	MAY	JUN	JUL	AUG	257
1950												
1951					2.02	1.24	1.15	0.93	0.76	0.19	0.00	0.00
1952	1.87	1.84	3.11	1.22	1.21	1.68	0.68	1.27	0.97			0.00
1953	0.00	0.66	1.39	4.58	1.40	1.27	1.55	2.43	1.53	0.00		0.02
1954	0.11	1.75	1.34	1.12	0.42	1.20	0.24	0.58				0.38
1955	0.31	0.95	1.16	2.03	0.35	0.71	2.75	1.52				
1956												
1957									0.13	0.00	0.01	0.05
1958	0.77	1.56	2.76	2.50	2.23	1.71	2.87	2.28	2.82	0.51	0.26	0.30
1959	0.13	1.53	1.66	1.80	1.06	1.20	0.21	2.37	0.49	0.00	1.26	2.14
1960	0.98	0.58	0.75	1.43	2.29	1.84	0.41	1.62	0.01	1.11	0.77	0.45
1961	0.40	2.34	0.53	0.53	1.20	1.54	0.49	0.59	0.46	0.00	0.35	0.72
1962	2.15	1.06	1.07	0.74	1.23	1.26	1.12	2.66	0.58	0.00	0.02	0.59
1963	0.98	2.00	0.26	1.09	2.59	0.41	2.24	1.01	2.49	0.00	1.18	0.40
1964	0.74	2.87	1.13	2.09	0.15	0.83	1.40	1.77	1.61	0.22	0.25	0.82
1965	0.25	2.32	4.63	3.51	0.44	0.66	3.20	0.70	1.03	0.03	1.39	0.33
1966	0.26	2.14	0.48	0.85	0.78	1.07	0.95	0.27	0.21	0.00	0.00	0.15
1967	0.31	2.03	1.29	1.66	0.53	0.39	1.24	0.72	1.66	0.46	0.00	0.34
1968	0.86	0.97	0.73	0.58	2.34	0.98	0.54	0.44	1.02	0.00	4.14	0.42
1969	0.73	2.31	1.49	3.15	0.90	0.27	1.90	0.25	1.95	0.02	0.00	0.30
1970	0.40	0.54	2.62	4.48	0.58	0.97	1.35	1.02	2.76	0.67	0.03	1.10
1971	1.38	2.90	1.43	2.64	0.69	1.84	0.44	0.59	2.29	0.01	0.01	0.27
1972	0.68	3.03	1.94	2.37	1.00	1.98	1.02	0.81	0.62	0.16	0.12	0.94
1973	0.78	1.40	1.63	0.91	0.44	0.61	1.55	0.79	0.27	0.17	0.03	1.10
1974	1.10	2.92	2.54	1.02	0.65	1.10	0.96	0.21	0.60	0.48	0.21	0.00
1975	1.68	1.49	3.05	0.93	2.70	2.29	2.26	0.96	0.85	0.68	0.27	0.00
1976	2.71	0.94	1.58	2.56	1.39	1.58	2.31	0.48	1.72	0.22	2.02	1.86
1977	0.52	0.06	0.20	0.55	0.54	1.11	0.47	2.31	1.45	0.36	0.68	0.97
1978	0.22	2.19	3.03	2.91	2.21	1.58	3.12	0.48	1.03	0.89	0.17	1.43
1979	0.00	0.89	1.11	2.30	1.54	0.75	1.38	1.59	0.23	0.00	1.51	0.31
1980	1.61	1.82	0.84	2.37	1.75	2.82	1.16	4.07	0.85	0.02	0.00	2.57
CTATIO	TICC											
STATIS N	<u> 27</u>	27	27	27	28	28	28	28	28	28	28	28
Mean	0.81	1.67	1.62	1.92	1.24	1.25	1.39	1.24	1.14	0.23	0.53	0.64
Max.	2.71	3.03	4.63	4.58	2.70	2.82	3.20	4.07	2.82	1.11	4.14	2.57
	0.00		0.20			0.27				0.00		0.00

BOISE BASIN - TOTAL MONTHLY PRECIPITATION (Inches)

BOISE AIRPORT - WSFO

E14	eva	tion	= 2.	.838
-----	-----	------	------	------

GEAT OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP 944 1.42 0.50 0.41 0.41 1.20 0.18 2.92 0.36 2.04 0.06 0.00 0.16 945 0.43 1.60 1.09 1.09 2.17 1.76 0.47 2.21 0.78 0.07 0.08 0.44 947 1.11 2.05 0.86 0.50 0.44 1.84 0.52 1.02 0.80 0.00 0.05 0.80 948 2.18 1.27 0.66 0.81 1.58 1.42 1.37 0.91 1.57 0.08 0.05 0.31 0.00 0.05 0.80 949 0.68 1.02 2.11 0.12 2.05 0.48 0.09 0.73 0.37 0.00 0.12 0.19 951 0.42 1.53 2.19 1.66 2.16 1.06	Water					E10	evacion	= 2,030)				
944 1.42 0.50 0.41 0.41 1.20 0.18 2.92 0.36 2.04 0.06 0.00 0.16 945 0.43 1.60 1.09 1.09 2.17 1.76 0.47 2.21 0.78 0.07 0.08 0.44 946 0.62 1.51 2.24 1.37 1.31 1.67 0.35 0.55 0.13 0.04 0.26 0.16 947 1.11 2.05 0.86 0.55 0.44 1.84 0.52 1.02 0.80 0.00 0.00 0.05 948 2.18 1.27 0.66 0.81 1.58 1.42 1.37 0.91 1.57 0.08 0.00 0.00 0.05 949 0.68 1.02 2.11 0.12 2.05 0.48 0.09 0.73 0.37 0.00 0.12 0.19 950 1.20 1.40 0.68 2.53 1.09 2.01 0.55 1.27 0.92 0.04 0.52 0.92 951 0.42 1.53 2.19 1.66 2.16 1.05 0.94 0.94 0.70 0.29 0.07 0.01 952 1.60 1.80 2.47 1.24 1.12 2.05 1.88 1.08 1.10 0.15 0.00 0.05 953 0.00 0.35 1.00 3.35 1.49 0.92 1.52 2.59 1.22 0.00 0.12 0.02 954 0.11 1.31 1.15 1.09 0.55 1.20 0.42 0.95 1.10 0.06 0.24 0.08 955 0.44 0.94 1.09 1.32 0.43 0.39 3.04 1.48 0.63 0.39 0.00 0.12 956 0.74 1.43 2.22 2.17 0.91 0.39 1.62 2.18 0.80 0.15 0.08 957 2.25 0.41 0.84 1.04 1.72 2.27 1.15 2.79 0.25 0.00 0.00 958 0.74 1.43 2.22 2.17 0.91 0.39 1.62 2.18 0.80 0.15 0.08 0.02 959 0.09 1.04 1.28 1.33 1.91 0.57 1.94 2.05 2.18 0.80 0.15 0.08 0.02 958 0.42 0.81 2.08 1.37 1.91 0.57 1.94 2.05 2.94 0.48 0.53 0.12 960 0.76 0.36 0.53 1.33 1.71 1.90 0.57 1.94 2.05 2.94 0.48 0.53 0.12 961 0.49 1.82 0.43 0.42 1.20 1.39 0.43 1.21 0.01 0.95 0.83 0.29 962 1.60 0.76 0.36 0.53 1.33 1.71 1.90 0.57 1.94 2.05 2.94 0.48 0.53 0.29 963 0.09 1.04 1.28 1.33 0.63 1.08 0.19 1.68 0.27 0.00 0.64 2.54 960 0.76 0.36 0.53 1.33 1.71 0.90 0.57 1.94 2.05 2.94 0.48 0.53 0.12 961 0.49 1.82 0.43 0.42 1.20 1.39 0.43 1.21 0.01 0.95 0.83 0.29 962 1.76 0.95 0.90 1.00 0.77 1.27 0.92 2.90 0.12 0.04 0.12 0.40 963 1.22 1.67 0.25 1.13 1.70 0.21 1.65 0.85 1.90 0.00 0.00 0.64 2.54 964 0.99 2.41 1.02 2.46 0.19 0.64 1.35 1.76 2.00 0.10 0.00 0.57 0.80 965 0.21 2.33 3.19 2.89 0.31 0.04 0.25 1.55 0.25 0.00 0.00 0.05 967 0.25 1.50 0.65 0.57 0.66 0.50 1.50 0.60 0.61 0.32 0.01 0.06 0.05 0.80 968 0.42 0.89 0.50 0.43 1.86 0.71 0.35 0.40 0.60 0.60 0.00 2.37 0.10 969 0.70 1.50 1.95 3.50 0.00 0.00 0.64 2.55 0.55 0.25 0.25 0.25 0.25 0.25 0.80 977 1.81 0.81 0.81 0.81 0.81 0.81 0.81 0.81		ОСТ	NOV	DEC	1 / N	CCD	MAD	A D D	MAV	11181	1111	ALIC	CED
945 0.43 1.60 1.09 1.09 2.17 1.76 0.47 2.21 0.78 0.07 0.08 0.44 946 0.62 1.51 2.24 1.37 1.31 1.67 0.35 0.55 0.13 0.04 0.26 0.16 947 1.11 2.05 0.86 0.50 0.44 1.84 0.52 1.02 0.80 0.00 0.05 0.80 948 2.18 1.27 0.66 0.81 1.58 1.42 1.37 0.91 1.57 0.08 0.05 0.31 949 0.68 1.02 2.11 0.12 2.05 0.48 0.09 0.73 0.37 0.00 0.12 0.19 950 1.20 1.40 0.68 2.53 1.09 2.01 0.55 1.27 0.92 0.04 0.52 0.92 951 0.42 1.53 2.19 1.66 2.16 1.05 0.94 0.94 0.70 0.29 0.07 0.01 952 1.60 1.80 2.47 1.24 1.12 2.05 1.08 1.08 1.10 0.15 0.00 0.05 953 0.00 0.35 1.00 3.35 1.09 0.92 1.52 2.59 1.20 0.00 0.12 0.02 954 0.11 1.31 1.15 1.09 0.55 1.20 0.42 0.95 1.10 0.06 0.24 0.08 955 0.44 0.94 1.09 1.32 0.43 0.39 3.04 1.48 0.63 0.39 0.00 0.12 0.92 956 0.74 1.43 2.22 2.17 0.91 0.39 1.62 2.18 0.80 0.15 0.08 0.02 958 0.42 0.81 2.08 1.37 1.91 0.57 1.94 2.05 2.94 0.48 0.53 0.12 959 0.95 1.04 1.28 1.33 0.63 1.09 1.04 1.72 2.27 1.15 2.79 0.25 0.00 0.00 0.06 958 0.42 0.81 2.08 1.33 1.74 1.39 0.43 1.68 0.27 0.00 0.64 2.54 960 0.76 0.36 0.53 1.33 1.74 1.39 0.43 1.21 0.01 0.95 0.83 0.29 961 0.49 1.82 0.43 0.42 1.20 1.39 0.43 1.68 0.27 0.00 0.44 0.4 1.28 1.39 0.43 1.09 0.43 1.68 0.27 0.00 0.64 2.54 960 0.76 0.36 0.53 1.33 1.74 1.39 0.43 1.68 0.27 0.00 0.64 0.55 0.25 0.21 0.79 961 0.49 1.82 0.43 0.42 1.20 1.39 0.43 1.08 0.19 1.68 0.27 0.00 0.64 2.54 960 0.76 0.36 0.53 1.33 1.77 1.27 0.92 2.90 0.12 0.04 0.12 0.40 963 1.22 1.67 0.25 1.13 1.70 0.21 1.65 0.85 1.76 2.00 0.04 0.12 0.40 963 1.22 1.67 0.25 1.13 1.70 0.65 1.55 0.85 0.85 0.25 0.25 0.21 0.79 964 0.99 2.41 1.02 2.46 0.19 0.64 1.35 1.76 2.00 0.41 0.55 0.80 0.55 965 0.21 2.33 3.19 2.89 0.31 0.43 2.81 0.80 0.55 0.55 0.25 0.25 0.25 0.80 969 0.70 1.50 0.43 1.86 0.73 0.60 0.60 0.61 0.32 0.01 0.06 0.00 0.64 0.55 0.57 0.50 0.00 0.00 0.58 969 0.70 1.50 0.70 0.50 0.60 0.71 0.75 0.60 0.60 0.60 0.60 0.60 0.00 0.23 0.00 0.00 0.80 970 0.64 0.59 0.78 1.29 1.49 1.31 0.70 0.65 1.50 0.40 0.25 0.50 0.00 0.00 0.80 971 0.81 0.81 0.82 0.83 0.83 0.83 0.83 0.83 0.83 0.83 0.83	rear	061	NUV	DEC	UAN	FED	MAK	APR	MAT	JUN	JUL	AUG	JEF_
945 0.43 1.60 1.09 1.09 2.17 1.76 0.47 2.21 0.78 0.07 0.08 0.44 946 0.62 1.51 2.24 1.37 1.31 1.67 0.35 0.55 0.13 0.04 0.26 0.16 947 1.11 2.05 0.86 0.50 0.44 1.84 0.52 1.02 0.80 0.00 0.05 0.80 948 2.18 1.27 0.66 0.81 1.58 1.42 1.37 0.91 1.57 0.08 0.05 0.31 949 0.68 1.02 2.11 0.12 2.05 0.48 0.09 0.73 0.37 0.00 0.12 0.19 950 1.20 1.40 0.68 2.53 1.09 2.01 0.55 1.27 0.92 0.04 0.52 0.92 951 0.42 1.53 2.19 1.66 2.16 1.05 0.94 0.94 0.70 0.29 0.07 0.01 952 1.60 1.80 2.47 1.24 1.12 2.05 1.08 1.08 1.10 0.15 0.00 0.05 953 0.00 0.35 1.00 3.35 1.09 0.92 1.52 2.59 1.20 0.00 0.12 0.02 954 0.11 1.31 1.15 1.09 0.55 1.20 0.42 0.95 1.10 0.06 0.24 0.08 955 0.44 0.94 1.09 1.32 0.43 0.39 3.04 1.48 0.63 0.39 0.00 0.12 0.92 956 0.74 1.43 2.22 2.17 0.91 0.39 1.62 2.18 0.80 0.15 0.08 0.02 958 0.42 0.81 2.08 1.37 1.91 0.57 1.94 2.05 2.94 0.48 0.53 0.12 959 0.95 1.04 1.28 1.33 0.63 1.09 1.04 1.72 2.27 1.15 2.79 0.25 0.00 0.00 0.06 958 0.42 0.81 2.08 1.33 1.74 1.39 0.43 1.68 0.27 0.00 0.64 2.54 960 0.76 0.36 0.53 1.33 1.74 1.39 0.43 1.21 0.01 0.95 0.83 0.29 961 0.49 1.82 0.43 0.42 1.20 1.39 0.43 1.68 0.27 0.00 0.44 0.4 1.28 1.39 0.43 1.09 0.43 1.68 0.27 0.00 0.64 2.54 960 0.76 0.36 0.53 1.33 1.74 1.39 0.43 1.68 0.27 0.00 0.64 0.55 0.25 0.21 0.79 961 0.49 1.82 0.43 0.42 1.20 1.39 0.43 1.08 0.19 1.68 0.27 0.00 0.64 2.54 960 0.76 0.36 0.53 1.33 1.77 1.27 0.92 2.90 0.12 0.04 0.12 0.40 963 1.22 1.67 0.25 1.13 1.70 0.21 1.65 0.85 1.76 2.00 0.04 0.12 0.40 963 1.22 1.67 0.25 1.13 1.70 0.65 1.55 0.85 0.85 0.25 0.25 0.21 0.79 964 0.99 2.41 1.02 2.46 0.19 0.64 1.35 1.76 2.00 0.41 0.55 0.80 0.55 965 0.21 2.33 3.19 2.89 0.31 0.43 2.81 0.80 0.55 0.55 0.25 0.25 0.25 0.80 969 0.70 1.50 0.43 1.86 0.73 0.60 0.60 0.61 0.32 0.01 0.06 0.00 0.64 0.55 0.57 0.50 0.00 0.00 0.58 969 0.70 1.50 0.70 0.50 0.60 0.71 0.75 0.60 0.60 0.60 0.60 0.60 0.00 0.23 0.00 0.00 0.80 970 0.64 0.59 0.78 1.29 1.49 1.31 0.70 0.65 1.50 0.40 0.25 0.50 0.00 0.00 0.80 971 0.81 0.81 0.82 0.83 0.83 0.83 0.83 0.83 0.83 0.83 0.83	1944	1 42	0.50	0 /1	0.41	1 20	በ 18	2 02	0.36	2 0/	0 06	0 00	0 16
946 0.62 1.51 2.24 1.37 1.31 1.67 0.35 0.55 0.13 0.04 0.26 0.16 948 2.18 1.27 0.66 0.50 0.44 1.84 0.52 1.02 0.80 0.00 0.05 0.80 948 2.18 1.27 0.66 0.81 1.58 1.42 1.37 0.91 1.57 0.08 0.05 0.31 949 0.68 1.02 2.11 0.12 2.05 0.48 0.09 0.73 0.37 0.00 0.12 0.19 950 1.20 1.40 0.68 2.53 1.09 2.01 0.55 1.27 0.92 0.04 0.52 0.92 951 0.42 1.53 2.19 1.66 2.16 1.05 0.94 0.94 0.70 0.29 0.07 0.01 9952 1.60 1.80 2.47 1.24 1.12 2.05 1.08 1.08 1.10 0.15 0.00 0.55 0.93 0.90 0.05 0.35 0.93 0.00 0.35 1.00 3.35 1.49 0.92 1.52 2.59 1.22 0.00 0.12 0.02 954 0.11 1.31 1.15 1.09 0.55 1.20 0.42 0.95 1.10 0.06 0.24 0.08 955 0.44 0.94 1.09 1.32 0.43 0.39 3.04 1.48 0.63 0.39 0.00 0.15 0.80 0.95 0.44 0.94 1.03 1.13 1.15 1.09 0.55 1.20 0.42 0.95 1.10 0.06 0.24 0.08 955 0.44 0.94 1.09 1.32 0.43 0.39 1.62 2.18 0.80 0.15 0.08 0.02 957 2.25 0.41 0.84 1.04 1.72 2.27 1.15 2.79 0.25 0.00 0.00 0.06 958 0.42 0.81 2.08 1.37 1.91 0.57 1.94 2.05 2.98 0.15 0.00 0.00 0.06 958 0.42 0.81 2.08 1.37 1.91 0.57 1.94 2.05 2.94 0.48 0.53 0.29 950 0.76 0.36 0.53 1.33 1.74 1.39 0.43 1.21 0.01 0.05 0.80 0.29 0.96 0.76 0.36 0.53 1.33 1.74 1.39 0.43 1.21 0.01 0.05 0.80 0.29 0.96 0.76 0.36 0.53 1.33 1.74 1.39 0.43 1.21 0.01 0.05 0.80 0.29 0.96 0.76 0.36 0.53 1.33 1.74 1.39 0.43 1.21 0.01 0.05 0.83 0.29 0.96 0.76 0.36 0.53 1.33 1.74 1.39 0.43 1.21 0.01 0.05 0.83 0.29 0.96 0.76 0.36 0.53 1.33 1.74 1.39 0.43 1.21 0.01 0.05 0.83 0.29 0.96 0.76 0.36 0.53 1.33 1.74 1.39 0.43 1.21 0.01 0.05 0.83 0.29 0.96 0.76 0.95 0.90 1.00 0.77 1.27 0.92 2.90 0.12 0.04 0.12 0.40 0.95 0.90 1.00 0.77 1.27 0.92 2.90 0.12 0.04 0.12 0.40 0.95 0.90 1.00 0.77 1.27 0.92 2.90 0.12 0.04 0.12 0.40 0.95 0.90 0.00 0.75 0.83 0.90 0.90 0.64 0.75 0.86 0.75 0.90 0.90 0.00 0.77 0.73 0.60 0.60 0.60 0.00 0.64 0.75 0.86 0.75 0.90 0.90 0.60 0.77 0.70 0.70 0.70 0.00 0.64 0.75 0.86 0.70 0.90 0.80 0.75 0.90 0.90 0.00 0.65 0.75 0.86 0.70 0.90 0.00 0.65 0.75 0.86 0.70 0.90 0.00 0.65 0.77 0.86 0.90 0.70 0.70 0.00 0.82 0.77 0.00 0.00 0.82 0.77 0.70 0.70 0.70 0.70 0.82 0.77 0.70 0.70 0.70 0.70 0.70 0.82 0.70 0.70 0.70 0.70													
948 2.18 1.27 0.66 0.81 1.58 1.49 0.52 1.02 0.80 0.00 0.05 0.80 948 2.18 1.27 0.66 0.81 1.58 1.42 1.37 0.91 1.57 0.08 0.05 0.31 949 0.68 1.02 2.11 0.12 2.05 0.48 0.09 0.73 0.37 0.00 0.12 0.19 950 1.20 1.40 0.68 2.53 1.09 2.01 0.55 1.27 0.92 0.04 0.52 0.92 951 0.42 1.53 2.19 1.66 2.16 1.05 0.94 0.94 0.70 0.29 0.07 0.01 952 1.60 1.80 2.47 1.24 1.12 2.05 1.08 1.08 1.00 0.15 0.00 0.05 953 0.00 0.35 1.00 3.35 1.49 0.92 1.52 2.59 1.22 0.00 0.12 0.02 954 0.11 1.31 1.15 1.09 0.55 1.20 0.42 0.95 1.00 0.05 0.31 0.00 0.35 1.00 0.35 1.09 0.92 1.52 2.59 1.22 0.00 0.12 0.02 955 0.44 0.94 1.09 1.32 0.43 0.39 3.04 1.48 0.63 0.39 0.00 0.12 0.02 956 0.74 1.43 2.22 2.17 0.91 0.39 1.62 2.18 0.80 0.15 0.08 0.02 957 2.25 0.41 0.84 1.04 1.72 2.77 1.15 2.79 0.25 0.00 0.00 0.05 958 0.42 0.81 2.08 1.37 1.91 0.57 1.94 2.05 2.94 0.48 0.53 0.12 959 0.09 1.04 1.28 1.33 0.63 1.08 0.19 1.68 0.27 0.00 0.64 2.54 960 0.76 0.36 0.53 1.33 1.74 1.39 0.43 1.21 0.01 0.95 0.83 0.29 961 0.49 1.82 0.43 0.42 1.20 1.39 0.22 0.54 0.55 0.25 0.25 0.21 0.79 962 1.76 0.95 0.90 1.00 0.77 1.27 0.92 2.90 0.12 0.04 0.12 0.40 963 1.22 1.67 0.25 1.13 1.70 0.21 1.65 0.85 1.90 0.00 0.16 0.40 0.19 0.95 0.83 0.29 0.96 0.70 0.24 1.09 2.46 0.19 0.64 1.35 1.76 2.00 0.41 0.53 0.70 0.86 0.27 0.29 1.50 1.41 1.49 0.35 0.37 1.47 0.49 1.07 0.05 0.00 0.64 0.75 0.96 0.24 0.99 2.41 1.02 2.46 0.19 0.64 1.35 1.76 2.00 0.41 0.53 0.70 0.86 0.21 2.33 3.19 2.89 0.31 0.43 2.81 0.80 0.25 0.00 0.00 0.64 0.75 0.96 0.24 0.99 1.50 1.41 1.49 0.35 0.37 1.47 0.49 1.07 0.05 0.00 0.23 0.80 0.90 0.00 0.64 0.75 0.90 0.70 1.50 1.95 3.50 1.00 0.26 1.35 0.50 0.40 0.25 0.88 0.55 0.25 0.25 0.25 0.25 0.25 0.25 0.25		0.43			1 27	1 21							
948			1.01		U EU		1 0/	0.33					
949 0.68 1.02 2.11 0.12 2.05 0.48 0.09 0.73 0.37 0.00 0.12 0.19 950 1.20 1.40 0.68 2.53 1.09 2.01 0.55 1.27 0.92 0.04 0.52 0.92 951 0.42 1.53 2.19 1.66 2.16 1.05 0.94 0.94 0.70 0.29 0.07 0.01 952 1.60 1.80 2.47 1.24 1.12 2.05 1.08 1.08 1.08 1.10 0.15 0.00 0.05 953 0.00 0.35 1.00 3.35 1.49 0.92 1.52 2.59 1.22 0.00 0.12 0.02 954 0.11 1.31 1.15 1.09 0.55 1.20 0.42 0.95 1.10 0.06 0.24 0.08 955 0.44 0.94 1.09 1.32 0.43 0.39 3.04 1.48 0.63 0.39 0.00 0.12 956 0.74 1.43 2.22 2.17 0.91 0.39 1.62 2.18 0.80 0.15 0.08 0.02 957 2.25 0.41 0.84 1.04 1.72 2.27 1.15 2.79 0.25 0.00 0.00 0.06 958 0.42 0.81 2.08 1.37 1.91 0.57 1.94 2.05 2.94 0.48 0.53 0.12 959 0.09 1.04 1.28 1.33 0.63 1.39 0.43 1.21 0.01 0.95 0.83 0.29 961 0.49 1.82 0.43 0.42 1.20 1.39 0.43 1.21 0.01 0.95 0.83 0.29 962 1.76 0.95 0.90 1.00 0.77 1.27 0.92 2.90 0.15 0.04 0.05 0.64 2.54 0.99 0.25 0.00 0.00 0.64 2.54 0.99 0.25 0.00 0.00 0.64 2.54 0.99 0.00 0.16 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.0	10/0	2 10	1 27		0.00	1 50	1 //2	1 27	0.01	1 57	0.00		
950		2.10						1.3/	0.91				
951	1949	1.00	1.02		0.12			0.09	0./3				
952	1950	1.20	1.40		2.53				1.2/	0.92			
954 0.11 1.31 1.15 1.09 0.55 1.20 0.42 0.95 1.10 0.06 0.24 0.08 955 0.44 0.94 1.09 1.32 0.43 0.39 3.04 1.48 0.63 0.39 0.00 0.12 956 0.74 1.43 2.22 2.17 0.91 0.39 1.62 2.18 0.80 0.15 0.08 0.02 957 2.25 0.41 0.84 1.04 1.72 2.27 1.15 2.79 0.25 0.00 0.00 0.06 958 0.42 0.81 2.08 1.37 1.91 0.57 1.94 2.05 2.94 0.48 0.53 0.12 959 0.09 1.04 1.28 1.33 0.63 1.08 0.19 1.68 0.27 0.00 0.64 2.54 960 0.76 0.36 0.53 1.33 1.74 1.39 0.43 1.21 0.01 0.95 0.83 0.29 961 0.49 1.82 0.43 0.42 1.20 1.39 0.22 0.54 0.55 0.25 0.21 0.79 962 1.76 0.95 0.90 1.00 0.77 1.27 0.92 2.90 0.12 0.04 0.12 0.40 963 1.22 1.67 0.25 1.13 1.70 0.21 1.65 0.85 1.90 0.00 0.64 0.75 964 0.99 2.41 1.02 2.46 0.19 0.64 1.35 1.76 2.00 0.41 0.53 0.70 965 0.21 2.33 3.19 2.89 0.31 0.43 2.81 0.80 1.20 0.25 0.88 0.55 966 0.28 1.51 0.61 0.81 0.73 0.60 0.61 0.32 0.01 0.06 0.01 0.19 967 0.29 1.60 1.41 1.49 0.35 0.37 1.47 0.49 1.07 0.05 0.00 0.58 968 0.42 0.89 0.50 0.43 1.86 0.71 0.35 0.40 0.60 0.00 2.37 0.10 969 0.70 1.50 1.95 3.50 1.00 0.26 1.35 0.50 2.00 0.02 2.00 0.64 971 0.81 2.03 1.37 2.04 0.65 1.50 0.40 0.52 1.58 0.12 0.08 973 0.64 1.11 1.79 1.14 0.42 0.65 1.50 0.40 0.25 1.58 0.12 0.18 0.64 972 0.53 2.32 1.63 2.15 0.91 1.50 0.62 0.32 0.90 0.21 0.05 1.11 973 0.64 1.11 1.79 1.14 0.42 0.65 1.50 0.40 0.74 0.19 0.07 0.05 0.00 0.82 975 1.45 0.67 1.71 0.59 2.62 1.92 1.53 0.88 0.78 0.82 0.40 0.01 976 1.99 0.78 1.29 1.49 1.31 0.72 1.60 0.46 1.66 1.15 0.95 2.11 973 0.64 1.11 1.79 1.14 0.42 0.65 1.50 0.67 0.10 0.60 0.51 0.23 0.20 0.00 976 1.99 0.78 1.29 1.49 1.31 0.72 1.60 0.46 1.66 1.15 0.95 2.11 973 0.64 1.91 0.66 0.60 1.93 1.20 0.48 1.60 0.56 0.56 0.40 0.50 0.55 0.20 0.00 1.59 979 0.00 1.06 0.60 1.93 1.20 0.48 1.60 1.28 0.88 0.78 0.82 0.49 0.01 979 0.00 1.06 0.60 0.93 1.20 0.48 1.60 1.28 0.88 0.79 0.00 1.59 979 0.00 1.06 0.60 1.93 1.20 0.48 1.60 1.28 0.88 0.01 1.81 0.04 980 1.50 1.30 0.74 1.56 1.29 2.14 1.20 3.77 0.58 0.03 0.00 1.59	1951	0.42	1.53	2.19	1.66			0.94	0.94				
954 0.11 1.31 1.15 1.09 0.55 1.20 0.42 0.95 1.10 0.06 0.24 0.08 955 0.44 0.94 1.09 1.32 0.43 0.39 3.04 1.48 0.63 0.39 0.00 0.12 956 0.74 1.43 2.22 2.17 0.91 0.39 1.62 2.18 0.80 0.15 0.08 0.02 957 2.25 0.41 0.84 1.04 1.72 2.27 1.15 2.79 0.25 0.00 0.00 0.06 958 0.42 0.81 2.08 1.37 1.91 0.57 1.94 2.05 2.94 0.48 0.53 0.12 959 0.09 1.04 1.28 1.33 0.63 1.08 0.19 1.68 0.27 0.00 0.64 2.54 960 0.76 0.36 0.53 1.33 1.74 1.39 0.43 1.21 0.01 0.95 0.83 0.29 961 0.49 1.82 0.43 0.42 1.20 1.39 0.22 0.54 0.55 0.25 0.21 0.79 962 1.76 0.95 0.90 1.00 0.77 1.27 0.92 2.90 0.12 0.04 0.12 0.40 963 1.22 1.67 0.25 1.13 1.70 0.21 1.65 0.85 1.90 0.00 0.64 0.75 964 0.99 2.41 1.02 2.46 0.19 0.64 1.35 1.76 2.00 0.41 0.53 0.70 965 0.21 2.33 3.19 2.89 0.31 0.43 2.81 0.80 1.20 0.25 0.88 0.55 966 0.28 1.51 0.61 0.81 0.73 0.60 0.61 0.32 0.01 0.06 0.01 0.19 967 0.29 1.60 1.41 1.49 0.35 0.37 1.47 0.49 1.07 0.05 0.00 0.58 968 0.42 0.89 0.50 0.43 1.86 0.71 0.35 0.40 0.60 0.00 2.37 0.10 969 0.70 1.50 1.95 3.50 1.00 0.26 1.35 0.50 2.00 0.02 2.00 0.64 971 0.81 2.03 1.37 2.04 0.65 1.50 0.40 0.52 1.58 0.12 0.08 973 0.64 1.11 1.79 1.14 0.42 0.65 1.50 0.40 0.25 1.58 0.12 0.18 0.64 972 0.53 2.32 1.63 2.15 0.91 1.50 0.62 0.32 0.90 0.21 0.05 1.11 973 0.64 1.11 1.79 1.14 0.42 0.65 1.50 0.40 0.74 0.19 0.07 0.05 0.00 0.82 975 1.45 0.67 1.71 0.59 2.62 1.92 1.53 0.88 0.78 0.82 0.40 0.01 976 1.99 0.78 1.29 1.49 1.31 0.72 1.60 0.46 1.66 1.15 0.95 2.11 973 0.64 1.11 1.79 1.14 0.42 0.65 1.50 0.67 0.10 0.60 0.51 0.23 0.20 0.00 976 1.99 0.78 1.29 1.49 1.31 0.72 1.60 0.46 1.66 1.15 0.95 2.11 973 0.64 1.91 0.66 0.60 1.93 1.20 0.48 1.60 0.56 0.56 0.40 0.50 0.55 0.20 0.00 1.59 979 0.00 1.06 0.60 1.93 1.20 0.48 1.60 1.28 0.88 0.78 0.82 0.49 0.01 979 0.00 1.06 0.60 0.93 1.20 0.48 1.60 1.28 0.88 0.79 0.00 1.59 979 0.00 1.06 0.60 1.93 1.20 0.48 1.60 1.28 0.88 0.01 1.81 0.04 980 1.50 1.30 0.74 1.56 1.29 2.14 1.20 3.77 0.58 0.03 0.00 1.59	1952	1.60	1.80	2.47	1.24	1.12	2.05	1.08	1.08	1.10	0.15	0.00	0.05
956	1953	0.00	0.35	1.00	3.35			1.52	2.59	1.22			
956	1954		1.31	1.15	1.09	0.55	1.20	0.42	0.95	1.10	0.06		
956	1955			1.09	1.32		0.39	3.04	1.48				
957	1956	0.74	1.43		2.17		0.39	1.62	2.18	0.80			
958	1957	2.25	0.41	0.84	1.04	1.72	2.27	1.15	2.79	0.25	0.00		
959 0.09 1.04 1.28 1.33 0.63 1.08 0.19 1.68 0.27 0.00 0.64 2.54 960 0.76 0.36 0.53 1.33 1.74 1.39 0.43 1.21 0.01 0.95 0.83 0.29 961 0.49 1.82 0.43 0.42 1.20 1.39 0.22 0.54 0.55 0.25 0.21 0.79 962 1.76 0.95 0.90 1.00 0.77 1.27 0.92 2.90 0.12 0.04 0.12 0.40 963 1.22 1.67 0.25 1.13 1.70 0.21 1.65 0.85 1.90 0.00 0.64 0.75 964 0.99 2.41 1.02 2.46 0.19 0.64 1.35 1.76 2.00 0.41 0.53 0.70 965 0.21 2.33 3.19 2.89 0.31 0.43 2.81 0.80 1.20 0.25 0.88 0.55 966 0.28 1.51 0.61 0.81 0.73 0.60 0.61 0.32 0.01 0.06 0.01 0.19 967 0.29 1.60 1.41 1.49 0.35 0.37 1.47 0.49 1.07 0.05 0.00 0.58 968 0.42 0.89 0.50 0.43 1.86 0.71 0.35 0.40 0.60 0.60 0.00 2.37 0.10 969 0.70 1.50 1.95 3.50 1.00 0.26 1.35 0.50 2.00 0.02 0.00 0.68 970 0.64 0.59 1.77 3.87 0.30 1.04 0.93 0.73 1.72 0.28 0.10 1.00 971 0.81 2.03 1.37 2.04 0.65 1.50 0.40 0.25 1.58 0.12 0.18 0.64 972 0.53 2.32 1.63 2.15 0.91 1.50 0.62 0.32 0.90 0.21 0.05 1.11 973 0.64 1.11 1.79 1.14 0.42 0.65 1.49 0.74 0.19 0.07 0.03 0.82 0.74 1.15 2.44 2.23 1.35 0.66 1.50 0.67 0.10 0.60 0.53 0.22 0.00 0.27 0.70 0.70 0.70 0.70 0.70	1958	0.42	0.81	2.08	1.37	1.91	0.57	1.94	2.05	2.94			
961	1959	0.09	1.04	1.28	1.33		1.08	0.19			0.00	0.64	2.54
961	1960	0.76	0.36	0.53	1.33	1.74	1.39	0.43	1.21	0.01	0.95	0.83	
962	1961				0.42		1.39	0.22	0.54		0.25		
1.22 1.67 0.25 1.13 1.70 0.21 1.65 0.85 1.90 0.00 0.64 0.75 0.964 0.99 2.41 1.02 2.46 0.19 0.64 1.35 1.76 2.00 0.41 0.53 0.70 0.965 0.21 2.33 3.19 2.89 0.31 0.43 2.81 0.80 1.20 0.25 0.88 0.55 0.966 0.28 1.51 0.61 0.81 0.73 0.60 0.61 0.32 0.01 0.06 0.01 0.19 0.967 0.29 1.60 1.41 1.49 0.35 0.37 1.47 0.49 1.07 0.05 0.00 0.58 0.968 0.42 0.89 0.50 0.43 1.86 0.71 0.35 0.40 0.60 0.00 2.37 0.10 0.969 0.70 1.50 1.95 3.50 1.00 0.26 1.35 0.50 2.00 0.02 0.00 0.68 0.970 0.64 0.59 1.77 3.87 0.30 1.04 0.93 0.73 1.72 0.28 0.10 1.00 0.971 0.81 2.03 1.37 2.04 0.65 1.50 0.40 0.60 0.25 1.58 0.12 0.18 0.64 0.972 0.53 2.32 1.63 2.15 0.91 1.50 0.62 0.32 0.90 0.21 0.05 1.11 0.973 0.64 1.11 1.79 1.14 0.42 0.65 1.49 0.74 0.19 0.07 0.03 0.82 0.74 1.15 2.44 2.23 1.35 0.66 1.50 0.67 0.10 0.60 0.53 0.22 0.00 0.975 1.45 0.67 1.71 0.59 2.62 1.92 1.53 0.88 0.78 0.82 0.48 0.01 0.976 0.50 0.79 0.00 1.06 0.60 0.90 0.51 1.10 0.977 0.52 0.14 0.09 0.65 0.57 0.86 0.19 1.80 1.26 0.41 0.73 1.20 0.978 0.21 1.86 2.46 2.37 1.50 1.43 2.34 0.36 0.56 0.48 0.24 0.89 0.90 0.10 0.06 0.60 0.93 1.50 0.00 1.06 0.60 0.93 1.50 1.30 0.74 1.56 1.29 2.14 1.20 3.77 0.58 0.03 0.00 1.59 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	1962	1.76	0.95				1.27	0.92					
964 0.99 2.41 1.02 2.46 0.19 0.64 1.35 1.76 2.00 0.41 0.53 0.70 965 0.21 2.33 3.19 2.89 0.31 0.43 2.81 0.80 1.20 0.25 0.88 0.55 966 0.28 1.51 0.61 0.81 0.73 0.60 0.61 0.32 0.01 0.06 0.01 0.19 967 0.29 1.60 1.41 1.49 0.35 0.37 1.47 0.49 1.07 0.05 0.00 0.58 968 0.42 0.89 0.50 0.43 1.86 0.71 0.35 0.40 0.60 0.00 2.37 0.10 969 0.70 1.50 1.95 3.50 1.00 0.26 1.35 0.50 2.00 0.02 0.00 0.68 970 0.64 0.59 1.77 3.87 0.30 1.04 0.93 0.73 1.72 0.28 0.10 1.00 971 0.81 2.03 1.37 2.04 0.65 1.50 0.40 0.25 1.58 0.12 0.18 0.64 972 0.53 2.32 1.63 2.15 0.91 1.50 0.62 0.32 0.90 0.21 0.05 1.11 973 0.64 1.11 1.79 1.14 0.42 0.65 1.49 0.74 0.19 0.07 0.03 0.82 974 1.15 2.44 2.23 1.35 0.66 1.50 0.67 0.10 0.60 0.53 0.22 0.00 0.97 0.70 0.70 0.70 0.70 0.70 0.70	1963		1.67	0.25	1 13			1 65		1 90			
965 0.21 2.33 3.19 2.89 0.31 0.43 2.81 0.80 1.20 0.25 0.88 0.55 966 0.28 1.51 0.61 0.81 0.73 0.60 0.61 0.32 0.01 0.06 0.01 0.19 967 0.29 1.60 1.41 1.49 0.35 0.37 1.47 0.49 1.07 0.05 0.00 0.58 968 0.42 0.89 0.50 0.43 1.86 0.71 0.35 0.40 0.60 0.00 2.37 0.10 969 0.70 1.50 1.95 3.50 1.00 0.26 1.35 0.50 2.00 0.02 0.00 0.68 970 0.64 0.59 1.77 3.87 0.30 1.04 0.93 0.73 1.72 0.28 0.10 1.00 971 0.81 2.03 1.37 2.04 0.65 1.50 0.40 0.25 1.58 0.12 0.18 0.64 972 0.53 2.32 1.63 2.15 0.91 1.50 0.62 0.32 0.90 0.21 0.05 1.11 973 0.64 1.11 1.79 1.14 0.42 0.65 1.49 0.74 0.19 0.07 0.03 0.82 974 1.15 2.44 2.23 1.35 0.66 1.50 0.67 0.10 0.60 0.53 0.22 0.00 0.27 0.70			2 41		2 46			1 35		2 00			
966 0.28 1.51 0.61 0.81 0.73 0.60 0.61 0.32 0.01 0.06 0.01 0.19 967 0.29 1.60 1.41 1.49 0.35 0.37 1.47 0.49 1.07 0.05 0.00 0.58 968 0.42 0.89 0.50 0.43 1.86 0.71 0.35 0.40 0.60 0.00 2.37 0.10 969 0.70 1.50 1.95 3.50 1.00 0.26 1.35 0.50 2.00 0.02 0.00 0.68 970 0.64 0.59 1.77 3.87 0.30 1.04 0.93 0.73 1.72 0.28 0.10 1.00 971 0.81 2.03 1.37 2.04 0.65 1.50 0.40 0.25 1.58 0.12 0.18 0.64 972 0.53 2.32 1.63 2.15 0.91 1.50 0.62 0.32 0.90 0.21 0.05 1.11 973 0.64 1.11 1.79 1.14 0.42 0.65 1.49 0.74 0.19 0.07 0.03 0.82 974 1.15 2.44 2.23 1.35 0.66 1.50 0.67 0.10 0.60 0.53 0.22 0.00 975 1.45 0.67 1.71 0.59 2.62 1.92 1.53 0.88 0.78 0.82 0.48 0.01 976 1.99 0.78 1.29 1.49 1.31 0.72 1.60 0.46 1.66 1.15 0.95 2.11 977 0.52 0.14 0.09 0.65 0.57 0.86 0.19 1.80 1.26 0.41 0.73 1.20 978 0.21 1.86 2.46 2.37 1.50 1.43 2.34 0.36 0.56 0.48 0.24 0.89 979 0.00 1.06 0.60 1.93 1.20 0.48 1.60 1.28 0.18 0.01 1.81 0.04 980 1.50 1.30 0.74 1.56 1.29 2.14 1.20 3.77 0.58 0.03 0.00 1.59 1.50 1.30 0.74 1.56 1.29 2.14 1.20 3.77 0.58 0.03 0.00 1.59 1.50 1.50 1.30 0.74 1.56 1.29 2.14 1.20 3.77 0.58 0.03 0.00 1.59 1.50 1.50 1.30 0.74 1.56 1.29 2.14 1.20 3.77 0.58 0.03 0.00 1.59 1.50 1.30 0.74 1.56 1.29 2.14 1.20 3.77 0.58 0.03 0.00 1.59 1.50 1.30 0.74 1.56 1.29 2.14 1.20 3.77 0.58 0.03 0.00 1.59 1.50 1.30 0.74 1.56 1.29 2.14 1.20 3.77 0.58 0.03 0.00 1.59 1.50 1.5		0.33	2 33	3 10	2 80	0.13	0.04	2 81		1 20	0.71	0.33	
967		0.21	1 51	0.61	0.81		0.45	0.61				0.00	
969 0.70 1.50 1.95 3.50 1.00 0.26 1.35 0.50 2.00 0.02 0.00 0.68 970 0.64 0.59 1.77 3.87 0.30 1.04 0.93 0.73 1.72 0.28 0.10 1.00 971 0.81 2.03 1.37 2.04 0.65 1.50 0.40 0.25 1.58 0.12 0.18 0.64 972 0.53 2.32 1.63 2.15 0.91 1.50 0.62 0.32 0.90 0.21 0.05 1.11 973 0.64 1.11 1.79 1.14 0.42 0.65 1.49 0.74 0.19 0.07 0.03 0.82 974 1.15 2.44 2.23 1.35 0.66 1.50 0.67 0.10 0.60 0.53 0.22 0.00 975 1.45 0.67 1.71 0.59 2.62 1.92 1.53 0.88 0.78 0.82 0.48 0.01 976 1.99 0.78 1.29 1.49 1.31 0.72 1.60 0.46 1.66 1.15 0.95 2.11 977 0.52 0.14 0.09 0.65 0.57 0.86 0.19 1.80 1.26 0.41 0.73 1.20 978 0.21 1.86 2.46 2.37 1.50 1.43 2.34 0.36 0.56 0.48 0.24 0.89 979 0.00 1.06 0.60 1.93 1.20 0.48 1.60 1.28 0.18 0.01 1.81 0.04 0.80 1.50 1.30 0.74 1.56 1.29 2.14 1.20 3.77 0.58 0.03 0.00 1.59 1.50 1.30 0.74 1.56 1.29 2.14 1.20 3.77 0.58 0.03 0.00 1.59 1.50 1.31 1.32 1.51 1.14 1.09 1.13 1.17 0.95 0.21 0.36 0.55 0.55 0.22 0.24 0.25 2.27 3.04 3.77 2.94 1.15 2.37 2.54	1067	0.20	1.51	1 //1	1 //0	0.75	0.00	1 //7					
969 0.70 1.50 1.95 3.50 1.00 0.26 1.35 0.50 2.00 0.02 0.00 0.68 970 0.64 0.59 1.77 3.87 0.30 1.04 0.93 0.73 1.72 0.28 0.10 1.00 971 0.81 2.03 1.37 2.04 0.65 1.50 0.40 0.25 1.58 0.12 0.18 0.64 972 0.53 2.32 1.63 2.15 0.91 1.50 0.62 0.32 0.90 0.21 0.05 1.11 973 0.64 1.11 1.79 1.14 0.42 0.65 1.49 0.74 0.19 0.07 0.03 0.82 974 1.15 2.44 2.23 1.35 0.66 1.50 0.67 0.10 0.60 0.53 0.22 0.00 975 1.45 0.67 1.71 0.59 2.62 1.92 1.53 0.88 0.78 0.82 0.48 0.01 976 1.99 0.78 1.29 1.49 1.31 0.72 1.60 0.46 1.66 1.15 0.95 2.11 977 0.52 0.14 0.09 0.65 0.57 0.86 0.19 1.80 1.26 0.41 0.73 1.20 978 0.21 1.86 2.46 2.37 1.50 1.43 2.34 0.36 0.56 0.48 0.24 0.89 979 0.00 1.06 0.60 1.93 1.20 0.48 1.60 1.28 0.18 0.01 1.81 0.04 0.80 1.50 1.30 0.74 1.56 1.29 2.14 1.20 3.77 0.58 0.03 0.00 1.59 1.50 1.30 0.74 1.56 1.29 2.14 1.20 3.77 0.58 0.03 0.00 1.59 1.50 1.31 1.32 1.51 1.14 1.09 1.13 1.17 0.95 0.21 0.36 0.55 0.55 0.22 0.24 0.25 2.27 3.04 3.77 2.94 1.15 2.37 2.54	1068	0.49	0.00	1.41	0 42			0.25			0.00		
970								1 25					
971	1070		1.50	1.90	3.50	1.00	1.04	1.00				0.00	
972 0.53 2.32 1.63 2.15 0.91 1.50 0.62 0.32 0.90 0.21 0.05 1.11 973 0.64 1.11 1.79 1.14 0.42 0.65 1.49 0.74 0.19 0.07 0.03 0.82 974 1.15 2.44 2.23 1.35 0.66 1.50 0.67 0.10 0.60 0.53 0.22 0.00 975 1.45 0.67 1.71 0.59 2.62 1.92 1.53 0.88 0.78 0.82 0.48 0.01 976 1.99 0.78 1.29 1.49 1.31 0.72 1.60 0.46 1.66 1.15 0.95 2.11 977 0.52 0.14 0.09 0.65 0.57 0.86 0.19 1.80 1.26 0.41 0.73 1.20 978 0.21 1.86 2.46 2.37 1.50 1.43 2.34 0.36 0.56 0.48 0.24 0.89 979 0.00 1.06 0.60 1.93 1.20 0.48 1.60 1.28 0.18 0.01 1.81 0.04 980 1.50 1.30 0.74 1.56 1.29 2.14 1.20 3.77 0.58 0.03 0.00 1.59 1.59 1.41 1.20 3.77 0.58 0.03 0.00 1.59 1.50 1.30 0.74 1.56 1.29 2.14 1.20 3.77 0.58 0.21 0.36 0.55 1.20 1.30 0.74 1.56 1.29 2.14 1.20 3.77 0.58 0.21 0.36 0.55 1.20 1.30 0.74 1.56 1.29 2.14 1.20 3.77 0.58 0.21 0.36 0.55 1.20 1.3			0.59	1.77	3.8/		1.04	0.93				0.10	
973	19/1	0.81	2.03	1.3/	2.04	0.65	1.50	0.40			0.12	0.18	
974	19/2		2.32	1.63							0.21		
775 1.45 0.67 1.71 0.59 2.62 1.92 1.53 0.88 0.78 0.82 0.48 0.01 1.97 1.99 0.78 1.29 1.49 1.31 0.72 1.60 0.46 1.66 1.15 0.95 2.11 1.77 0.52 0.14 0.09 0.65 0.57 0.86 0.19 1.80 1.26 0.41 0.73 1.20 1.78 0.21 1.86 2.46 2.37 1.50 1.43 2.34 0.36 0.56 0.48 0.24 0.89 1.79 0.00 1.06 0.60 1.93 1.20 0.48 1.60 1.28 0.18 0.01 1.81 0.04 1.80 1.50 1.30 0.74 1.56 1.29 2.14 1.20 3.77 0.58 0.03 0.00 1.59 1.41 1.50 1.50 1.30 0.74 1.56 1.29 2.14 1.20 3.77 0.58 0.03 0.00 1.59 1.50 1.30 0.82 1.31 1.32 1.51 1.14 1.09 1.13 1.17 0.95 0.21 0.36 0.55 1.20 1.20 1.20 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.3			1.11	1./9	1.14	0.42	0.65	1.49			0.07	0.03	
976		1.15	2.44	2.23	1.35	0.66	1.50	0.67			0.53	0.22	
0.77		1.45				2.62		1.53					
0.78	976	1.99				1.31		1.60	0.46	1.66	1.15		
779 0.00 1.06 0.60 1.93 1.20 0.48 1.60 1.28 0.18 0.01 1.81 0.04 0.80 1.50 1.30 0.74 1.56 1.29 2.14 1.20 3.77 0.58 0.03 0.00 1.59 TATISTICS 37 37 37 37 37 37 37 37 37 37 37 37 37	.977			0.09		0.57	0.86	0.19			0.41		
080 1.50 1.30 0.74 1.56 1.29 2.14 1.20 3.77 0.58 0.03 0.00 1.59 TATISTICS 37 37 37 37 37 37 37 37 37 ean 0.82 1.31 1.32 1.51 1.14 1.09 1.13 1.17 0.95 0.21 0.36 0.55 eax 2.25 2.44 3.19 3.87 2.62 2.27 3.04 3.77 2.94 1.15 2.37 2.54	978		1.86			1.50		2.34					
OBS 1.50 1.30 0.74 1.56 1.29 2.14 1.20 3.77 0.58 0.03 0.00 1.59 TATISTICS 37 37 37 37 37 37 37 37 37 ean 0.82 1.31 1.32 1.51 1.14 1.09 1.13 1.17 0.95 0.21 0.36 0.55 eax 2.25 2.44 3.19 3.87 2.62 2.27 3.04 3.77 2.94 1.15 2.37 2.54	.979	0.00	1.06	0.60	1.93	1.20	0.48	1.60	1.28	0.18			
37 37 37 37 37 37 37 37 37 37 37 37 37 3	.980	1.50	1.30	0.74	1.56	1.29	2.14	1.20	3.77	0.58	0.03	0.00	1.59
37 37 37 37 37 37 37 37 37 37 37 37 37 3	TATIC	TTCC				<u> </u>							
ean 0.82 1.31 1.32 1.51 1.14 1.09 1.13 1.17 0.95 0.21 0.36 0.55 ax. 2.25 2.44 3.19 3.87 2.62 2.27 3.04 3.77 2.94 1.15 2.37 2.54	 		37	27	37	37	37	37	37	37	27	37	37
x. 2.25 2.44 3.19 3.87 2.62 2.27 3.04 3.77 2.94 1.15 2.37 2.54			1 21				1 00	J/ 1 12) (L			
		2 25	1.21	1.32			1.03	1.12			1 15		
m. 0.00 0.14 0.09 0.12 0.19 0.18 0.09 0.10 0.01 0.00 0.00 0.00				3.19			2.2/		3.//				
	ın.	0.00	U.14	0.09	0.12	0.19	0.18	0.09	0.10	0.01	0.00	0.00	0.00

BOISE BASIN - TOTAL MONTHLY PRECIPITATION (Inches)

CENTERVILLE ARBAUGH RH

Elevation = 4,300

145455					LIC	Vacion	- 4,300				<u>*</u>		
Water	OCT	NOV	DEC	1 8 81	C C D	MAD	Ann	148.1/	71181	7111	N110	CED	
<u>Year</u>	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	
1936	1.03	1.35	1.75	7.73	6.50	2.47	1.43	2.12	2.06	0.88	0.83	0.44	
1937	0.12	0.18	1.75	4.17	4.76	2.95		1.53	1.70	0.14	0.00	0.44	
1938	1.49	4.09	6.29	4.17	2.69	7.55	2.93	1.68	1.65	1.33	0.20	0.36	
1939	2.57	4.09	1.92	2.74	3.34	1.87	0.80	0.35	0.84	0.51	0.16	2.58	
1939	1.32	0.23	4.66	3.65	8.37	5.52	3.39	0.35	0.39	0.65	0.10	3.64	
1940	3.03					1.34							
		3.05	2.91	2.43	2.27	0.75	2.40	4.96	3.61	0.42	2.89	0.82	
1942	2.14	2.89	7.14	2.64	3.10	0.75	2.91	4.32	0.80	0.00	0.09	0.03	
1943	1.16	6.67	10.44	6.53	1.83	4.35	3.07	0.88	1.56	0.20	0.19	0.00	
1944	2.87	2.25	0.85	1.03	2.81	1.96	3.90	1.41	4.05	0.50	0.00	0.80	
1945	1.45	3.87	2.53	1.71	6.62	3.14	0.72	5.34	2.24	0.34	0.31	0.77	
1946	1.13	5.17	6.04	3.39	3.87	2.62	1.67	1.27	0.32	0.41	0.03	1.31	
1947	3.30	6.98	3.00	2.49	2.14	3.32	1.17	1.75	2.78	0.00	0.29	1.04	
1948	4.63	1.53	1.35	3.01	3.86	1.84	2.66	2.25	1.59	0.10	0.12	0.49	
1949	1.26	4.98	7.65	0.39	6.29			2.26	0.12	0.00		0.58	
1950	1.19	2.54	2.91	6.41	3.24	5.60	1.06	1.37	1.38	0.26	1.08	1.92	
1951	2.15	3.49	4.22	5.08	3.91	3.57	1.89	1.88	1.56	0.52	1.47	0.14	
1952	6.46	4.79	6.87	3.86	3.57	2.84	0.78	1.70	1.71	0.74	0.30	0.11	
1953	0.01	1.23	4.92	8.58	4.09	2.34	2.31	3.58	2.68	0.00	0.53	0.05	
1954	0.69	4.97	3.55	6.45	2.52	3.56	1.94	1.07	3.00	0.44	0.79	0.29	
1955	0.42	2.00	3.07	2.17	2.03	3.16	5.02	1.99	1.40	0.94	0.00	0.86	
1956	2.17	5.74	10.51	5.38	3.59	1.44	2.26	4.41	2.10	0.28	0.10	0.44	
1957	5.93	1.05	3.25	2.83	5.66	4.75	2.48	3.44	0.65	0.05	0.17	0.17	
1958	1.71	1.74	6.87	4.41	4.82	2.78	4.68	2.06	3.04	0.71	0.44	0.60	
1959	0.27	4.57	3.01	4.74	3.48	2.41	1.02	3.15	1.22	0.02	1.67	4.45	
1960	1.90	1.12	1.55	2.70	4.52	3.82	1.59	1.86	0.27	0.54	1.51	0.60	
1961	1.02	5.30	1.22	1.42	3.84	3.95	1.23	1.79	0.35	0.11	0.84	1.26	
1962	3.65	4.21	3.45	1.58	3.49	2.94	1.61	3.02	0.57	0.30	0.70	1.01	
1963	4.80	3.19	1.15	2.12	3.17	2.30	3.46	3.21	3.45	0.00	0.75	1.81	
1964	1.40	5.18	1.17	5.30	0.41	3.83	1.85	0.63	3.32	0.21	0.91	0.81	
1965	0.59	6.32	12.25	7.04	1.18	1.12	3.96	1.14	0.63	0.33	1.81	0.50	
1966	0.57	2.82	2.08	3.30	0.97	2.35	0.65	0.34	1.07	0.02	0.00	0.44	
1967	0.85	3.47	3.10	6.26	0.81	2.04	2.34	1.75	3.61	1.01	0.01	0.71	
1968	2.88	1.52	2.03	2.48	5.16	1.34	0.30	1.33	1.53	0.57	5.37	1.31	
1969	1.41	4.19	6.44	10.44	2.59	0.44	0.60	0.69	2.76	0.27	0.00	1.12	
1970	0.34	0.65	3.44	11.41	1.42	2.62	1.71	0.83	3.59	0.34	0.04	1.67	
1971	3.14	5.01	7.00	6.36	2.21	4.96	0.46	1.68	2.92	1.64	0.12	0.28	
1972	0.72	3.46	7.19	7.15	3.98	3.19	1.53	0.55	2.54	0.00	0.48	2.24	
1973	0.95	2.57	5.27	4.16	1.52	0.86	1.92	0.89	0.95	0.00	0.29	1.82	
1974	2.09	6.97	4.74	5.38	2.46	4.93	1.10	0.57	0.92	0.61	0.79	0.00	
1975	1.37	2.18	3.73	3.27	5.44	3.80	2.37	1.16	2.82	0.80	0.73	0.04	

BOISE BASIN - TOTAL MONTHLY PRECIPITATION (Inches)

CENTERVILLE ARBAUGH RH (Continued)

E.	levat	ion	=	4	300
Е.	levat	. I OII	_	4.	SOU

					t l e	evation	= 4,300)				
Water Year	ОСТ	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1976	4.19	2.39	3.02	4.77	2.65	1.88	1.62	0.85	1.20	1.01	1.32	1.72
1977	0.43	0.03	0.37	0.88	0.95	1.78	0.33	4.12	2.37	1.13	1.26	3.20
1978	0.84	4.65	7.16	5.14	4.28	1.24	3.62	0.80	0.88	0.35	0.66	2.08
1979	0.01	1.61	2.17	3.16	3.50	1.05	0.76	1.40	0.69	0.04	1.70	0.25
1980	3.10	1.30	2.80	6.96	2.50	2.47	1.54	3.91	1.08	0.60	0.14	2.74
STATIS	TICS											
N	45	45	45	45	45	44	44	45	45	45	44	45
Mean	1.88	3.28	4.20	4.38	3.39	2.84	2.00	1.95	1.78	0.43	0.71	1.07
Max.	6.46	6.98	12.25	11.41	8.37	7.55	5.02	5.34	4.05	1.64	5.37	4.45
Min.	0.01	0.03	0.37	0.39	0.41	0.44	0.30	0.27	0.12	0.00	0.00	0.00

BOISE BASIN - TOTAL MONTHLY PRECIPITATION (Inches)

· IDAHO CITY

 a . 4		~	$\Delta C E$
 evat 1	on =	٠.	unn
 levati	011	Ο,	

Water						vacion	= 3,905					
Water	ОСТ	NOV	DEC	1441	CER	MAD	ADD	MAY	11 IAI	11.0	ALIC	CED
Year	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1894					2.65	3.94	3.33	0.83	0.90	0.00	0.99	
1895		0.00	4.02	3.23	1.32	1.81	0.31	2.68	0.00	0.52	0.17	0.78
1896	0.00	1.02	2.49	5.00	1.46	4.11	3.56	6.26	1.70	1.86	0.91	0.45
1897	0.60	5.96	3.62	1.98	4.94	6.74	1.41	1.43	0.39	1.26	0.00	1.27
1898	0.71	3.00	4.10	1.05	2.40	1.67	0.15	1.43		0.70	0.00	
1899			1.56				1.12	1.23	0.82	0.00	1.51	0.00
1900	5.48	2.10	5.12	1.48	2.50	1.78	1.91	2.25	0.70	0.00	0.00	
1901	2.94						0.07	0.28	0.00	0.00	0.01	0.13
1902	0.70	1.03	2.21	0.26	3.77	1.16				2.00	0.00	
1903		1.03		0.20	3.// 	0.81	0.59	1.16	0.46			
1903							0.93	0.26	1.11	0.48	0.48	0.46
1905	1.38	0.72	2.93	0.99		2.68	1.17	1.70	0.45		0.40	0.40
1906	1.30									0.00		
1907												
1908												
1909					4.63	1.24	0.45	·	1.16	0.33	0.49	2.25
1910	0.88	8.49	3.25	2.68	4.03	1.16	1.62		1.10			
1911					1.29	0.61	1.02					
1912		3.56	1.84	4.51	2.63	2.22	3.47					
1913		3.30		4.51			J.47					
1914		4.55	2.68	4.75	2.70	0.33	2.13	0.73	1.66	0.39	0.00	1.31
1915	1.72	0.86	0.56	3.24	2.77	1.08	0.92	4.71	0.96	0.61	0.00	0.84
1916	0.33	2.62	3.80	5.38	6.09	2.63	0.92	1.05	2.36	0.92	1.04	0.30
1917	1.01	2.64	3.55	2.27	3.43	3.13	2.64	2.46	0.29	0.00	0.48	1.18
1918	0.00	2.40	6.57	2.95	2.42	2.98	1.30	0.37	0.15	0.20	0.45	2.68
1919	1.97	1.10	0.74	2.96	4.77	2.20	0.92	0.90	0.00	0.12	0.16	0.80
1920	2.20	3.11	1.99	2.81	0.35	2.95	1.62	0.90	1.08	0.00	1.42	0.74
1921	2.69	4.80	5.40	5.00	3.00	2.50	1.78	1.50	0.03	0.00	0.20	1.05
1922	0.60	7.61	1.46	1.45	3.06	3.18	1.75	1.48	0.75	0.30	1.83	0.00
1923	0.72	1.24	5.40	4.62	1.71	1.33	2.45	3.51	3.27	0.83	0.67	0.62
1924	2.77	1.38	2.22	1.04	2.04	0.38	0.76	0.09	0.16	0.03	0.05	0.39
1925	3.50	2.55	3.56	5.46	4.85	1.19	1.98	0.09	1.16	0.44	0.65	0.47
1926	2.00	1.01	2.75	1.20	2.90	0.20	1.50	1.32	0.20	0.12	0.03	0.00
1927	0.00	8.25	2.54	4.17	8.00	1.80	0.94	1.93	1.45	0.00	0.93	1.77
1928	1.18	8.67	2.70	3.10	0.90	4.26	1.19	0.72	0.13	0.00	0.00	0.00
1929	1.48	0.80	3.09	4.60	1.17	1.25	1.19	0.52	1.63	0.00	0.50	0.39
1930	0.65	0.00	5.15	3.19	3.53	1.23	1.14	1.94	0.29	0.00	0.75	1.44
1931	1.23	2.58	0.63	2.00	1.38	4.12	0.66	0.00	0.15	0.00	0.00	0.87
1932	1.63	3.49	4.65	1.84	1.21	5.24	1.53	2.19	1.19	2.23	0.29	0.00
1933	0.48	2.26	3.87	4.41	3.12	0.95	0.43	1.66	0.42	0.00	0.29	0.24
1933	0.40	4.40	3.0/	4.41	3.12	0.95	0.43	1.00	0.42	0.00	0.00	0.24

BOISE BASIN - TOTAL MONTHLY PRECIPITATION (Inches)

IDAHO CITY (Continued)

Elevation = 3.965

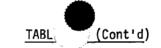
					Ele	vation	= 3,965	1				
Water	OCT	NOV	DEC	100					11 M	1111	AUG	SEP
Year	001	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	2EP
1934	1.90	0.60	4.91	3.11	0.80	2.17	0.79	0.16	1.56	0.58	0.00	0.05
1935	2.69	3.90	3.80	2.51	0.92	1.78	3.20	1.05	0.11	0.11	0.00	0.00
1936	0.32	0.95	1.59	7.52	6.15	2.36	1.13	0.80	2.15	0.51	0.22	0.15
1937	0.00	0.00	1.96	3.67	4.53	1.72	3.04	0.87	0.97	0.48	0.00	0.81
1938	1.32	3.16	5.80	3.47	2.11	6.15	0.47	2.98	2.07	1.06	0.05	0,25
1939	2.19	3.21	2.78	2.74	3.55	1.37	0.71	0.36	0.50	0.26	0.02	1.50
1940	0.90	0.00	2.75	3.30	6.80	3.90	1.70	0.00	0.12	0.66	0.00	2.18
1941	2.26	3.13	2.53	2.08	1.68	0.50	2.16	3.53	2.22	1.15	2.30	0.09
1942	1.08	1.53	4.43	2.98	3.18	0.76	1.51	3.41	0.55	0.00	0.00	0.11
1943	1.15	5.54	7.52	7.22	2.17	2.71	2.73	0.78	1.76	0.35	0.08	0.00
1944	2.06	1.22	- 0.85	0.59	2.20	1.16	3.14	0.65	3.86	0.16	0.00	0.06
1945	1.46	2.98	2.24	1.94	4.46	3.08	0.66	4.89	1.91	0.05	0.00	0.62
1946	1.15	4.41	4.70	2.86	3.36	2.83	1.03	1.50	0.15	0.05	0.15	0.09
1947	1.96	4.82	3.67	2.23	1.94	3.14	1.14	1.23	2.53	0.00	0.16	0.80
1948	4.09	1.97	1.14	3.29	4.43	1.48	3.36	1.83	1.75	0.00	0.13	0.46
1949	0.70	3.63	5.16	0.39	7.18	0.64	0.12	2.41	0.91	0.00	0.08	0.95
1950	1.74	2.34	2.02	5.43	2.32	4.98	0.98	1.08	1.22	0.10	1.12	1.74
1951	2.08	3.64	2.07	3.61	3.95	2.41	1.88	1.90	1.34	0.33	1.10	0.01
1952	4.92	3.58	6.31	3.25	2.47	2.04	0.74	1.38	1.57	0.43	0.00	0.00
1953	0.00	0.92	3.61	7.34	2.91	2.42	1.68	3.75	2.21	0.00	0.55	0.11
1954	0.40	4.77	2.77	6.02	2.12	3.01	2.03	0.65	1.79	0.31	0.41	0.21
1955	0.38	2.25	2.27	1.48	1.58	2.60	4.34	1.24	1.85	0.83	0.00	0.47
1956	1.95	4.54	10.20	4.51	3.49	1.36	1.97	3.22	1.44	0.13	0.03	0.02
1957	5.45	0.53	4.26	2.19	5.05	4.42	2.03	5.66	0.14	0.00	0.13	0.05
1958	1.06	1.31	5.86	4.34	3.72	2.00	3.49	1.28	4.57	0.21	0.05	0.74
1959	0.24	3.26	2.59	3.82	2.81	2.09	0.60	3.03	0.50	0.00	1.04	3.96
1960	1.99	0.95	1.69	2.28	4.48	3.57	1.20	2.22	0.00	0.33	0.89	0.47
1961	0.91	4.19	0.90	1.20	2.71	3.76	1.31	1.09	0.62	0.04	0.72	1.44
1962	3.44	3.58	2.82	1.86	2.94	2.75	1.76	3.13	0.94	0.17	0.22	0.83
1963	3.60	2.33	1.22	1.62	4.56	1.64	3.89	2.50	3.61	0.00	0.39	1.07
1964	1.50	4.64	2.59	5.64	0.51	3.16	1.49	0.86	2.93	0.37	0.82	0.57
1965	0.54	5.29	10.07	7.57	1.27	1.22	4.14	0.73	1.58	0.14	1.78	1.66
1966	0.38 0.73	2.49	1.17	3.69	1.07	2.37	1.12	0.18	0.22	0.02	0.00	0.62
967		2.84	3.07	6.62	0.95	1.18	2.08	0.87	1.83	0.05	0.00	1.00
1968 1969	1.82 1.15	1.85 3.77	1.73	1.94	5.15 2.05	1.10 0.64	0.88	1.13	1.70 2.65	0.00	4.89	0.33 1.38
.970	0.79		5.06	9.30			0.91 1.23	0.43	3.20	0.02 0.34	0.00	1.38
970	2.26	0.95 5.30	3.95 5.81	10.74 5.96	1.36 2.21	1.93 3.90	0.64	1.50 0.95	3.62	0.45	0.06 0.02	0.68
972	1.53	3.66	5.43	7.06	2.21	3.90	1.80	0.56	2.05	0.45	0.02	0.00
972	1.21	2.70	4.22	2.98	1.28	1.23	1.78	0.56	0.60	0.15	0.20	1.43
. J / J	T • C T	4./0	4.44	4.30	1.40	1.23	1./0	0./1	0.00	0.13	0.04	1.43

BOISE BASIN - TOTAL MONTHLY PRECIPITATION (Inches)

IDAHO CITY (Continued)

E1	evation	= 3,	,965
----	---------	------	------

					Ele	evation	= 3,965)				
Water Year	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1974	1.93	6.64	5.09	4.53	2.11	4.91	1.41	0.32	0.63	0.71	0.61	0.00
1975	1.71	1.97	3.37	3.84	4.81	4.21	1.85	1.26	1.68	2.26	0.78	0.00
1976	3.63	2.68	3.00	3.60	2.40	1.47	1.68	0.65	1.53	1.19	2.16	2.17
1977	0.28	0.07	0.13	0.70	0.98	1.80	0.30	3.70	2.66	1.19	0.95	2.15
1978	0.53	4.93	7.37	3.37	4.13	1.33	3.22	1.33	0.69	0.12	0.60	2.22
1979	0.00	0.94	2.25	4.19	3.53	1.16	1.37	1.11	0.43	0.05	1.86	0.68
1980	3.24	1.20	2.37	6.10	3.40	2.93	1.51	3.58	0.69	0.39	0.21	2.89
STATIS	TICS											
N	74	76	77	76	78	80	82	77	78	79	79	75
Mean	1.56	2.88	3.45	3.61	2.97	2.32	1.61	1.63	1.26	0.37	0.51	0.79
Max.	5.48	8.67	10.20	10.74	8.00	6.74	4.34	6.26	4.57	2.26	4.89	3.96
Min.	0.00	0.00	0.13	0.26	0.35	0.20	0.07	0.00	0.00	0.00	0.00	0.00


TABLE 4-5

BOISE BASIN - SNOW WATER CONTENT DATA (inches)

ATLANTA	SUMMIT				EL	EVATION =	7,600					
Water	1	15	1	15	1	15	1	15	1	15	1	15
Year	Jan	Jan_	Feb	Feb	Mar_	Mar	Apr	Apr	May	May	Jun	Jun
1931	 ·		- -						19.8			
1932											28.0	
1933											23.8	
1934					21.0				13.2			
1935							29.2				21.7	
1936								40.6				
1937							28.1					
1938						- -	40.8			- -	18.6	
1939							24.7					
1940							31.0					
1941						23.0						
1942						26.4						
1943							55.2					
1944							20.4					
1945					23.5		28.7					
1946							37.9					
1947					32.3			36.6				
1948					19.9		26.8					
1949					38.4		38.4					
1950					28.4		42.0		41.9			
1951			28.8		31.9		38.2		35.7			
1952							46.8	49.8	43.2	33.8	20.6	
1953			25.2		33.8		40.2		39.6			
1954			26.8		34.6		40.0	38.6	37.8	28.0	14.2	
1955		· 	11.4		19.4		27.2		33.8			
1956			37.4		50.4		48.2	48.4	45.8	45.2	39.0	
1957			18.6		30.0		38.4	38.4	39.6	33.0		
1958	16.2	19.4	26.4	30.8	33.0	36.6	44.6	45.8	47.0	42.6		
1959		13.0	15.4		24.6	25.0	30.0	27.0	25.0	23.6		
1960			11.6	17.0	18.0	23.8	24.0	24.8	26.6	26.4		
1961	5.6	12.6	18.9	19.4	20.4	25.0	27.8	27.2	27.6	25.2		
1962	18.6	20.6	25.1	28.3	30.0	33.5	37.0	36.0	32.0	25.2		
1963	7.2	9.0	14.9	15.4	22.1	24.8	27.3	28.6	31.5	28.8	8.5	
1964	11.1	16.2	22.3	23.0	23.4	30.2	31.6	33.0	32.9	32.6		
1965	33.3	33.4	37.6	42.0	43.9	48.9	55.8	53.1	49.0	45.8		
1966	19.2	19.5	22.6	22.7	23.3	25.4	27.0	27.9	27.6		4.2	
1967	12.8		27.9	29.2	32.9		33.9		40.4	37.2		
1968	7.1		19.5		21.2		23.8		24.2		9.1	
1969	'		34.4		43.2	44.6	42.2		39.9			
1970	9.1		26.3		28.9		35.4		37.7	36.0		

TABLE 4-5 (Cont'd) BOISE BASIN - SNOW WATER CONTENT DATA (inches)

ATLANTA	SUMMIT				E	_EVATION =	7,600					
Water	1	15	1	15	1	15	1	15	1	15	1	15
Year	Jan	Jan	Feb	Feb	Mar	Mar	Apr	Apr	May	May	Jun	Jun
1971	25.8		38.3		42.1	45.9	52.5	52.1	49.7	40.7		
1972			32.5		46.7		46.9		49.9	42.2	35.3	10.8
1973	11.7		19.0		21.6		26.5		28.9		7.3	
1974	24.9		39.4		53.3		57.2	54.2	49.6		30.9	
1975	10.7	15.6	20.5	27.2	30.5	32.2	40.4	45.9	47.7	50.3	41.4	27.5
1976		20.5	20.3	22.9		28.0	35.9	34.8	38.8	27.7	16.6	
1977	0.7	1.7	2.1	1.8	4.3	5.9	7.4	6.3	1.2			
1978	19.3	25.4	28.8	37.5	36.8	39.5	38.2	38.7	40.3	35.1	30.7	
1979	6.9	11.6	11.8	18.2	22.4	21.6	25.2	25.3	25.0	23.8	8.0	
1980	10.7	23.1	24.4	25.7	29.9	35.2	37.1	41.1	32.8	27.9	21.4	
1981	10.1		13.0	13.6	17.8	17.6	22.0	21.8	17.8		6.8	
STATIST	ICS											
N	19	14	30	16	35	20	43	24	34	21	19	2
Mean	13.7	17.3	23.4	23.4	29.5	29.7	35.2	36.5	34.5	33.9	20.3	19.2
Maximum		33.4	39.4	42.0	53.3	48.9	57.2	54.2	49.9	50.3	41.4	27.5
Minimum		1.7	2.1	1.8	4.3	5.9	7.4	6.3	1.2	23.6	4.2	10.8

BOISE BASIN - SNOW WATER CONTENT DATA (inches)

BOGUS BAS	IN			•	EL	EVATION =	6,340					
Water	1	15	1	15	1	15	1	15	. 1	15	_1	15
Year	Jan	Jan	<u>Feb</u>	Feb	Mar	Mar	Apr	Apr	May	May	Jun	Jun
1942			11.8	16.2	17.5		18.8		16.0		0.0	
1943		27.3				42.3			33.3			
1944	4.7		4.8	11.2	11.5	13.7	14.3	17.0	18.2			
1945	6.7		8.7	16.7	18.0		24.2		22.7			
1946	16.0	21.0	25.2		32.0		35.8		31.2			
1947	12.7		16.0	17.2	18.5		25.5		18.5			
1948	9.7		10.0	11.3	14.7		21.7		22.0			
1949	15.0	16.7	17.3	- -	29.5	28.0	31.2	28.3	21.3	29.3		
1950	6.3	9.3	13.3	17.3	17.5	22.5	25.5	29.3	29.7	24.7	12.0	
1951	8.0	12.3	18.3	21.5	25.0	29.0	31.0	27.0	22.3	19.3	4.0	
1952	17.1	21.7	25.7	28.0	30.0	33.7	38.8	39.5	27.3	24.2	7.3	
1953	8.7	12.8	21.5	20.3	22.2	26.8	29.0	32.2	28.8	23.5	15.5	0.0
1954	8.2	10.3	16.0	16.8	20.8	20.8	23.0	23.0	17.7	5.5	3.0	
1955 1956	5.2 12.2	6.0 15.3	8.3 19.2	10.2 21.8	11.3 24.5	15.0 29.3	16.0 26.3	18.7 23.5	25.0 21.2	21.0 18.0	17.7 0.0	
1957	8.8	10.0	15.3	16.0	21.5	24.7	28.8	30.3	29.3	18.0	0.0	
1958	13.7	15.3	20.0	26.7	23.7	24.7	31.5	29.2	35.5	28.8	1.3	
1959	4.2	6.7	9.7	12.8	14.8	16.7	18.8	16.7	12.5	7.0	0.0	
1960	3.8	7.7	9.8	16.2	17.3	21.2	21.8	17.3	18.5	8.0	5.1	
1961	7.3	7.3	7.8	10.7	13.8	15.2	17.8	17.2	15.5	8.2	0.0	
1962	13.5	14.7	16.5	18.8	21.5	24.7	25.0	24.2	19.8	7.0	0.0	
1963	2.5	3.0	8.2	7.5	9.5	8.7	9.0	11.3	14.5	10.0	0.0	
1964	7.0	10.8	13.7	17.3	17.2	21.2	21.5	22.8	23.0	20.3	4.5	
1965	14.2	a	28.2	28.3	27.5	29.3	31.0	32.2	27.0	20.2	8.7	
1966	5.0	10.2	11.2	13.8	14.3	16.5	16.3	16.2	12.5	0.0	0.0	
1967	7.7	12.5	18.2	19.5	20.2	21.7	24.0	·	28.5	23.8	7.1	
1968	3.3	6.7	7.8	9.5	10.8	12.8	13.8	16.0	11.3	2.7	0.0	
1969	13.5	15.2	27.5	28.0	29.5	30.5	29.8	28.2	24.2	0.3		
1970 1971	8.5	13.0	23.0	25.8	26.3	30.7	30.5	27.0	35.3	25.5	9.8	
1971	15.7 19.0	24.0 23.0	26.3 31.3	33.5	29.5 34.2	33.0	38.7 34.2	37.2 34.7	33.7	16.3	2.2	
1973	7.5		11.7		15.2	18.2	19.0	34.7	36.2 13.3	24.7	0.0	
1974	18.8	17.5	21.7		27.5	31.5	32.3	34.2	25.5			
1975	11.3		17.2	20.8	22.0	25.5	32.5	36.9	38.2	38.5		
1976	7.5	15.5	16.3	17.7	21.7	24.5	23.7	22.7	25.0	9.5		
1977	1.7		2.3	2.2	4.8	6.8	11.2	5.2			·	
1978	7.5		16.3	22.8	25.3	26.2	24.5		24.3	14.0	0.0	
1979	5.2	9.2	10.0	13.7	17.5	18.5	20.2	23.5	17.5	14.0	0.0	
1980	8.3		15.8		22.2		30.5		17.8		2.7	
1981	5.0	4.7	8.0	7.5	9.3	10.0	14.3	15.7	2.3	0.0		
STATISTI	cs –											
N	38	29	39	33	39	33	39 24.7	29	39	29	26	1
Mean	9.2	13.1	15.6	17.5	20.3	22.8	24.7	24.5	23.0	15.9	3.9	0.0
Maximum	19.0	27.3	31.3	33.5	34.2	42.3	38.8	39.5	38.2	38.5	17.7	0.0
M: -:	1 7	2.0	^ ^	^ ^								

Sheet 4

TABLE 4-5 (Cont'd)

BOISE BASIN - SNOW WATER CONTENT DATA (inches)

DOLL ARHT	DE SUMMIT	г	•		Ei	EVATION :	- 0 420					
Water	1	15	1	15	1	15	1	15	1	15		15
Year	Jan	Jan	Feb	Feb	Mar	Mar	Apr	Apr	May	May	1 Jun	Jun
1000										7100	- Oun	Oun
1950		- -	20.0		25.4		33.6	34.6	34.4			
1951	16.7		24.0		28.0		34.1	32.9	35.7	33.9		
1952	19.8		30.5		34.4		37.4	37.8	34.0	33.0		
1953		15.1	21.2		25.2		29.4	31.0	30.4	28.3		
1954	8.3		19.8		26.2		30.6		29.6	 '		
1955	6.2		8.0		12.8		17.2		24.2			
1956	26.4		34.4		39.2		41.4		39.8			
1957	10.4		13.2		22.4		27.6		30:2			
1958	12.8		17.4		20.4				34.5			
1959			11.2		17.6		18.9		18.9			
1960	1.9		7.5		11.4		17.4		19.1			
1961	8.8		9.0		13.2		17.4		18.3			
1962	13.3		15.7		20.2		23.9		16.9			
1963	7.1		10.8		16.4		16.8		20.0			
1964	10.4		15.9		16.8		21.2		18.6			
1965	24.8		31.2	·	32.7		37.2		40.3			
1966	6.7		12.4	- -	14.8		17.2		17.0			
1967	10.8		16.2		18.1		23.7	- -	31.4			
1968	7.7		13.2		16.1		16.3		14.0			_ _
1969		, 			30.1		32.6		20.4			
1970					20.3		22.5					
1971					29.1		41.1			·		
1972					33.9		38.1		31.4			
1973					18.2		18.4	'				
1974					30.1		36.2		38.4			
1975					19.9		28.6					
1976					17.8		22.2					
1977					2.6		4.4					
1978							32.0					
1979	5.0		8.8		15.0		18.0		19.7		5.1	
1980	7.6		19.1		22.6		25.9		23.2		19.9	
1981	8.2		11.2		15.0		18.5		16.0			
STATISTI	<u>cs</u>											
N	19	,	00	•								
N Mean		1	22	0	31	0	31	4	25	3	2	0
	11.2	15.1	16.9		21.5		25.8	34.1	26.3	31.7	12.5	
Maximum	26.4	15.1	34.4		39.2		41.4	37.8	40.3	33.9	19.9	
Minimum	1.9	15.1	7.5		2.6		4.4	31.0	14.0	28.3	5.1	

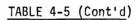
ater	1	15	1	15	1	LEVATION 15	1	15		15		4 =
ear	Jan	Jan	Feb	Feb	Mar	Mar	Apr	Apr	May	15 May	1 Jun	15 Jun
938	-				22.2		28.0					
939							9.1					
940							13.7					
941							11.0					
942							17.2					
943							29.6					
944							11.1					
945							12.9					
946							22.3					
147							18.8					
948							13.4					
149			13.5		19.8		21.7		10.0		- -	
50	5.1		15.3		18.0		22.1		10.0			
)51 ¹	9.6		16.2		20.0		21.7	23.1	19.6	-		
152	13.3		20.8		24.3		24.4	17.6	14.4	7.5		
953	7.1		15.5		18.8		20.0	23.6	14.8	5.4		
54	4.8		15.3		18.6			19.8	14.4	7.9		
55	4.6		6.0		8.2		22.4	22.4	14.0	0.0		
156	18.4		25.4		30.6		13.4	13.2	17.0	10.4		
57	6.4		11.4		15.6		27.2	26.2	16.6	12.4		
58	8.7		11.2	15.1	17.6		20.6	19.8	15.6	5.4		
59	4.7		9.1		14.2		25.2		23.9	12.5		
60	1.6		5.4	8.3	7.9		15.0	9.9	6.6			
61	6.4		6.1		9.0		9.1		1.5			
62	10.4	11.3	12.8	16.0	16.0	18.7	13.1 19.2		7.4			
63	4.7		9.9	9.9	10.9		19.2	13.2	6.7	0.0		
64	6.5		13.0	13.3	13.6	11.6 17.7	13.1	14.0	12.5	8.5	0.0	
65	19.2		29.3	30.2	30.7		18.1	15.2	13.3	5.4	0.0	
66	4.3	10.8	11.3	12.1	12.5	30.7	31.6	31.2	30.0	20.1		
67	7.7	9.9	17.1	17.0	18.0	14.6 21.3	13.8	7.3	3.5	0.0		
68	5.2	8.6	10.3	11.5			22.0	23.8	24.8	14.8		
69	9.7	12.6	21.7	23.9	12.9	13.8	13.8	10.3	5.8	0.0		
70	5.1	8.2	15.9	14.5	25.7	27.5	25.8	20.9	14.1	0.0		
71	12.4	16.7	20.8	20.6	16.1	17.9	19.5	19.4	20.8	9.6		
72	9.6		18.7	19.4	23.1	26.0 24.3	27.3	25.9	23.5	'		
973	5.8		10.0	19.4	22.7	24.3	22.6	22.2	17.7	7.4	0.0	
74	13.4			11.5	11.6	13.1	12.9	10.9	7.2	0.0		
975	5.9		21.5	10.0	24.4	32.1	30.8	. 33.9	25.1		0.8	`
976	7.3		9.8	18.0	18.3	18.5	22.3	24.6	25.6		14.8	
177	0.0	1 2	11.0	10.8	13.8	16.5	16.7	14.1	14.2			
,,,	0.0	1.2	1.3	0.0	0.7	2.4	2.7	0.0	0.0			

TABLE 4-5 (Cont'd)

BOISE BASIN - SNOW WATER CONTENT DATA (inches)

GALENA	,				EI	LEVATION :	= 7,440					
Water	1	15	1	15	1	15	1	15	1	15	1	15
_Year	Jan	Jan	Feb	Feb	Mar	Mar	Apr	Apr	May	May	Jun	Jun
1978	11.0		16.6	21.1	20.5	20.3	21.8	17.8	17.4	3.8		
1979	3.4	·	6.4		12.1	10.7	13.1	11.6	8.8		0.0	
1980	6.1		11.9		16.0	18.3	19.5	20.1	10.7		0.0	
1981	8.6	8.2	10.2	11.1	12.7	11.9	15.0	15.3	6.2	0.0	0.0	
STATISTI	<u>cs</u>						-					
N	32	9	33	19	33	20	44	29	33	21	8	0
Mean	7.7	. 9.7	13.7	15.0	16.8	18.4	18.7	18.2	14.1	6.2	2.0	
Maximum	19.2	16.7	29.3	30.2	30.7	32.1	31.6	33.9	30.0	20.1	14.8	
Minimum	0.0	1.2	1.3	0.0	0.7	2.4	2.7	0.0	0.0	0.0	0.0	

TABLE 4-5 (Cont'd)


BOISE BASIN - SNOW WATER CONTENT DATA (inches)

GALENA SU	MMIT				EL	EVATION =	8,780					
Water	1	15	1	15	1	15	1	15	1	15	1	15
Year	Jan	Jan	Feb	Feb	Mar	Mar	Apr	Apr	May	May	Jun	Jui
1949			16.2		23.6		24.5		21.2			
1950	7.4		18.0		21.2		28.5	29.9	28.6			
1951	13.2		19.8		24.0		30.3	27.5	30.0	25.8	9.8	
1952	16.0		24.4		28.0		29.8	31.2	27.0	20.0	8.2	
1953	7.5		16.8		20.0		24.0	26.2	24.4	26.0	18.9	
1954	7.4		18.8		22.8		26.8	28.0	25.0	17.4		
1955	5.3		6.2		9.8		14.8	17.4	20.4	17.8		
1956	20.2		28.6		32.2		37.8	33.2	30.0	31.0		
1957	10.0		13.2		18.2		23.2	25.8	25.2	21.4		
1958	9.8		13.9	18.6	21.7		32.0		33.7	28.4		~-
1959	7.5		13.9		19.9		21.5	20.4	19.3			
1960	2.7		7.4	11.3	11.2	15.8	15.7	15.3	17.1	10.0	2.9	
1961	8.9		9.5	13.4	14.1	17.4	18.3	17.8	18.8	16.4	1.8	
1962	12.9	13.6	14.8	19.6	20.4	23.1	24.7	22.7	20.3	17.6	17.7	
1963	5.9		11.6	12.4	14.6	15.4	18.7	21.1	23.3	23.2	11.4	
1964	8.3		16.5	16.6	17.0	22.2	24.3	24.8	24.4	23.9	14.0	
1965	26.1		32.3	34.3	34.4	37.2	38.3	40.6	40.6	40.0	26.6	
1966	5.5	11.2	12.2	13.5	14.7	16.6	18.1	16.1	15.1	3.8	0.0	
1967	9.8	12.0	18.2	19.7	20.6	23.8	25.3	28.8	32.4	29.5	14.5	
1968	7.4	11.0	13.1	14.4	16.8	17.2	18.9	18.4	18.6	16.4	7.9	
1969	12.0	17.7	24.7	28.2	29.5	30.6	32.4	30.5	29.2	20.9	3.0	
1970	6.9	9.5	16.4	16.8	18.6	21.7	22.3	24.5	27.7	23.8	12.1	
1971	15.7	20.7	24.9	26.6	28.8	32.3	34.7	35.3	36.8		23.3	
1972	13.5		22.9	23.7	27.3	30.5	30.7	33.8	32.8	28.7	21.4	
1973	7.5		12.6	12.9	13.5	15.3	16.8	18.2	17.8	14.4	0.0	
1974	16.4		26.1		30.3	38.9	38.0	43.5	40.5		29.7	
1975	8.9		13.9	21.4	21.5	23.6	29.0	33.4	36.8		32.6	
1976	11.3		14.7	15.5	19.1	22.3	24.9	25.2	27.4		12.5	
1977	1.1	1.9	2.2	2.3	2.7	4.6	5.6	5.2	0.0	2.9		
1978	13.6		19.6	24.8	24.7	25.6	22.8	29.2	29.8	28.4	25.8	
1979	5.8		7.5		13.5	12.6	16.1	17.3	18.0		0.0	
1980	6.9		15.3		19.0	21.4	23.7	27.0	21.2	16.3	13.0	
1981	9.6	8.8	11.8	12.4	14.4	16.8	19.0	19.7	18.0	13.4	10.3	
STATISTI	cs											
		-	4.0	•								
N	32	9	33	20	33	22	33	31	33	25	24	0
Mean	10.0	11.8	16.3	17.9	20.2	22.0	24.6	25.4	25.2	20.7	13.2	
Maximum	26.1	20.7	32.3	34.3	34.4	38.9	38.3	43.5	40.6	40.0	32.6	
Minimum	1.1	1.9	2.2	2.3	2.7	4.6	5.6	5.2	0.0	2.9	0.0	

TABLE 4-5 (Cont'd)

BOISE BASIN - SNOW WATER CONTENT DATA (inches)

JACKSON F Water		15		15	1	EVATION =	1	15	1	15	1	15
water Year	1 Jan	Jan	1 Feb	Feb	Mar	Mar	Apr	Apr	May	May	Jun	Ju
rear	Uan	Uari	1 60	1.60	riai	riai	Vhi	Vhi	may	nay	oun	- ou
1950			27.4		33.8		44.9		42.6			
1951			20.2		34.2		36.0		30.2			
1952			31.8		40.6		45.0	42.8	37.9	27.8	9.9	
1953			25.4		31.6		35.6		37.9			
1954			27.1		34.6		39.4		35.2			
1955			10.0		18.0		25.0		34.4			
1956			34.6		43.0		47.0		41.0			
1957					28.4		36.0		37.8			
1958			22.8		29.4		36.4		42.4			
1959			16.6		23.0		27.9		24.2			
1960					18.8		25.7		24.2			
1961		- -	14.9		20.8		26.1		26.4			
1962			21.2			29.1	31.6		26.5			
1963			14.4		16.6		16.6					
1964			22.2		20.4		29.8					
1965	28.1		37.8		39.7		48.0		46.4			
1966	13.6		20.7		21.2		27.2		28.1			
1967	11.5		24.8		26.0		32.0					
1968	10.7		16.1		17.9		25.6					
1969		·			38.1		35.6				·	
1970			28.6		35.3		34.0					
1971					34.1		44.4					
1972			31.7		39.2		45.6		44.3		24.5	
1973	12.3		20.6		23.4		25.5		24.6		0.0	
1974			31.6		37.1		49.2		48.9	43.4	26.8	
1975				25.0	27.8	28.8	37.7	37.7	40.1	43.2	35.6	
1976		19.7	22.8	23.5	28.2	29.0	35.5	35.8	37.1	25.2	0.0	
1977	1.0	2.6	2.2	2.0	5.0	7.4	9.2	6.4	0.0			
1978	18.8	24.2	30.1	33.7	33.3	35.2	34.8	35.6	35.0	28.9	24.3	
1979	7.5	10.8	11.5		20.7	20.5	22.8	22.6	21.8			
1980	9.4	21.0	22.4	24.8	28.4	34.2	35.0	34.8	30.7	23.5		
1981	11.1	-	13.5	14.7	17.6	18.2	21.7	23.1	19.3		4.4	
STATISTI	CS				· · · · · · · · · · · · · · · · · · ·				J			***
N	10	-	0.7	•	21	0	20	0	0.5			_
N	10	5	27	6	31	8	32	8	25	6	8	0
Mean	12.4	15.7	22.3	20.6	27.9	25.3	33.3	29.9	32.7	32.0	15.7	
Maximum	28.1	24.2	37.8	33.7	43.0	35.2	49.2	42.8	48.9	43.4	35.6	
Minimum	1.0	2.6	2.2	2.0	5.0	7.4	9.2	6.4	0.0	23.5	0.0	-

BOISE BASIN - SNOW WATER CONTENT DATA (inches)

	REEK SUMM				EL	EVATION =	6,100					
Water	1	15	1	15	1	15	1	15	1	15	1	15
Year	Jan	Jan	Feb	Feb	Mar	Mar	Apr	Apr	May	May	Jun	Jun
1932									28.7			
1933							29.8			21.1		
1934					20.4		18.0	''				
1935					22.2							
1936						38.4		·		20.6		
1937						24.4			20.6			
1938					26.6		39.2			25.6		
1939	9.3					29.6		20.2	10.8			
1940				17.8		25.0			10.6			
1941		11.8			20.6		17.6		11.6			
1942				19.0	19.4		21.6	·	15.7			
1943			46.3		49.2		56.0		42.4			
1944		7.8	8.0		14.7	16.6			16.1			
1945	5.2		8.7		21.9		24.1		22.7			
1946	18.0		28.8		38.1	41.6	42.4		37.2			
1947	21.0		23.6		28.2	41.0	33.8		26.4			
1948	11.0		12.2	14.8	20.2		25.7	27 . 6	25.8			
1949	20.0		22.6		37.8		36.6		30.6			
1950	8.6		22.8	- -	27.8		38.0	37 . 6		20.0	10.0	
1950	12.4		23.6		35.6		40.2		33.4	30.8	12.0	
1952	21.4		33.6					37.4	31.2	25.4	6.2	
1952	9.9		26.2		42.6 32.0	44.3	46.6	44.8	37.8	26.0	4.2	0.7
1953	15.6		30.2				36.8	39.0	34.0	26.2	19.1	
1954	6.9	9 . 8	9.3	12.8	35.6 16.8		39.4	38.1	30.0	16.8	0.4	
1956	21.2	9.0 	32.8	12.0	45.4	23.2 48.0	24.3 44.2	25.3	33.1	25.4	18.6	
1957	15.6		19.2		31.6	38.8	44.2	46.6	36.6	32.8	5.0	
1958	19.1		29.2	32.4	35.6			45.6	40.6	25.2	6.9	
1959	8.9		15.5		22.6	38.9 22.8	40.6	42.9	45.8	36.9	12.8	
1960	4.3	8.2	10.1	18.7	21.1	26.6	26.8	23.5	21.5	13.3	6.8	
1961	12.2	11.8	14.0	19.4	20.6	27.1	27.7	24.3	23.8	13.7	7.3	
1962	18.0	20.4					29.1	27.9	26.5	18.4	0.0	
1963	3.4	4.5	20.3	24.6 10.4	26.6	31.1	32.7	30.3	25.1	17.3	2.0	
1964	9.2		10.1		11.6	12.5	13.0	15.0	17.4	14.7	0.0	
		15.0	23.7	22.9	22.0	31.6	31.3	31.7	30.0	25.0	10.7	
1965	26.0	30.9	39.1	41.6	42.7	45.2	47.8	47.0	44.4	39.1	21.9	
1966	7.3	17.2	18.3	20.9	21.8	24.7	26.2	25.0	24.3	8.9	0.0	
1967	11.6	16.2	23.6	25.9	28.2	30.8	32.1	34.7	35.8	30.4	11.2	
1968	7.4	10.2	12.1	14.0	18.1	20.5	21.2	20.9	17.6	9.8	0.0	
1969	18.7	24.1	31.8	38.0	41.2	43.0	37.9	35.4	33.4	14.4	4.5	
1970	9.2	16.3	29.3	31.3	33.6	39.4	36.1	36.6	37.0	33.9	15.3	

TABLE 4-5 (Cont'd)

BOISE BASIN - SNOW WATER CONTENT DATA (inches)

MOORES C	REEK SUMM	MIT			El	_EVATION =	6,100					
Water	1	15	1	15	. 1	15	1	15	1	15	1	15
Year	Jan	Jan	Feb	Feb	Mar	Mar	Apr	Apr	May	May	Jun	Jun
1971	19.4	28.8	36.2	36.8	39.3	45.4	47.6	45.9	45.5	31.6	23.8	
1972	20.4	27.9	37.7	37.9	42.1		49.4	49.6	50.2	41.3	23.3	1.7
1973	12.6		19.5		23.3		24.6		23.0		0.0	
1974	20.2		27.9		36.4	43.1	45.4	50.3	45.0		26.7	
1975	11.1		18.4	27.8	29.5	32.8	42.2	42.5	44.0	44.5	33.0	10.6
1976	16.7	24.1	25.6	27.4	35.8	33.9	38.9	39.6	39.2		17.2	
1977	1.9	2.1	2.3	2.2	4.0	7.2	10.0	6.6	1.5			
1978	19.5	23.7	26.7	34.2	35.8	36.4	34.2	35.9	35.8	26.7	17.5	
1979	7.0	12.3	13.0	17.8	21.7	22.7	23.8	24.0	22.5	19.6	4.0	
1980	9.2	20.7	22.8	24.5	29.5	31.3	35.6	37.6	30.0	22.3	12.6	
1981	9.2	9.6	12.5	14.3	14.9	15.1	17.6	20.2	12.4	2.6	0.0	
STATISTI	<u>cs</u>											
N	38	22	39	25	44	32	43	33	45	31	31	3
Mean	13.1	16.1	22.2	23.5	28.3	31.0	33.2	33.6	29.1	23.9	10.4	4.3
Maximum	26.0	30.9	46.3	41.6	49.2	48.0	56.0	50.3	50.2	44.5	33.0	10.6
Minimum	1.9	2.1	2.3	2.2	4.0	7.2	10.0	6.6	1.5	2.6	0.0	1.7

TABLE 4-5 (Cont'd)

BOISE BASIN - SNOW WATER CONTENT DATA (inches)

TRINITY	MOUNTAIN			.: '	EL	EVATION =	7,770					
Water	1	15	1	15	1.	15	1	15	1	15	1	15
Year	Jan	Jan	Feb	Feb	Mar	Mar	Apr	Apr	May	May	Jun	Jun
		-			· · · · · · · · ·						20.4	
1932					·						30.4	
1933											31.0	
1934						29.6						
1935							42.0				22.8	
1936								50.2				
1937							31.0					
1938							54.6					20.8
1939							25.3			14.0	:	
1940							33.6				15.0	
1941						30.0				27.0	5.2	
1942						34.0						
1943								67.4				
1944							21.0				7	
1945					26.9		35.5					
1946					43.6		47.3					
1947					35.9		40.9			28.0		
1948					27.4		36.2					
1949					48.6		50.0					
1950					47.2		56.8					
1951			39.8		46.6		48.6		37.4			
1952			43.3		53.0		59.4	59.2	52.0	43.8		
1953			34.2		42.2		44.4		43.8			
1954			34.8		45.6		51.6		46.6	36.2	18.0	
1955			13.4		22.8		32.8		41.6			
1956			47.4		62.0		64.6		59.2	48.0	26.8	
1957			22.4		35.2		46.2		48.8			
1958	19.8	22.4	30.6	37.2	40.0	43.8	54.8	54.0	56.0	52.6	- -	
1959	11.2	15.8	19.8	30.6	31.2	31.2	37.8	35.2	35.8	33.8		
1960	6.2	12.2	15.0	21.8	23.6	31.0	29.6	31.8	34.6	32.4		
1961	8.8	16.1	20.0	23.4	26.2	32.9	34.6	32.8	34.2	26.1		
1962	24.1	24.8	27.9	37.1	37.4	44.0	45.2	44.4	39.4	30.4		
1963	12.0	12.4	20.4	20.6	26.4	30.1	30.1	36.3	39.5	37.0	18.6	
1964	14.9	18.5	24.0	26.6	26.4	35.9	34.1	36.9	37.3	33.2		
1965	41.4	44.8	54.8	59.5	61.0	62.2	65.2	67.4	64.2	55.5	49.4	
				28.5	30.1	34.2	36.1	34.0	34.0	25.3	5.4	
1966	21.1	24.0	27.0 36.0	39.1	41.3	34.2 	42.7	34.0	34.0	45.9		
1967	29.6				26.5		24.0	31.0	26.9	22.4	12.0	2.0
1968	11.7		16.3			 0			47.7			2.U
1969	17.3		43.9		54.2	53.8	49.9			16 6	22.6	
1970	11.4		35.0		37.3	- -	44.4		48.1	46.6	32.6	

TABLE 4-5 (Cont'd)

BOISE BASIN - SNOW WATER CONTENT DATA (inches)

TRINITY	MOUNTAIN				EL	EVATION =	7,770					
Water	1	15	1	15	1	15	1	15	1	15	1	15
Year	Jan	Jan	Feb	Feb	Mar	Mar	Apr	Apr	May	May	Jun	Jun
1971	31.3		43.4		50.6	59.5	60.4	63.3	61.2	51.2	43.2	
1972	20.3		39.7		55.0		54.0		61.4	48.5	42.9	14.9
1973	15.3		24.7		26.9		33.9		33.6		8.8	14.3
1974	32.9		48.7		60.7		70.7	75.7	63.6		39.6	
1975	14.0		24.7	34.5	38.7	41.3	52.2	57 . 0	56.0	57.2	49.6	35.1
1976		23.4	25.4	30.9	33.5	36.6	41.1	43.1	45.0	32.1	16.6	
1977	0.5	2.1	1.8	1.8	4.5	6.2	9.8	6.9	0.0			
1978	26.1	33.1	36.1	44.9	45.2	48.0	46.7	48.2	50.4	44.5	36.5	
1979	8.4	13.4	13.8	21.8	26.6	26.5	30.2	30.2	29.7	28.2	10.6	
1980	13.5	27.7	30.6	31.6	38.8	43.7	45.2	50.2	43.9	36.9	29.7	
1981	12.3		16.0	16.1	20.7	21.3	26.5	27.7	20.9	18.3	9.5	
STATIST	<u>ICS</u>				***							
N Mean Maximum Minimum		14 20.8 44.8 2.1	31 29.4 54.8 1.8	17 29.8 59.5 1.8	37 37.8 62.0 4.5	21 36.9 62.2 6.2	43 42.3 70.7 9.8	22 44.7 75.7 6.9	30 43.1 64.2 0.0	26 36.7 57.2 14.0	22 25.2 49.6 5.2	4 18.2 35.1 2.0

Sheet 13

TABLE 4-5 (Cont'd)

BOISE BASIN - SNOW WATER CONTENT DATA (inches)

VIENNA M					El	LEVATION :	8,960					
Water	1	15	_1	15	1	15	1	15	1	15	1	15
Year	Jan	Jan	Feb	Feb	Mar	Mar	Apr	Apr	May	May	Jun	Jui
1950					-01 7		20.					
1951					21.7		30.4		38.1			
1952					32.4		43.6		45.2			
1953					38.8		44.4		39.2			
1954			20. 2		34.4		41.4		44.6			
1955			30.2		36.6		41.6		43.6			
1956					18.4		31.4		38.2			
1950 1957					53.8		55.6			56.6		
				,	29.6		38.0		40.4			
1958					33.4		45.0		46.4			
959					30.0		34.2		31.8			
1960					18.8		24.8		27.0			
1961					19.8		27.2		27.8			
1962					30.0		36.2		33.2			
1963			10.2		23.1		31.6		35.0			
964			22.5		23.4		35.8		34.8			
965			47.7		51.2		56.0		54.3			
.966			17.8		23.4		27.4		20.7			
1967			28.8		31.4		39.2		45.4			
968			22.1		29.0		31.4		31.2			
1969					46.0		48.8		39.1			
970					28.9		36.8					
971					42.1		53.6					
.972	,		35.0		52.4		52.8		56.2		40.2	
.973	12.3		20.1		21.1		26.0		27.6		48.3	
974			41.1		46.2		56.8		62.5		12.1	
.975	11.3		23.5	28.4	29.9	33.3		46.7	49.2	51.7	47.5	
.976		21.7	24.1		27.8	32.7	36.9	39.0			45.0	33.0
.977	1.1	2.9	3.2	2.9	5.3	6.4	10.4	8.7	42.7	33.3	22.4	
.978	23.4	28.0	30.1	37.7	37.8	39.8	39.5	43.1	5.4			
.979	9.0	13.2	13.8	19.9	24.0	23.5	26.6		45.0	44.3	37.6	
.980	10.4	26.1	29.8	29.7	35.0	39.1	41.1	20.0	30.1	29.4	16.0	
981	12.3		16.2	15.5	20.1	21.8		39.0	40.8		30.7	
			20.2	13.3	20.1	21.0	26.8	27.4	26.7		17.5	
TATISTI	CS			,								
	-	_										
V 4	7	5	17	6	32	7	31	6	29	5	9	1
lean	11.4	18.4	24.5	22.4	31.1	28.1	37.8	34.0	38.0	43.1	30.8	33.0
aximum	23.4	28.0	47.7	37.7	53.8	39.8	56.8	46.7	62.5	56.6	48.3	33.0
1inimum	1.1	2.9	3.2	2.9	5.3	6.4	10.4	8.7	5.4	29.4	16.0	33.0

TABLE 4-6
BOISE BASIN-TOTAL MONTHLY EVAPORATION (Inches)

ARROWROCK DAM

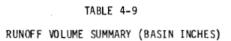
YEAR	MAY	JUN	JUL	AUG	SEP	OCT_
1916			8.860	8.530	6.141	2.149
1917	4.421	7.522	10.168	9.938	5.592	2.988
1918	5.397	7.657	9.316	7.728	4.776	1.831
1919	7.164	8.780	10.591	10.205	6.077	1.965
1920	6.439	7.623	10.619	9.469	4.688	
1921	*					
1922	5.639	8.628	10.850	8.641	6.663	3.446
1923	5.530	5.493	10.097	9.213	6.666	1.855
1924	9.349	9.519	11.699	10.549	6.382	
1925		*****				~~~~~
1926	6.442	9.836	10.810	9.269	5.216	
1927	4.931	7.381	10.289	8.471	4.375	3.051
1928	7.229	7.510	9.953	9.063	5.667	
1929	6.536	7.787	10.527	9.278	4.979	
1930	4.389	7.441	10.265	7.456	4.718	
1931	7.093	8.481	11.480	9.700	6.225	2.505
1932	5.122	6.816	9.122	8.515	5.621	
1933	4.520	7.928	10.386	9.112	5.291	
1934	6.782	6.911	10.593	9.648	5.350	1.907
1935	6.885	10.002	12.093	11.160	7.493	~~~~
1936	8.047	6.983	12.022	10.560	6.949	4.857
1937	8.643	8.100	12.418	11.173	7.101	
1938	6.147	8.184	9.526	9.012	6.508	1.621
1939	8.355	8.864	11.176	11.310	6.334	2.431
1940	6.174	9.195	9.759	9.945	4.366	1.710
1941	5.050	6.062	9.296	7.361	4.524	2.267
1942		7.240	11.574	10.452	6.675	3.041
1943	6.417	6.475	10.687	9.911	7.009	
1944	7.363	6.340	10.250	10.091	6.487	3.076
1945	5.622	7.097	11.051	9.850	6.130	
1946	6.243	8.279	11.049	9.677	5.633	2.308
1947	7.434	7.336	11.353	9.943	5.741	
1948	5.887	7.499	9.921	9.235	5.919	
1949	5.52	8.97	11.11	9.14	6.79	
-						

TABLE 4-6 (Continued)

BOISE BASIN-TOTAL MONTHLY EVAPORATION (Inches)

ARROWROCK DAM (Continued)

YEAR	MAY	JUN	JUL	AUG	SEP	OC T
1950	6.74	6.71	10.65	8.52	5.75	
1951	5.76	8.10	10.82	8.42	6.60	3.26
1952	6.08	6.77	9.03	9.61	6.22	6.70
1953	5.12	5.54	10.28	8.61	6.35	2.95
1954	6.87	5.51	8.99	7.80	6.04	3.06
1955	4.86	7.33	7.66	9.06	5.12	2.42
1956	3.98	6.36	8.96	7.97	5.68	
1957	4.05	6.91	8.71	7.76	5.85	1.44
1958	5.88	6.17	8.90	7.92	5.25	2.66
1959	4.24	6.59	9.43	7.58	3.92	1.90
1960	5.01	8.21	9.93	7.70	5.93	2.39
1961	5.60	7.89	10.01	8.14	4.23	2.28
1962	5.13	8.07	10.96	8.35	6.37	2.05
1963	5.32	5.30	10.32	8.89	4.89	2.66
1964	7.69	5.79	10.71	9.01	5.23	
1965	6.37	7.56	10.16	8.35		
1966	7.97	8.60	11.90	10.07	6.66	
1967	6.91	6.97	11.38	11.56	6.79	
1968	6.90	9.03	12.28	7.17		
1969	8.17	7.43	11.40	10.66		
1970	6.26	7.81	10.15	10.49		
1971	6.32	7.57	10.88	10.80		
1972	7.84	8.75	11.44	10.66	5.97	
1973	8.30	9.02	11.54	10.30	5.54	
1974	7.08	10.71	10.27	10.13	7.49	
1975		8.18	10.81	8.43	6.65	
1976	8.73	7.83	10.19			4-7
1977	4.88	9.44	10.57	8.79	6.51	
1978		8.11	10.06	9.51	4.96	
1979	7.06	9.54	11.51	8.43	6.94	
1980			9.89	8.62	4.94	
N	58	61	63	62	57	29
Mean	6.31	7.70	10.46	9.24	5.86	2.65
Max.	9.349	10.71	12.418	11.56	7.493	6.70
Min.	3.98	5.30	7.66	7.17	3.92	1.44
er (11 •	3.30	5.30	7.00	/ • 1 /	3.32	1.77

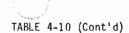

TABLE 4-7 AVERAGE MONTHLY WIND SPEED AND DIRECTION

BOISE AIRPORT WSFO

	JA	N I	F	EB	М	AR	А	PR	М	AY		UN	.1	UL	Δ	UG	9	ΕP	0	CT	NI:	OV	D	EC
YEAR	DIR	SPD	DIR	SPD	DIR	SPD	DIR	SPD	DIR	SPD	DIR	SPD	DIR	SPD	DIR	SPD	DIR	SPD	DIR	SPD	DIR	SPD	DIR	SPD
1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1978	SE S	11.2 12.5 8.1 10.8 11.7 6.6 12.6 6.7 9.8 6.5 5.2 6.3 7.5 8.5 8.2 9.1 11.2 8.1 8.2 8.1 7.8 8.2 9.1	ESE SE SE SE SE SE SE WNW SE 140 270 130 130 130 130 140 130 130 140 130 120	7.8 11.5 7.8 11.7 10.0 9.9 11.6 7.2 10.3 9.0 10.1 8.8 7.7 7.5 8.7 7.9 3 8.4 8.9 9.7 7.5 8.9 9.7 7.5 8.9 9.9 10.0 8.9 9.9 10.0 8.9 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10	ESE SE SE SE SE SE SE SE SE 140 210 130 170 340 120 100 310 150 100 320 140 310	9.7 13.2 9.6 11.9 10.8 11.9 9.8 10.8 9.5 9.1 9.9 10.4 8.3 8.2 9.5 9.5 7.8 10.7 10.8 8.6 11.3 10.8 9.5 9.5 9.5 9.5	WNW NW SE NW NW SE SE WNW SE SE 320 130 310 310 310 310 310 310 310 310 31	12.2 8.8 10.3 10.5 10.1 10.3 9.8 10.5 10.1 9.5 9.0 7.6 10.4 10.1 8.3 9.2 8.7 9.0 7.10.7 11.5 10.9 11.0 11.5 11.5 11.5 11.5 11.6 11.5 11.5 11.5	NNW NW NW NW NW NW NW SE WNW NW WNW WNW 310 300 300 310 320 330 310 320 330 310 320 310 320 320 320 320 320 320 320 320 320 32	11.7 8.6 7.3 10.9 11.1 11.5 8.2 9.5 8.0 8.5 8.7 7.7 8.6 10.1 9.6 8.7 7.7 10.5 11.0 9.5 9.3 9.2 10.7 10.9 10.9 10.9 10.9 10.9 10.9 10.9 10.9	NW WNW NW	10.7 7.2 7.0 10.2 9.8 11.9 10.1 7.6 7.8 8.5 7.9 8.1 7.5 8.4 9.0 8.6 10.1 9.0 8.6 10.1 9.8 8.7 9.8 9.8	WNW NW 310 260 300 310 320 310 320 310 320 320 320 320 320 320	11.0 6.9 9.0 8.0 7.6 9.2 7.2 7.5 7.7 7.7 7.7 7.7 8.8 8.6 8.1 8.3 8.1 7.9	SE NW NW NW NW SE NW SE SE SE WNW 310 210 280 270 310 360 310 320 310 320 310 320 310 320	10.3 6.6 9.1 9.2 10.5 7.5 7.7 7.7 7.7 7.7 7.4 8.0 7.4 8.4 9.4 8.3 8.7 7.9 7.1 7.8	SE SE SE SE SE SE SE WNW SE SE 130 290 160 290 160 320 340 120 140 70 140 100	10.3 6.9 8.0 5.9 8.0 7.8 7.5 7.0 8.9 7.1 7.3 7.2 7.6 8.9 9.7 7.8 8.4 7.6 7.6 8.9 9.7	SE SE SE SE SE SE SE SE SE 130 150 150 140 160 120 120 120 120 120 120 120 120 120	12.0 7.0 6.8 9.5 9.8 10.4 9.3 7.6 7.0 8.3 7.7 8.3 8.7 7.8 8.7 9.3 8.8 7.4 6.9 9.3 7.5 7.6 7.6 7.7 7.8 7.6 7.7 7.6 7.7 8.7 7.7 8.8 7.7 7.6 7.7 7.7 8.8 7.7 7.6 7.7 7.7 7.7 8.8 7.7 7.7 7.7 7.7	SE SE SE SE SE SE SE SE SE SE 130 120 130 140 130 130 120 130 130 120 130 120 130 120	11.1 8.0 7.9 10.0 8.5 9.8 9.3 7.5 9.0 8.5 7.9 8.1 7.4 7.7 8.5 7.9 8.5 7.5 10.6 6.3	SE SE SE SE SE SE SE SE SE SE 130 130 120 120 120 120 120 130 120 130 120 130 130 130	9.5 8.3 9.7 8.6 8.5 13.4 7.2 10.5 6.9 4.6 7.7 5.2 4.4 9.5 6.6 7.8 2 10.4 9.3 9.9 8.3 9.9 8.3 6.0 7.6 8.3 9.7 9.6 9.6 9.6 9.6 9.6 9.6 9.6 9.6 9.6 9.6
MIN SPEED MAX SPEED AVE SPEED		4.8 12.6 8.4		6.6 11.7 8.9		7.8 13.2 10.0		7.6 12.2 10.0		7.3 11.7 9.4		7.0 11.9 8.9		6.9 11.0 8.2		5.6 10.5 8.0	İ	5.9 10.3 8.0		6.8 12.0 8.2		6.3 11.5 8.3	,	4.4 13.4 8.1
PREVAILING DIRECTION	SE		SE		SE		NW		NW		NW		NW		NW		SE		SE	3.2	SE		SE	0.1

DIR = RESULTANT DIRECTION OF WINDS FOR MONTH. NUMERICAL VALUES IN DEGREES WITH NORTH BEING 0 OR 360 DEGREES. EAST = 90 DEGREES, SOUTH = 180 AND WEST = 270 DEGREES.

SPD = AVERAGE MONTHLY WIND SPEED IN MILES PER HOUR.


SOUTH FORK BOISE RIVER NEAR FEATHERVILLE Runoff in Basin Inches 1.0 Basin Inch = 33,867 A.F. for 635 Square Mile Basin

WATER COT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP SEP MAR MAR JUL JU									1.0 ba	2111 1111	CII - 3	3,007	n.,, 10	000 30	uare m	ie basiii	'					
YEAR OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP SEP PAR MAR JUL JUL <td>WATED .</td> <td></td> <td></td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>OCT-</td> <td>OCT-</td> <td>.1ΔΝ_</td> <td>.1AN _</td> <td>FFR_</td> <td>MAD_</td> <td>ADD _</td> <td>MAV.</td> <td>.111N_</td>	WATED .			_										OCT-	OCT-	.1ΔΝ_	.1AN _	FFR_	MAD_	ADD _	MAV.	.111N_
1946 0.36 0.39 0.44 0.43 0.35 0.72 3.89 5.48 3.57 1.13 0.48 0.37 17.61 2.69 1.50 15.57 15.14 14.79 14.07 10.18 4.70 1947 0.50 0.47 0.50 0.39 0.42 0.95 2.30 4.83 2.60 0.95 0.40 0.33 14.64 3.23 1.76 12.44 12.05 11.63 10.68 8.38 3.55 1949 0.40 0.40 0.40 0.48 0.40 0.73 0.40 0.35 0.39 1.48 4.19 4.28 1.00 0.44 0.35 14.10 2.36 1.14 12.09 11.69 11.49 11.49 11.49 11.49 1.40 11.49 1.40 11.49 1.40 11.49 1.40 11.49 1.40 11.49 1.40 11.49 1.40 11.49 1.40 11.49 1.40 11.49 1.40 11.49 1.40 11.49 1.40 11.49 1.40 11.49 1.40 11.49 1.40 11.49 1.40 11.49 1.40 11.49 11.49 11.49 11.49 11.49 1.40 11.49 11.			NOV	DEC	TAM	CCD	GAM.	ΛDD	MAY	THIN	.1111	ALIG	CED							,		
1948 0.46 0.40 0.39 0.36 0.40 0.35 0.39 0.42 0.95 2.30 4.83 2.60 0.95 0.40 0.33 14.64 3.23 1.76 12.44 12.05 11.63 10.68 8.38 3.55 1948 0.46 0.40 0.36 0.40 0.35 0.39 1.44 0.55 0.66 2.29 0.40 0.44 0.55 0.66 11.44 12.09 11.69 11.34 10.95 9.47 5.28 1949 0.40 0.40 0.38 0.38 0.33 0.57 2.63 5.14 2.82 0.82 0.37 0.31 14.55 2.46 12.89 12.69 12.31 11.98 11.41 8.78 3.64 1950 0.39 0.44 0.37 0.41 0.38 0.54 2.45 5.07 5.60 2.29 0.67 0.53 11.4 12.91 1.69 11.63 11.59 15.41 12.96 7.89 1951 0.56 0.71 0.56 0.48 0.55 0.65 4.13 6.81 4.46 1.93 0.73 0.45 22.02 3.51 1.68 19.01 18.53 17.98 17.33 13.20 6.39 1952 0.57 0.49 0.54 0.51 0.44 0.52 3.69 8.00 5.18 1.55 0.62 2.40 0.62 0.47 0.53 11.66 19.01 18.53 17.98 17.33 13.20 6.39 1952 0.57 0.49 0.43 0.44 0.52 3.69 8.00 5.18 1.55 0.62 0.62 0.40 0.37 0.45 1.47 19.90 19.39 18.95 18.4 18.4 14.46 1.40 1.40 1.40 1.40 1.40 1.40 1.40 1.40	TEAR :	001	NUV	DEC	JAN	FEB	MAR	APR	PIAT	UUIV	UUL	AUG	3EP	: 357	MAK	MAK	UUL	001		UUL	UUL	UUL
1948 0.46 0.40 0.39 0.36 0.40 0.35 0.39 0.42 0.95 2.30 4.83 2.60 0.95 0.40 0.33 14.64 3.23 1.76 12.44 12.05 11.63 10.68 8.38 3.55 1948 0.46 0.40 0.36 0.40 0.35 0.39 1.44 0.55 0.66 2.29 0.40 0.44 0.55 0.66 11.44 12.09 11.69 11.34 10.95 9.47 5.28 1949 0.40 0.40 0.38 0.38 0.33 0.57 2.63 5.14 2.82 0.82 0.37 0.31 14.55 2.46 12.89 12.69 12.31 11.98 11.41 8.78 3.64 1950 0.39 0.44 0.37 0.41 0.38 0.54 2.45 5.07 5.60 2.29 0.67 0.53 11.4 12.91 1.69 11.63 11.59 15.41 12.96 7.89 1951 0.56 0.71 0.56 0.48 0.55 0.65 4.13 6.81 4.46 1.93 0.73 0.45 22.02 3.51 1.68 19.01 18.53 17.98 17.33 13.20 6.39 1952 0.57 0.49 0.54 0.51 0.44 0.52 3.69 8.00 5.18 1.55 0.62 2.40 0.62 0.47 0.53 11.66 19.01 18.53 17.98 17.33 13.20 6.39 1952 0.57 0.49 0.43 0.44 0.52 3.69 8.00 5.18 1.55 0.62 0.62 0.40 0.37 0.45 1.47 19.90 19.39 18.95 18.4 18.4 14.46 1.40 1.40 1.40 1.40 1.40 1.40 1.40 1.40	1046	0.26	0.20	0.44	0.42	0.35	0.72	3 00	E 40	2 57	1 12	0.49	0.27	17 61	2 60	1 50	15 57	15 14	14 70	14 07	10.18	4.70
1948 0.46 0.40 0.36 0.40 0.35 0.39 1.48 4.19 4.28 1.00 0.44 0.35 14.10 2.36 1.14 12.09 11.69 11.34 10.95 9.47 5.28 1949 0.40 0.40 0.40 0.38 0.38 0.33 0.57 2.63 5.14 2.82 0.82 0.87 0.53 19.14 5.5 2.46 1.28 12.69 12.31 11.98 11.41 8.78 3.64 1950 0.39 0.44 0.37 0.41 0.38 0.54 2.45 5.07 5.60 2.29 0.67 0.53 19.14 2.53 1.33 16.74 16.33 15.95 15.41 12.96 7.89 1951 0.56 0.77 0.56 0.48 0.55 0.65 4.13 6.81 4.46 1.93 0.73 0.45 2.22 2.2 3.51 1.33 16.74 16.33 15.95 15.41 12.96 7.89 1952 0.57 0.49 0.54 0.51 0.44 0.52 3.69 8.00 5.18 1.55 0.62 0.40 2.25 3.07 1.47 19.90 19.39 18.95 18.43 14.74 6.74 1953 0.40 0.37 0.42 0.48 0.40 0.70 2.38 3.23 5.31 2.31 0.59 0.38 16.97 2.77 1.58 14.81 14.33 13.23 10.55 7.62 19.94 19.95 0.38 0.30 0.30 0.30 0.30 0.30 0.30 0.30																						
1949 0,40 0,40 0,38 0,38 0,38 0,38 0,37 2,61 2,65 5,14 2,82 0,82 0,37 0,31 14,55 2,46 1,28 12,69 12,31 11,98 11,41 8,78 3,64 1950 0,56 0,71 0,56 0,48 0,55 0,65 4,13 6,81 4,46 1,93 0,73 0,45 22,02 3,51 1,68 19,01 18,53 17,98 17,33 13,20 6,39 1951 0,56 0,71 0,56 0,48 0,45 0,52 3,69 8,00 5,18 1,56 0,62 0,40 0,37 0,41 0,38 0,42 0,45 0,68 2,57 5,70 3,14 1,50 0,50 0,37 1,47 1,90 1,14 1,33 1,393 1,323 10,85 7,62 1,954 1,955 0,38																						5.00
1950 0,39 0,44 0,37 0,41 0,38 0,54 2,45 5,07 5,60 2,29 0,67 0,53 19,14 2,53 1,33 16,74 16,33 15,95 15,41 12,96 7.89 1951 0,56 0,71 0,56 0,48 0,55 0,65 4,13 6,81 4,46 1,93 0,73 0,45 22,02 3,51 1,68 19,01 18,53 17,98 17,33 13,20 6,39 1952 0,57 0,49 0,54 0,51 0,44 0,52 3,69 8,00 5,18 1,56 0,62 0,40 0,40 0,37 0,42 0,40 0,45 0,68 2,57 5,70 3,14 1,50 0,55 0,37 16,49 2,71 1,55 14,46 1,40 13,59 13,23 10,85 7,62 1955 0,38 0,38 0,33 0,35 0,29 0,35 0,72 3,01 4,06 1,10 0,39 0,30 11,66 2,08 0,99 9,88 9,53 9,24 8,89 8,17 5,16 1956 0,37 0,46 0,46 0,46 0,46 4,44 7,59 5,78 1,61 0,60 0,40 4,39 3,58 1,40 1,40 13,59 12,91 10,34 4,64 1955 0,48 0,40 0,40 0,40 0,40 0,45 0,68 6,28 5,25 1,37 0,49 0,37 18,48 2,86 1,49 16,25 15,85 15,42 14,76 12,90 6,62 19,99 0,40 0,40 0,40 0,40 0,40 0,40 0,40																						
1952 0.57 0.49 0.54 0.51 0.40 0.52 3.69 8.00 5.18 1.56 0.62 0.47 0.52 0.57 0.49 0.54 0.51 0.44 0.52 3.69 8.00 5.18 1.56 0.62 0.40 0.37 0.42 0.48 0.40 0.37 0.42 0.48 0.40 0.52 3.69 8.00 5.18 1.56 0.62 0.40 0.37 0.49 0.51 1.58 14.81 14.33 13.93 13.23 10.85 7.62 1954 0.37 0.41 0.38 0.42 0.45 0.68 2.57 5.70 3.1 1.4 1.50 0.50 0.37 16.49 2.71 1.58 14.81 14.33 13.93 13.23 10.85 7.62 1954 0.37 0.46 0.81 0.64 0.45 0.68 2.57 5.70 3.1 1.4 1.50 0.50 0.37 16.40 2.71 1.55 14.46 14.04 13.59 12.91 10.34 4.64 1955 0.38 0.38 0.38 0.38 0.38 0.38 0.39 0.35 0.72 3.01 1.4 0.50 1.10 0.39 0.38 16.97 2.77 1.58 14.81 14.33 13.93 13.23 10.85 7.62 1956 0.37 0.46 0.81 0.64 0.46 0.46 0.84 4.44 7.95 5.78 1.61 0.69 0.40 24.36 3.58 1.94 21.72 21.08 20.62 19.78 15.34 7.39 1958 0.44 0.39 0.42 0.42 0.44 0.52 1.56 8.85 4.96 1.28 0.57 0.41 20.26 2.63 1.38 18.03 17.61 17.17 16.65 15.09 6.24 1958 0.42 0.45 0.45 0.38 0.32 2.13 2.99 0.35 10.86 0.41 0.35 12.81 1.80 1.35 12.81 1.80 1.76 1.76 1.71 1.71 1.65 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.5																						
1952 0.57 0.49 0.54 0.51 0.44 0.52 3.69 8.00 5.18 1.56 0.62 0.40 22.52 3.07 1.47 19.90 19.39 18.95 18.43 14.74 6.74 1955 0.38 0.40 0.37 0.42 0.48 0.40 0.70 2.38 3.23 5.31 0.59 0.38 16.97 2.77 1.58 14.81 14.33 13.93 13.23 10.85 7.62 1954 0.37 0.41 0.38 0.42 0.45 0.68 2.57 5.70 3.14 1.50 0.50 0.37 16.49 2.71 1.55 14.46 14.04 13.59 12.91 10.34 4.64 1955 0.38 0.38 0.33 0.35 0.29 0.35 0.72 3.01 4.06 1.10 0.39 0.30 11.66 2.08 0.99 9.88 9.53 9.24 8.89 8.17 5.16 1956 0.37 0.46 0.81 0.64 0.46 0.84 4.44 7.95 5.78 1.61 0.60 0.40 24.36 3.58 1.94 21.72 21.08 20.62 19.78 15.34 7.39 1957 0.48 0.44 0.39 0.42 0.42 0.44 0.52 1.56 8.85 4.96 1.28 0.57 0.41 20.26 2.63 1.38 18.03 17.61 17.17 16.55 15.09 6.24 1959 0.42 0.47 0.55 0.46 0.38 0.52 2.13 2.90 3.51 0.86 0.41 0.50 1.31 1 2.80 1.36 10.76 10.30 9.92 9.40 7.27 4.37 1962 0.36 0.35 0.37 0.32 0.34 0.39 0.52 1.22 2.67 1.94 0.43 0.28 0.31 12.69 1.31 1 2.80 1.36 10.76 10.30 9.92 9.40 7.27 4.37 1962 0.36 0.35 0.35 0.36 0.38 0.42 2.92 3.84 4.75 1.44 0.57 0.39 16.14 2.23 1.16 14.11 13.75 13.37 12.95 10.03 6.19 1963 0.49 0.44 0.49 0.40 0.39 0.36 0.43 1.61 3.91 3.98 1.34 0.45 0.36 0.43 1.24 0.81 0.69 0.83 3.79 0.73 8.44 0.39 0.55 0.55 0.56 0.40 0.39 0.36 0.43 1.40 0.59 0.39 0.30 11.07 0.99 1.40 1.41 13.55 13.37 12.99 10.03 6.19 1966 0.57 0.51 0.43 0.44 0.30 0.30 0.30 0.30 0.30 0.30																						
1953 0.40 0.37 0.42 0.48 0.40 0.70 2.38 3.23 5.31 2.31 0.69 0.38 16.97 2.77 1.58 14.81 14.33 13.93 13.23 10.85 7.62 1954 0.37 0.41 0.38 0.42 0.45 0.68 2.57 5.70 3.14 1.50 0.50 0.37 16.49 2.71 1.55 14.46 14.04 13.59 12.91 10.34 4.64 1955 0.38 0.38 0.33 0.35 0.29 0.35 0.72 3.01 4.06 1.10 0.39 0.30 11.66 2.08 0.99 9.88 9.53 9.24 8.89 8.17 5.16 1956 0.37 0.46 0.81 0.64 0.46 0.44 4.47 7.95 5.78 1.61 0.60 0.40 0.43 0.65 1.85 0.72 3.01 4.06 1.86 6.28 5.25 1.37 0.49 0.37 18.48 2.86 1.49 16.25 15.85 15.42 14.76 12.90 6.62 1958 0.44 0.39 0.42 0.44 0.50 0.40 0.43 0.66 1.86 6.28 5.25 1.37 0.49 0.43 0.45 0.40 0.45 0.40 0.43 0.66 0.88 5.25 1.37 0.49 0.50 1.28 0.57 0.41 20.26 2.63 1.38 18.03 17.61 17.17 16.65 15.09 6.24 1959 0.42 0.47 0.55 0.46 0.38 0.52 2.13 2.90 3.51 0.86 0.41 0.50 13.11 2.80 1.36 10.76 10.30 9.92 9.40 7.27 4.37 1960 0.63 0.46 0.37 0.40 0.34 0.72 2.23 3.17 2.99 0.65 0.36 0.33 12.65 2.92 1.46 10.50 10.10 9.76 9.04 6.81 3.64 1961 0.35 0.37 0.32 0.34 0.39 0.52 1.22 2.67 1.94 0.43 0.28 0.31 1.49 2.30 1.16 14.11 13.75 13.37 12.95 10.03 6.19 1963 0.49 0.44 0.43 0.39 0.35 0.34 0.39 0.52 1.22 2.67 1.94 0.43 0.28 0.31 1.39 1.14 2.29 1.25 7.51 7.17 6.88 6.26 5.04 2.37 1963 0.49 0.44 0.43 0.39 0.36 0.38 0.42 2.92 3.84 4.75 1.44 0.57 0.39 16.14 2.23 1.16 14.11 13.75 13.37 12.95 10.03 6.19 1964 0.41 0.48 0.40 0.39 0.36 0.36 0.38 0.44 0.43 0.39 0.36 0.36 0.38 0.44 0.40 0.39 0.36 0.36 0.36 0.36 0.36 0.36 0.36 0.36										-												
1954 0,37 0,41 0,38 0,42 0,45 0,68 2,57 5,70 3,14 1,50 0,50 0,37 16,49 2,71 1,55 14,46 14,04 13,59 12,91 10,34 4,64 1955 0,38 0,38 0,38 0,38 0,38 0,35 0,52 0,72 3,01 4,06 1,10 0,39 0,30 11,66 2,08 0,99 9,88 9,53 9,24 8,89 8,17 5,16 1956 0,37 0,46 0,81 0,64 0,43 0,66 1,86 6,28 5,25 1,37 0,49 0,37 18,48 2,86 1,49 16,25 15,85 15,42 14,76 12,90 6,62 1958 0,42 0,47 0,55 0,46 0,38 0,52 1,32 2,33 1,7 2,99 0,65 0,36 0,38 1,38 1,84 1,75 1,75 1,75 1,75 1,75 1,75 1,75 1,75																						
1955 0.38 0.38 0.38 0.38 0.38 0.39 0.35 0.72 0.35 0.72 0.01 4.06 1.10 0.39 0.30 11.66 2.08 0.99 9.88 9.53 9.24 8.89 8.17 5.16 1956 0.37 0.46 0.81 0.64 0.46 0.84 4.44 7.95 5.78 1.61 0.60 0.40 24.36 3.58 1.94 21.72 21.08 20.62 19.78 15.34 7.39 1957 0.48 0.44 0.45 0.40 0.43 0.66 1.86 6.28 5.25 1.37 0.49 0.37 18.48 2.86 1.49 21.72 21.08 20.62 19.78 15.34 7.39 1958 0.44 0.39 0.42 0.42 0.44 0.52 1.56 8.85 4.96 1.28 0.57 0.41 20.26 2.63 1.38 18.03 17.61 17.17 16.55 15.09 6.24 1959 0.42 0.47 0.55 0.46 0.38 0.52 2.13 2.99 3.51 0.86 0.47 0.55 0.46 0.38 0.52 2.13 2.99 3.51 0.86 0.47 0.55 0.46 0.38 0.52 2.13 2.99 3.51 0.86 0.36 0.33 12.65 2.92 1.46 10.50 10.10 9.76 9.04 7.27 4.37 1960 0.63 0.46 0.37 0.40 0.34 0.72 2.23 3.17 2.99 0.65 0.36 0.33 12.65 2.92 1.46 10.50 10.10 9.76 9.04 6.81 3.64 1962 0.36 0.36 0.35 0.36 0.38 0.42 2.92 3.84 4.75 1.44 0.57 0.39 16.14 2.23 1.16 14.11 13.75 13.37 12.95 10.03 6.19 1963 0.49 0.44 0.43 0.37 0.71 0.61 1.15 4.42 4.03 1.33 0.51 0.43 14.92 3.05 1.69 12.62 12.25 11.54 10.93 9.78 5.36 1964 0.41 0.48 0.40 0.39 0.36 0.43 1.61 3.91 3.98 1.34 0.50 0.26 1.10 0.29 2.7 4.31 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1																						
1956 0.37 0.46 0.81 0.64 0.46 0.84 4.44 7.95 5.78 1.61 0.60 0.40 24.36 3.58 1.94 21.72 21.08 20.62 19.78 15.34 7.39 1957 0.48 0.44 0.45 0.40 0.43 0.66 1.86 6.28 5.25 1.37 0.49 0.37 18.48 2.86 1.49 16.25 15.85 15.42 14.76 12.90 6.62 1958 0.44 0.39 0.42 0.44 0.52 1.56 8.85 4.96 1.28 0.57 0.41 20.26 2.63 1.38 18.03 17.61 17.17 16.65 15.09 6.24 1959 0.42 0.47 0.55 0.46 0.38 0.52 2.13 2.90 3.51 0.86 0.41 0.50 13.11 2.80 1.36 10.76 10.30 9.92 9.40 7.27 4.37 1960 0.63 0.46 0.37 0.40 0.34 0.72 2.23 3.17 2.99 0.65 0.36 0.38 1.265 2.92 1.46 10.50 10.10 9.76 9.04 6.81 3.64 1961 0.35 0.37 0.32 0.34 0.39 0.52 1.22 2.67 1.94 0.43 0.28 0.31 9.14 2.29 1.25 7.51 7.17 6.78 6.26 5.04 2.37 1962 0.36 0.35 0.36 0.38 0.42 2.92 3.84 4.75 1.44 0.57 0.39 16.14 2.23 1.16 14.11 13.75 13.37 12.95 10.03 6.19 1963 0.49 0.44 0.43 0.37 0.71 0.61 1.15 4.42 4.03 1.33 0.49 0.44 0.48 0.40 0.39 0.36 0.43 1.61 3.91 3.98 1.34 0.46 0.36 14.13 2.47 1.18 12.02 11.63 11.27 10.84 9.23 5.32 1965 0.36 0.38 1.24 0.81 0.69 0.83 3.79 7.33 8.44 3.55 11.70 0.70 29.27 4.31 2.33 25.42 24.61 23.92 23.09 19.30 11.97 1966 0.57 0.51 0.43 0.44 0.36 0.60 1.99 3.34 1.70 0.57 0.30 0.26 11.07 2.91 1.40 9.00 8.56 8.20 7.60 5.61 2.27 1967 0.31 0.34 0.32 0.38 0.45 0.52 0.95 4.82 5.84 1.80 0.56 0.40 11.07 2.91 1.40 9.00 8.56 8.20 7.60 5.61 2.27 1967 0.43 0.36 0.37 0.44 0.37 0.45 0.45 0.95 4.82 5.84 1.80 0.56 0.40 11.10 2.91 1.62 2.26 8.76 8.38 7.90 7.14 5.93 3.53 1.96 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45																						
1957 0.48 0.44 0.45 0.40 0.43 0.66 1.86 6.28 5.25 1.37 0.49 0.37 18.48 2.86 1.49 16.25 15.85 15.42 14.76 12.90 6.62 1958 0.44 0.39 0.42 0.42 0.44 0.52 1.56 8.85 4.96 1.28 0.57 0.41 20.26 2.63 1.38 18.03 17.61 17.17 16.65 15.09 6.24 1959 0.42 0.47 0.55 0.46 0.38 0.52 2.13 2.90 3.51 0.86 0.41 0.50 13.11 20.26 2.63 1.38 18.03 17.61 17.17 16.65 15.09 6.24 1950 0.42 0.47 0.55 0.46 0.38 0.52 2.13 2.90 3.51 0.86 0.41 0.50 13.11 20.26 2.63 1.38 18.03 17.61 17.17 16.65 15.09 6.24 1950 0.42 0.47 0.55 0.46 0.38 0.52 2.13 2.90 3.51 0.86 0.41 0.50 13.11 20.26 12.80 1.36 10.76 10.30 9.92 9.40 7.27 4.37 1960 0.63 0.46 0.37 0.32 0.34 0.72 2.23 3.17 2.99 0.65 0.36 0.33 12.65 2.92 1.46 10.50 10.10 9.76 9.04 6.81 3.64 1961 0.35 0.37 0.32 0.34 0.39 0.52 1.22 2.67 1.94 0.43 0.28 0.31 9.14 2.29 1.25 7.51 7.17 6.78 6.26 5.04 2.37 1963 0.49 0.44 0.43 0.37 0.71 0.61 1.15 4.42 4.03 1.33 0.51 0.43 14.92 3.05 1.69 12.62 12.25 11.54 10.93 9.78 5.36 1964 0.41 0.48 0.40 0.39 0.36 0.43 1.61 3.91 3.98 1.34 0.46 0.36 1.41 2.47 1.18 12.02 11.63 11.27 10.84 9.23 5.32 1965 0.36 0.38 1.24 0.81 0.69 0.83 3.79 7.33 8.44 3.53 1.17 0.70 29.27 4.31 2.33 25.42 24.61 23.92 23.09 19.30 11.97 1966 0.57 0.51 0.43 0.44 0.33 0.45 0.52 0.95 4.82 5.84 1.80 0.56 0.40 16.58 2.21 1.24 14.65 14.27 13.93 13.41 12.46 7.64 1968 0.47 0.42 0.40 0.38 0.48 0.76 1.21 2.40 2.78 0.75 0.61 0.44 11.10 2.91 1.62 8.76 8.38 7.90 7.14 5.93 3.53 1969 0.50 0.55 0.47 0.59 0.47 0.73 4.56 7.90 4.24 1.18 0.49 0.40 22.08 3.31 1.79 19.67 19.08 18.61 17.88 13.32 2.84 1971 0.43 0.59 0.51 0.43 0.59 0.51 0.62 0.65 0.74 2.87 8.12 7.36 2.90 0.84 0.57 2.62 0.35 3.44 2.01 23.26 22.64 21.99 21.25 18.38 10.26 1972 0.43 0.50 0.45 0.50 0.40 0.50 0.40 0.50 0.40 0.50 0.40 0.50 0.40 0.50 0.40 0.50 0.40 0.50 0.40 0.50 0.40 0.50 0.40 0.50 0.40 0.50 0.40 0.50 0.40 0.50 0.5		0.38	0.38			0.29																
1958 0.44	1956	0.37	0.46	0.81	0.64	0.46	0.84	4.44	7.95				0.40									
1959 0.42 0.47 0.55 0.46 0.38 0.52 2.13 2.90 3.51 0.86 0.41 0.50 13.11 2.80 1.36 10.76 10.30 9.92 9.40 7.27 4.37 1960 0.63 0.46 0.37 0.40 0.34 0.72 2.23 3.17 2.99 0.65 0.36 0.33 12.65 2.92 1.46 10.50 10.10 9.76 9.04 6.81 3.64 1961 0.35 0.37 0.32 0.34 0.39 0.52 1.22 2.67 1.94 0.43 0.28 0.31 9.14 2.29 1.25 7.51 7.17 7.17 6.78 6.26 5.04 2.37 1962 0.36 0.36 0.35 0.36 0.38 0.42 2.92 3.84 4.75 1.44 0.57 0.39 16.14 2.23 1.16 14.11 13.75 13.37 12.95 10.03 6.19 1963 0.49 0.44 0.43 0.37 0.71 0.61 1.15 4.42 4.03 1.33 0.51 0.43 14.92 3.05 1.69 12.62 12.25 11.54 10.93 9.78 5.36 1964 0.41 0.48 0.40 0.39 0.36 0.43 1.61 3.91 3.98 1.34 0.46 0.36 14.13 2.47 1.18 12.02 11.63 11.27 10.84 9.23 5.32 1965 0.36 0.38 1.24 0.81 0.69 0.83 3.79 7.33 8.44 3.53 1.17 0.70 29.27 4.31 2.33 25.42 24.61 23.92 23.09 19.30 11.97 1966 0.57 0.51 0.43 0.34 0.32 0.38 0.34 0.52 0.95 4.82 5.84 1.80 0.56 0.40 16.58 2.21 1.24 14.65 14.27 13.93 13.41 12.46 7.64 1968 0.47 0.42 0.40 0.38 0.48 0.56 0.95 4.82 5.84 1.80 0.56 0.40 16.58 2.21 1.24 14.65 14.27 13.93 13.41 12.46 7.64 1968 0.47 0.42 0.40 0.38 0.44 0.72 1.22 4.70 5.35 1.53 0.54 0.43 16.55 2.78 1.62 14.42 13.96 13.52 12.80 11.58 6.88 1971 0.43 0.59 0.55 0.47 0.59 0.47 0.72 0.52 0.46 1.37 2.08 5.73 6.79 0.84 0.43 0.57 0.59 0.47 0.42 0.40 0.38 0.47 0.42 0.40 0.73 8.56 7.90 4.24 1.18 0.49 0.49 0.49 2.08 3.31 1.79 19.67 19.08 18.61 17.88 13.32 5.42 1974 0.55 0.51 0.49 0.55 0.43 0.55 0.50 0.69 0.47 1.20 3.83 6.42 7.32 2.08 0.68 0.43 24.61 3.85 2.21 1.24 1.39 13.41 12.46 8.88 1971 0.43 0.59 0.55 0.47 0.59 0.47 0.48 0.48 0.48 0.48 0.48 0.48 0.48 0.48		0.48	0.44	0.45	0.40	0.43	0.66		6.28			0.49	0.37									
1960		0.44	0.39	0.42	0.42						1.28		0.41									
1961	1959	0.42	0.47	0.55	0.46	0.38	0.52	2.13	2.90	3.51	0.86	0.41	0.50	13.11	2.80	1.36	10.76	10.30	9.92	9.40	7.27	4.37
1962	1960	0.63	0.46	0.37	0.40	0.34	0.72	2.23	3.17	2.99	0.65	0.36	0.33	12.65	2.92	1.46	10.50	10.10	9.76	9.04	6.81	3.64
1963	1961	0.35	0.37	0.32	0.34	0.39	0.52	1.22	2.67	1.94	0.43	0.28	0.31	9.14	2.29	1.25	7.51	7.17	6.78	6.26	5.04	2.37
1963	1962	0.36	0.36	0.35	0.36	0.38	0.42	2.92	3.84	4.75	1.44	0.57	0.39	16.14	2.23	1.16	14.11	13.75	13.37	12.95	10.03	6.19
1964	1963	0.49	0.44	0.43	0.37	0.71	0.61			4.03	1.33	0.51	0.43					12.25	11.54	10.93	9.78	5.36
1965																						
1966				-																		
1967 0.31 0.34 0.32 0.38 0.34 0.52 0.95 4.82 5.84 1.80 0.56 0.40 16.58 2.21 1.24 14.65 14.27 13.93 13.41 12.46 7.64 1968 0.47 0.42 0.40 0.38 0.48 0.76 1.21 2.40 2.78 0.75 0.61 0.44 11.10 2.91 1.62 8.76 8.38 7.90 7.14 5.93 3.53 1969 0.50 0.55 0.47 0.59 0.47 0.73 4.56 7.90 4.24 1.18 0.49 0.40 22.08 3.31 1.79 19.67 19.08 18.61 17.88 13.32 5.42 1970 0.43 0.36 0.37 0.46 0.44 0.72 1.22 4.70 5.35 1.53 0.54 0.43 16.55 2.78 1.62 14.42 13.96 13.52 12.80 11.58 6.88 1971 0.43 0.59 0.51 0.62 0.65 0.74 2.87 8.12 7.36 2.90 0.84 0.57 26.20 3.54 2.01 23.26 22.64 21.99 21.25 18.38 10.26 1972 0.56 0.51 0.49 0.52 0.46 1.37 2.08 5.73 6.71 1.82 0.68 0.49 21.42 3.91 2.35 18.69 18.17 17.71 16.34 14.26 8.53 1973 0.53 0.47 0.45 0.43 0.37 0.54 1.29 3.17 2.02 0.73 0.34 0.33 10.67 2.79 1.34 8.55 8.12 7.75 7.21 5.92 2.75 1974 0.36 0.63 0.50 0.69 0.47 1.20 3.83 6.42 7.32 2.08 0.68 0.43 24.61 3.85 2.36 22.01 21.32 20.85 19.65 15.82 9.40 1975 0.46 0.43 0.40 0.44 0.45 0.79 0.86 4.71 6.91 3.54 0.82 0.49 20.30 2.97 1.68 17.70 17.26 16.81 16.02 15.16 10.45 1976 0.53 0.54 0.57 0.50 0.47 0.54 2.23 5.66 3.23 1.09 0.67 0.57 16.60 3.15 1.51 13.72 13.22 12.75 12.21 9.98 4.32 1979 0.44 0.40 0.39 0.38 0.37 0.58 0.96 3.31 1.99 0.57 0.39 0.31 10.03 2.56 1.33 8.10 7.72 7.35 6.77 5.81 2.50																						
1968												-										
1969																						
1970			-																			
1971																						
1972																						
1973																						
1974			_																			
1975				_																		
1976 0.53 0.54 0.57 0.50 0.47 0.54 2.23 5.66 3.23 1.09 0.67 0.57 16.60 3.15 1.51 13.72 13.22 12.75 12.21 9.98 4.32 1977 0.50 0.40 0.36 0.35 0.33 0.37 0.61 0.76 0.87 0.39 0.25 0.25 5.44 2.31 1.05 3.68 3.33 3.00 2.63 2.02 1.26 1978 0.29 0.31 0.46 0.37 0.35 1.04 2.48 4.60 5.07 2.21 0.66 0.56 18.40 2.82 1.76 16.12 15.75 15.40 14.36 11.88 7.28 1979 0.44 0.40 0.39 0.38 0.37 0.58 0.96 3.31 1.93 0.57 0.39 0.31 10.03 2.56 1.33 8.10 7.72 7.35 6.77 5.81 2.50																						
1977 0.50 0.40 0.36 0.35 0.33 0.37 0.61 0.76 0.87 0.39 0.25 0.25 5.44 2.31 1.05 3.68 3.33 3.00 2.63 2.02 1.26 1978 0.29 0.31 0.46 0.37 0.35 1.04 2.48 4.60 5.07 2.21 0.66 0.56 18.40 2.82 1.76 16.12 15.75 15.40 14.36 11.88 7.28 1979 0.44 0.40 0.39 0.38 0.37 0.58 0.96 3.31 1.93 0.57 0.39 0.31 10.03 2.56 1.33 8.10 7.72 7.35 6.77 5.81 2.50																						
1978 0.29 0.31 0.46 0.37 0.35 1.04 2.48 4.60 5.07 2.21 0.66 0.56 18.40 2.82 1.76 16.12 15.75 15.40 14.36 11.88 7.28 1979 0.44 0.40 0.39 0.38 0.37 0.58 0.96 3.31 1.93 0.57 0.39 0.31 10.03 2.56 1.33 8.10 7.72 7.35 6.77 5.81 2.50																						
1979 0.44 0.40 0.39 0.38 0.37 0.58 0.96 3.31 1.93 0.57 0.39 0.31 10.03 2.56 1.33 8.10 7.72 7.35 6.77 5.81 2.50																						
1980 0.38 0.34 0.35 0.41 0.40 0.55 2.69 5.14 4.08 1.82 0.60 0.51 1/.2/ 2.43 1.36 15.09 14.68 14.28 13./3 11.04 5.90																						
	1980	0.38	0.34	0.35	0.41	0.40	0.55	2,69	5.14	4.08	1.82	0.60	0.51	17.27	2.43	1.36	15.09	14.68	14.28	13./3	11.04	5.90
CTATACA	CTATIO	T. C. C.																				
STATISTICS			25	25	25	25	2.5		25				2.5	25					25	2.5	25	25
N 35. 35. 35. 35. 35. 35. 35. 35. 35. 35.																						
Mean 0.44 0.44 0.46 0.45 0.43 0.66 2.26 4.96 4.34 1.47 0.54 0.41 16.87 2.89 1.54 14.57 14.12 13.69 13.03 10.77 5.81																						
Max. 0.63 0.71 1.24 0.81 0.71 1.37 4.56 8.85 8.44 3.54 1.17 0.70 29.27 4.31 2.36 25.42 24.61 23.92 23.09 19.30 11.97																						
Min. 0.29 0.31 0.32 0.34 0.29 0.35 0.61 0.76 0.87 0.39 0.25 0.25 5.44 2.08 0.99 3.68 3.33 3.00 2.63 2.02 1.26		0.29	0.31	0.32	0.34	0.29	0.35	0.61	0.76	0.87	0.39	0.25	0.25	5.44	2.08	0.99	3.68	3.33	3.00	2.63	2.02	1.26
Std.																						
Dev. 0.08 0.09 0.17 0.11 0.10 0.22 1.11 1.90 1.78 0.78 0.18 0.10 5.23 0.52 0.34 4.89 4.81 4.75 4.65 3.94 2.50	Dev.	0.08	0.09	0.17	0.11	0.10	0.22	1.11	1.90	1.78	0.78	0.18	0.10	5.23	0.52	0.34	4.89	4.81	4.75	4.65	3.94	2.50

BOISE RIVER NEAR TWIN SPRINGS Runoff in Basin Inches 1.0 Basin Inch = 44,267 A.F. for 830 Square Mile Basin

								1.0 Du			7,207	A. I . I	31 030 30	laare mir	C Dusin						
WATER													OCT-	0C T -	JAN-	JAN-	FEB-	MAR -	APR -	MAY-	JUN-
	: OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	: SEP	MAR	MAR	JUL	JUL	JUL	JÜL	JUL	JUL
TEAR	. 001	1101	DEC	UAI	1 60	TIAIN	ALK	17/1		001		JEI	. 301	TIAN	71741	- 001	002				
1912	0.55	0.53	0.55	0.70	0.55	0.74	2.52	6.11	7.30	2.10	0.92	0.67	23.24	3.62	1.99	20.02	19.32	18.77	18.03	15.51	9.40
1913	0.62	0.64	0.49	0.49	0.50	0.78	3.23	5.93	4.69	1.85	0.92	0.59	20.73	3.52	1.77	17.47	16.98	16.48	15.70	12.47	6.54
1913	0.67	0.81	0.49	0.43	0.62	1.70	3.96	5.72	3.66	1.39	0.57	0.57	20.86	4.99	2.94	17.67	17.05	16.43	14.73	10.77	5.05
1915	0.76	0.58	0.38	0.43	0.46	0.79	1.96	2.78	2.12	1.02	0.49	0.45	12.22	3.40	1.68	9.56	9.13	8.67	7.88	5.92	3.14
1916	0.75	0.43	0.50	0.43	0.40	1.43	4.14	5.37	6.63	3.69	0.49	0.43	25.06	3.66	2.27	22.10	21.67	21.26	19.83	15.69	10.32
1917	0.43	0.43	0.43	0.43	0.39	0.58	1.85	6.05	7.00	2.98	0.71	0.47	21.91	2.85	1.36	19.24	18.85	18.46	17.88	16.03	9.98
1918	0.45	0.44	1.22	0.92	0.63	1.47	3.48	4.57	6.17	1.27	0.63	0.50	21.75	5.13	3.02	18.51	17.59	16.96	15.49	12.01	7.44
1919	0.43	0.49	0.43	0.37	0.37	0.85	3.30	5.56	2.68	0.78	0.43	0.37	16.20	3.08	1.59	13.91	13.54	13.17	12.32	9.02	3.46
1920	0.46	0.55	0.40	0.60	0.37	0.59	1.46	5.41	4.37	1.40	0.59	0.56	16.76	2.97	1.56	14.20	13.60	13.23	12.64	11.18	5.77
1921	0.40	0.78	0.73	0.81	0.79	1.83	3.16	8.52	7.90	1.94	0.74	0.60	28.49	5.63	3.43	24.95	24.14	23.35	21.52	18.36	9.84
1922	0.56	0.73	0.73	0.52	0.47	0.82	2.08	6.33	5.97	1.61	0.66	0.45	22.01	3.91	1.81	18.80	18.28	17.81	16.99	14.91	8.58
1923	0.45	0.73	0.52	0.52	0.46	0.76	2.11	4.73	4.02	2.13	0.65	0.46	17.28	3.18	1.74	14.73	14.21	13.75	12.99	10.88	6.15
1924	0.54	0.49	0.48	0.46	0.60	0.55	1.36	2.88	0.97	0.45	0.33	0.32	9.43	3.12	1.61	7.27	6.81	6.21	5.66	4.30	1.42
1925	0.42	0.56	0.43	0.45	0.94	1.42	4.13	7.22	4.06	1.75	0.66	0.51	22.55	4.22	2.81	19.97	19.52	18.58	17.16	13.03	5.81
1926	0.56	0.49	0.56	0.53	0.50	1.06	2.23	2.71	1.22	0.51	0.36	0.35	11.08	3.70	2.09	8.76	8.23	7.73	6.67	4.44	1.73
1927	0.38	0.68	0.84	0.57	0.73	1.22	2.87	5.85	7.62	2.63	0.78	0.61	24.78	4.42	2.52	21.49	20.92	20.19	18.97	16.10	10.25
1928	0.67	1.48	1.01	0.87	0.73	1.90	2.52	9.07	3.50	1.30	0.59	0.46	24.10	6.66	3.50	19.89	19.02	18.29	16.39	13.87	4.80
1929	0.50	0.47	0.45	0.42	0.39	0.82	1.39	3.69	3.38	1.09	0.46	0.38	13.44	3.05	1.63	11.18	10.76	10.37	9.55	8.16	4.47
1930	0.41	0.37	0.69	0.41	0.67	0.89	2.79	3.07	2.75	0.81	0.47	0.40	13.73	3.44	1.97	11.39	10.98	10.31	9.42	6.63	3.56
1931	0.57	0.42	0.37	0.42	0.41	0.79	1.82	2.97	1.41	0.46	0.31	0.31	10.26	2.98	1.62	8.28	7.86	7.45	6.66	4.84	1.87
1932	0.37	0.36	0.37	0.41	0.38	0.96	2.56	5.98	4.92	1.53	0.57	0.42	18.83	2.85	1.75	16.74	16.33	15.95	14.99	12.43	6.45
1933	0.44	0.48	0.38	0.44	0.39	0.59	1.95	3.34	6.17	1.18	0.49	0.39	16.24	2.72	1.42	14.06	13.62	13.23	12.64	10.69	7.35
1934	0.43	0.45	0.52	0.66	0.70	1.63	2.91	2.54	1.07	0.46	0.31	0.30	11.98	4.39	2.99	9.97	9.31	8.61	6.98	4.07	1.53
1935	0.42	0.54	0.50	0.51	0.55	0.72	2.63	4.47	4.09	1.09	0.46	0.35	16.33	3.24	1.78	14.06	13.55	13.00	12.28	9.65	5.18
1936	0.38	0.39	0.37	0.41	0.39	0.73	4.72	6.38	3.41	0.89	0.48	0.40	18.95	2.67	1.53	16.93	16.52	16.13	15.40	10.68	4.30
1937	0.39	0.35	0.41	0.38	0.38	0.69	1.56	4.04	2.07	0.66	0.36	0.32	11.61	2.60	1.45	9.78	9.40	9.02	8.33	6.77	2.73
1938	0.38	0.47	1.16	0.65	0.58	1.22	3.59	6.36	5.82	2.08	0.71	0.48	23.50	4.46	2.45	20.30	19.65	19.07	17.85	14.26	7.90
1939	0.57	0.57	0.58	0.50		1.31	2.83	3.62	1.52	0.68	0.36	0.35	13.34	3.98	2.26	10.91	10.41	9.96	8.65	5.82	2.20
1940	0.43	0.37	0.51	0.52		1.77	3.28	4.83	2.64	0.74	0.39	0.43	16.57	4.26	2.95	14.44	13.92	13.26	11.49	8.21	3.38
1941	0.54	0.58	0.53	0.50	0.55	0.92	1.66	3.76	2.99	0.95	0.59	0.49	14.06	3.62	1.97	11.33	10.83	10.28	9.36	7.70	3.94
1942	0.49	0.72	1.14	0.62	0.56	0.74	2.99	3.30	3.93	1.57	0.55	0.41	17.02	4.27	1.92	13.71	13.09	12.53	11.79	8.80	5.50
1943	0.41	0.64	0.71	1.11	0.89	1.62	7.61	6.63	6.32	4.13	1.14	0.62	31.83	5.38	3.62	28.31	27.20	26.31	24.69	17.08	10.45
1944	0.66	0.72	0.55	0.51	0.48	0.61	1.50	3.08	2.61	1.14		0.40	12.76	3.53	1.60	9.93	9.42	8.94	8.33	6.83	3.75
1945	0.41	0.54	0.44	0.52		0.81	1.79	5.03	4.86		0.64	0.47	17.94	3.32	1.93	15.44	14.92	14.32	13.51	11.72	6.69
1946	0.48	0.56		0.73	0.60	1.59	4.94	6.20	4.13	1.47		0.51	22.56	4.70	2.92	19.66	18.93	18.33	16.74	11.80	5.60
1947	0.70	0.75	1.14	0.65		1.57	2.96	6.36	3.68				21.15	5.60	3.01	17.48	16.83	16.04	14.47	11.51	5.15
1948	0.64	0.57	0.57	0.76		0.63	2.44	5.66	5.14	1.34			19.35	3.71	1.93	16.51	15.75	15.21	14.58	12.14	6.48
1949	0.50	0.54			0.40		3.63	6.37	3.57				19.07	3.48	1.92	16.58	16.11	15.71	14.66	11.03	4.66
1950	0.50	0.58		0.65		1.14	3.24	5.45	5.98			0.62	23.19	4.11	2.48	20.07	19.42	18.73	17.59	14.35	8.90
1951	0.71	0.88		0.64		0.99	4.52	6.71	4.78				24.69	4.99	2.57	20.88	20.24	19.30	18.31	13.79	7.08
1952	0.85	0.69	_				4.96	7.83	5.34			0.53	25.74	4.46	2.06	22.04	21.41	20.76	19.98	15.02	7.19
1953	0.47	0.42		0.79			2.87	4.26	6.79				22.24	3.90	2.47	19.51	18.72	18.03	17.04	14.17	9.91
1954	0.47					1.25							22.41	4.13	2.60	19.64	19.07	18.29	17.04	13.25	6.57
2007	J. 47	0.07	0.32	0.57	0.70	1.23	3.73	0.00	- LO	2.23	0.73	0.51	CC • 41	4.13	2.00	17.04	13.07	10.23	17.04	10.23	0.07

BOISE RIVER NEAR TWIN SPRINGS Runoff in Basin Inches 1.0 Basin Inch = 44,267 A.F. for 830 Square Mile Basin

WATER :													OCT-	OCT-	JAN-	JAN-	FEB-	MAR-	APR -	MAY -	JUN-
YEAR :	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	: SEP	MAR	MAR	JUL	JUL	JUL	JUL	JUL	JUL
1055	0.50	0.40	0.45	0.45	0 20	0.40	1.06	4 55	- 2-	1 71	0 61	0.42	16 26	0.75	1 21	12.00	12 42	13.05	12.57	11.51	6.96
1955 1956	0.50 0.52	0.49 0.75	0.45 2.10	0.45 1.38	0.38 0.74	0.48 1.58	1.06 5.19	4.55 8.52	5.25 6.35	1.71 2.17	0.61 0.79	0.43 0.54	16.36 30.63	2.75 7.07	1.31 3.70	13.88 25.93	13.43 24.55	23.81	22.23	17.04	8.52
1956	0.52	0.75	0.70	0.52	0.77	1.27	3.03	7.77	5.63	1.67	0.79	0.49	23.70	4.47	2.56	20.66	20.14	19.37	18.10	15.07	7.30
1958	0.56	0.49	0.58	0.54	0.87	0.88	2.24	9.36	5.47	1.54	0.70	0.51	23.74	3.92	2.29	20.90	20.36	19.49	18.61	16.37	7.01
1959	0.49	0.68	0.85	0.72	0.59	0.81	2.69	3.63	4.57	1.29	0.58	0.67	17.57	4.14	2.12	14.30	13.58	12.99	12.18	9.49	5.86
1960	0.97	0.68	0.55	0.55	0.50	1.42	3.04	3.93	4.05	0.96	0.54	0.44	17.63	4.67	2.47	14.45	13.90	13.40	11.98	8.94	5.01
1961	0.45	0.49	0.46	0.42	0.56	0.83	1.79	3.74	2.93	0.66	0.44	0.44	13.21	3.21	1.81	10.93	10.51	9.95	9.12	7.33	3.59
1962	0.52	0.51	0.53	0.56	0.69	0.68	3.89	4.25	4.75	1.62	0.69	0.47	19.16	3.49	1.93	16.44	15.88	15.19	14.51	10.62	6.37
1963	0.76	0.68	0.78	0.58	1.47	0.93	1.90	4.97	4.47	1.70	0.65	0.55	19.44	5.20	2.98	16.02	15.44	13.97	13.04	11.14	6.17
1964	0.54	0.64	0.52	0.53	0.50	0.63	2.18	4.87	4.70	1.72	0.64	0.52	17.99	3.36	1.66	15.13	14.60	14.10	13.47	11.29	6.42
1965	0.47	0.51	2.43	1.25	1.14	1.30	4.86	6.86	7.90	3.72	1.24	0.78	32.46	7.10 .	3.69	27.03	25.78	24.64	23.34	18.48	11.62
1966	0.66	0.59	0.48	0.53	0.41	0.98	2.30	3.51	2.06	0.68	0.39	0.34	12.93	3.65	1.92	10.47	9.94	9.53	8.55	6.25	2.74
1967	0.38	0.44	0.45	0.54	0.49	0.73	1.16	5.05	5.72	1.98	0.61	0.45	18.00	3.03	1.76	15.67	15.13	14.64	13.91	12.75	7.70
1968 1969	0.58 0.67	0.54	0.40	0.42 1.18	0.99 0.72	1.32 1.25	1.80	3.09	3.34	0.98	0.79	0.56	14.81	4.25	2.73 ·	11.94	11.52	10.53	9.21	7.41	4.32
1909	0.54	0.92 0.47	0.68 0.50	0.93	0.72	1.18	5.05 1.53	6.85 5.80	4.07 6.34	1.41 2.37	0.62 0.76	0.50 0.57	23.92 21.82	5.42 4.45	3.15 2.94	20.53 18.98	19.35 18.05	18.63 17.22	17.38 16.04	12.33 14.51	5.48 8.71
1971	0.56	1.00	0.90	1.26	1.23	1.42	4.04	8.55	7.31	3.35	0.78	0.66	31.28	6.39	3.93	27.18	25.90	24.67	23.25	19.21	10.66
1972	0.66	0.61	0.60	0.69	0.75	3.00	3.04	7.60	7.71	2.30	0.86	0.63	28.45	6.31	4.44	25.09	24.40	23.65	20.65	17.61	10.00
1973	0.62	0.57	0.61	0.63	0.52	0.85	1.70	4.02	2.84	0.96	0.49	0.46	14.27	3.80	2.00	11.52	10.89	10.37	9.52	7.82	3.80
1974	0.46	1.11	0.86	1.37	0.76	1.88	4.82	7.31	9.15	3.14	1.02	0.59	32.47	6.44	4.01	28.43	27.06	26.30	24.42	19.60	12.29
1975	0.57	0.56	0.51	0.57	0.52	0.99	1.33	5.15	6.98	3.94	0.91	0.56	22.59	3.72	2.08	19.48	18.91	18.39	17.40	16.07	10.92
1976	0.64	0.67	0.91	0.66	0.68	0.89	2.99	6.66	3.92	1.55	0.82	0.69	21.08	4.45	2.23	17.35	16.69	16.01	15.12	12.13	5.47
1977	0.59	0.47	0.45	0.41	0.38	0.45	0.96	1.09	1.24	0.49	0.35	0.35	7.23	2.75	1.24	5.02	4.61	4.23	3.78	2.82	1.73
1978	0.38	0.49	1.19	0.64	0.65	2.15	3.40	4.88	5.37	2.86	0.80	0.65	23.46	5.50	3.44	19.95	19.31	18.66	16.51	13.11	8.23
1979	0.52	0.46	0.47	0.43	0.49	0.96	1.44	4.12	2.51	0.74	0.48	0.38	13.00	3.33	1.88	10.69	10.26	9.77	8.81	7.37	3.25
<u>1980</u>	0.47	0.41	_0.46	0.69	0.78	0.98	3.61	5.70	4.29	2.07	0.70	0.63	20.79	3.79	2.45	18.12	17.43	16.65	15.67	12.06	6.36
STATIS	TICS																				
N	69.	69.	69.	69.	69.	69.	69.	69.	69.	69.	69.	69.	69.	69.	69.	69.	69.	69.	69.	69.	69.
Mean	0.54	0.59	0.66	0.62	0.62	1.09	2.87	5.29	4.54	1.67	0.64	0.49	19.64	4.12	2.34	16.72	16.10	15.47	14.38	11.51	6.22
Max.	0.97	1.48	2.43	1.38	1.47	3.00	7.61	9.36	9.15	4.13	1.24	0.78	32.47	7.10	4.44	28.43	27.20	26.31	24.69	19.60	12.29
Min.	0.37	0.35	0.37	0.37	0.37	0.45	0.96	1.09	0.97	0.45	0.31	0.30	7.23	2.60	1.24	5.02	4.61	4.23	3.78	2.82	1.42
Std.							. ,	_,			.,		. •	_,,,,					3.70	- • • • •	
Dev.	0.12	0.18	0.35	0.24	0.22	0.46	1.25	1.76	1.92	0.90	0.20	0.11	5.78	1.11	0.74	5.26	5.10	4.99	4.76	4.02	2.70

TABLE 4-11 RUNOFF VOLUME SUMMARY (BASIN INCHES)

MORES CREEK ABOVE ROBIE CREEK NEAR ARROWROCK DAM Runoff in Basin Inches 1.0 Basin Inch = 21,280 A.F. for 399 Square Mile Basin

WATER :													OCT-	OCT-	JAN-	JAN-	FEB -	MAR-	APR -	MAY-	JUN-
YEAR :	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	: SEP	MAR	MAR	JUL	JUL	JUL	JUL	JUL	JUL
1951	0.19	0.32	0.44	0.32	0.97	1.03	4.03	2.54	1.14	0.35	0.15	0.12	11.60	3.27	2.32	10.38	10.06	9.09	8.06	4.03	1.49
1952	0.31	0.29	0.53	0.33	0.50	0.78	6.10	4.00	1.46	0.43	0.15	0.12	15.00	2.74	1.61	13.60	13.27	12.77	11.99	5.89	1.89
1953	0.14	0.15	0.22	0.71	0.76	1.08	2.50	2.26	2.32	0.53	0.15	0.10	10.92	3.06	2.55	10.16	9.45	8.69	7.61	5.11	2.85
1954	0.14	0.27	0.28	0.41	0.74	1.51	2.84	1.93	1.00	0.36	0.13	0.10	9.71	3.35	2.66	8.79	8.38	7.64	6.13	3.29	1.36
1955	0.14	0.19	0.16	0.19	0.17	0.29	1.19	2.17	1.07	0.30	0.08	0.07	6.02	1.14	0.65	5.38	5.19	5.02	4.73	3.54	1.37
1956	0.13	0.29	1.76	1.29	0.66	2.04	4.72	3.31	1.54	0.38	0.16	0.13	16.41	6.17	3.99	13.94	12.65	11.99	9.95	5.23	1.92
1957	0.23	0.28	0.44	0.27	0.66	1.91	3.71	3.83	1.62	0.33	0.11	0.10	13.49	3.79	2.84	12.33	12.06	11.40	9.49	5.78	1.95
1958	0.19	0.19	0.28	0.30	0.88	1.14	3.35	4.20	1.74	0.37	0.15	0.13	12.92	2.98	2.32	11.98	11.68	10.80	9.66	6.31	2.11
1959	0.16	0.27	0.40	0.41	0.41	0.72	1.88	1.47	0.80	0.18	0.10	0.20	7.00	2.37	1.54	5.87	5.46	5.05	4.33	2.45	0.98
1960	0.29	0.23	0.21	0.22	0.37	1.33	2.64	1.77	0.88	0.17	0.10	0.10	8.31	2.65	1.92	7.38	7.16	6.79	5.46	2.82	1.05
1961	0.14	0.24	0.18	0.17	0.36	0.78	1.06	1.04	0.49	0.09	0.04	0.07	4.66	1.87	1.31	3.99	3.82	3.46	2.68	1.62	0.58
1962	0.16	0.20	0.24	0.30	0.41	0.58	2.74	1.59	0.88	0.20	0.05	0.06	7.41	1.89	1.29	6.70	6.40	5.99	5.41	2.67	1.08
1963	0.24	0.25	0.33	0.22	0.86	0.53	1.35	1.71	1.01	0.25	0.08	0.11	6.94	2.43	1.61	5.93	5.71	4.85	4.32	2.97	1.26
1964	0.14	0.28	0.21	0.25	0.24	0.43	2.08	2.21	1.29	0.31	0.10	0.13	7.67	1.55	0.92	6.81	6.56	6.32	5.89	3.81	1.60
1965	0.14	0.25	1.95	1.34	1.51	1.63	5.49	3.69	2.00	0.59	0.24	0.21	19.04	6.82	4.48	16.25	14.91	13.40	11.77	6.28	2.59
1966	0.23	0.28	0.24	0.35	0.24	0.77	1.31	0.89	0.37	0.10	0.04	0.05	4.87	2.11	1.36	4.03	3.68	3.44	2.67	1.36	0.47
1967	0.10	0.18	0.22	0.39	0.39	0.66	0.88	1.65	1.15	0.27	0.07	0.07	6.03	1.94	1.44	5.39	5.00	4.61	3.95	3.07	1.42
1968	0.14	0.17	0.16	0.21	0.79	0.83	0.70	0.77	0.49	0.11	0.17	0.13	4.67	2.30	1.83	3.90	3.69	2.90	2.07	1.37	0.60
1969	0.19	0.32	0.30	0.82	0.48	1.23	5.08	2.53	0.91	0.27	0.09	0.11	12.33	3.34	2.53	11.32	10.50	10.02	8.79	3.71	1.18
1970	0.16	0.17	0.22	1.19	0.86	1.49	1.51	2.71	1.74	0.49	0.14	0.14	10.82	4.09	3.54	9.99	8.80	7.94	6.45	4.94	2.23
1971	0.21	0.47	0.59	1.12	1.30	2.05	5.02	4.02	1.98	0.69	0.19	0.16	17.80	5.74	4.47	16.18	15.06	13.76	11.71	6.69	2.67
1972	0.22	0.25	0.32	0.69	0.62	3.94	3.15	3.35	2.12	0.43	0.16	0.16	15.41	6.04	5.25	14.30	13.61	12.99	9.05	5.90	2.55
1973	0.22	0.28	0.45	0.48	0.34	0.75	1.23	1.32	0.52	0.14	0.05	0.09	5.87	2.52	1.57	4.78	4.30	3.96	3.21	1.98	0.66
1974	0.16	0.41	0.47	0.86	0.52	2.62	4.89	3.18	2.12	0.45	0.15	0.09	15.92	5.04	4.00	14.64	13.78	13.26	10.64	5.75	2.57
1975	0.15	0.20	0.23	0.26	0.32	1.00	1.90	4.27	2.36	0.66	0.19	0.13	11.67	2.16	1.58	10.77	10.51	10.19	9.19	7.29	3.02
1976	0.24	0.29	0.50	0.37	0.39	0.69	3.13	2.69	0.95	0.27	0.20	0.17	9.89	2.48	1.45	8.49	8.12	7.73	7.04	3.91	1.22
1977	0.18	0.17	0.15	0.13	0.17	0.26	0.35	0.36	0.27	0.08	0.04	0.08	2.24	1.06	0.56	1.62	1.49	1.32	1.06	0.71	0.35
1978	0.12	0.22	0.79	0.56	0.75	2.46	2.65	1.94	1.19	0.39	0.13	0.16	11.36	4.90	3.77	9.94	9.38	8.63	6.17	3.52	1.58
1979	0.15	0.17	0.22	0.23	0.28	0.77	1.03	1.39	0.49	0.13	0.09	0.07	5.02	1.82	1.28	4.32	4.09	3.81	3.04	2.01	0.62
1980	0.15	0.19	0.24	0.46	0.82	1.22	2.61	2.48	1.43	0.41	0.14	0.17	10.32	3.08	2.50	9.43	8.97	8.15	6.93	4.32	1.84
STATIST	TICS																				
N	30.	30.	30.	30.	30.	30.	30.	30.	30.	30.	30.	30.	30.	30.	30.	30.	30.	30.	30.	30.	30.
Mean	0.18	0.25	0.42	0.49	0.59		2.70	2.38	1.24	0.32	0.12	0.12	10.04	3.16	2.30	8.95	8.46	7.87	6.65	3.94	1.57
Max.	0.31	0.47	1.95	1.34	1.51	3.94	6.10	4.27	2.36		0.24	0.21	19.04	6.82	5.25	16.25	15.06	13.76	11.99	7.29	3.02
Min.	0.10	0.15	0.15	0.13	0.17	0.26	0.35	0.36		0.08	0.04	0.05	2.24	1.06	0.56	1.62	1.49	1.32	1.06	0.71	0.35
Std.	0.10	0.10	0.10	0.10	0.17	0.20	0.00	0.00	0.1	0.00	0.04	0.03	L.L.	1.00	0.30	1.02	1.73	1.32	1.00	0.71	0.55
Dev.	0.05	0.07	0.42	0.35	0.32	0.80	1.58	1.10	0.61	0.17	0.05	0.04	4.39	1.53	1.23	4.03	3.80	3.60	3.10	1.79	0.76
5-1.	0.00	0.07	0.72	0.00	0.52	0.00	1.50	1.10	0.01	0.17	0.00	0.04	7.03	1.00	1.23	7.03	3.00	3.00	3.10	1.73	0.70

LUCKY PEAK TOTAL UNREGULATED INFLOW Runoff in Basin Inches 1.0 Basin Inch =142,933 A.F. for 2,680 Square Mile Basin

WATER	-						_			_		-	OCT-	OCT-	JAN-	JAN-	FEB -	MAR-	APR~	MAY-	JUN-
YEAR	OCT	NOV	DEC	<u>J</u> AN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	: SEP	MAR	MAR	JUL	JUL	JUL	JUL	JUL	JUL
1895				0.55	0.48	0.72	1.70	2.77	1.58	1.07	0.45	0.41			1.75	8.87	8.32	7.84	7.12	5.42	2.65
1896	0.40	0.38	0.36	0.55	0.48	1.10	2.06		10.24	2.70	0.45	0.41	23.08	3.22	2.08	20.97	20.46	19.99	18.89	16.83	12.94
1897	0.38	0.43	0.45	0.35	0.39	0.62	3.33	2.55	2.90	1.00	0.47	0.44	14.31	2.62	1.36	12.14	11.79	11.40	10.78	7.45	3.90
1898	0.44	0.45	0.43	0.24	0.47	0.83	1.76	2.24	2.09	0.82	0.32	0.27	10.36	2.86	1.54	8.45	8.21	7.74	6.91	5.15	2.91
1899	0.37	0.39	1.06	1.12	0.55	0.80	2.98	4.25	5.12	2.49	0.77	0.48	20.38	4.29	2.47	17.31	16.19	15.64	14.84	11.86	7.61
1900	0.59	0.63	0.68	0.88	0.70	2.14	2.66	3.57	2.10	0.59	0.37	0.36	15.27	5.62	3.72	12.64	11.76	11.06	8.92	6.26	2.69
1901	0.44	0.43	0.46	0.56	0.69	1.25	2.14	4.38	2.01	0.81	0.37	0.35	13.89	3.83	2.50	11.84	11.28	10.59	9.34	7.20	2.82
1902	0.40	0.39	0.53	0.43	0.63	0.62	1.49	2.47	2.01	0.75	0.35	0.29	10.36	3.00	1.68	8.40	7.97	7.34	6.72	5.23	2.76
1903	0.32	0.38	0.44	0.57	0.44	1.00	3.14	3.64	4.21	1.03	0.37	0.32	15.86	3.15	2.01	14.03	13.46	13.02	12.02	8.88	5.24
1904 1905	0.41 0.41	0.47 0.38	0.47 0.38	0.87 0.35	0.76 0.40	1.85 0.71	4.56 1.23	5.80 1.61	3.65 1.73	1.41 0.55	0.50 0.28	0.31 0.24	21.06 8.27	4.83 2.63	3.48 1.46	18.90 6.58	18.03 6.23	17.27 5.83	15.42 5.12	10.86 3.89	5.06 2.28
1906	0.41	0.30	0.38	0.35	0.40	0.71	2.36	3.00	2.43	1.14	0.28	0.24	11.93	2.03	1.40	10.40	10.04	9.64	8.93	6.57	3.57
1907	0.30	0.51	0.52	0.88	1.08	2.42	4.57	4.78	3.74	2.35	0.71	0.43	22.29	5.71	4.38	19.82	18.94	17.86	15.44	10.87	6.09
1908	0.41	0.39	0.44	0.47	0.44	0.99	2.67	2.59	2.27	1.38	0.45	0.39	12.89	3.14	1.90	10.81	10.34	9.90	8.91	6.24	3.65
1909	0.48	0.41	0.41	0.97	0.77	1.60	3.31	4.23	4.58	1.59	0.45	0.40	19.20	4.64	3.34	17.05	16.08	15.31	13.71	10.40	6.17
1910	0.44	1.40	0.87	0.56	0.47	3.97	4.27	3.58	2.17	0.77	0.39	0.39	19.28	7.71	5.00	15.79	15.23	14.76	10.79	6.52	2.94
1911	0.44	0.52	0.54	0.44	0.53	1.12	2.27	3.84	5.18	1.63	0.52	0.42	17.45	3.59	2.09	15.01	14.57	14.04	12.92	10.65	6.81
1912	0.47	0.47	0.44	0.55	0.53	0.70	2.39	4.79	4.74	1.22	0.58	0.46	17.34	3.16	1.78	14.92	14.37	13.84	13.14	10.75	5.96
1913	0.47	0.47	0.42	0.38	0.36	0.71	2.62	4.01	2.89	1.11	0.58	0.38	14.40	2.81	1.45	12.08	11.70	11.34	10.63	8.01	4.00
1914	0.44	0.56	0.43	0.50	0.52	1.51	3.28	3.87	2.15	0.87	0.41	0.37	14.91	3.96	2.53	12.70	12.20	11.68	10.17	6.89	3.02
1915 1916	0.49	0.41 0.32	0.31 0.37	0.42 0.35	0.42	0.66	1.38	1.92	1.34	0.59	0.29	0.28	8.51	2.71	1.50	6.73	6.31	5.89	5.23	3.85	1.93
1917	0.30	0.32	0.37	0.33	0.44	1.38 0.43	3.88 1.87	3.94 4.58	4.16 4.50	2.06 1.82	0.56 0.46	0.38 0.31	18.14 15.80	3.16 2.26	2.17 1.09	16.21 13.86	15.86	15.42 13.20	14.04 12.77	10.16 10.90	6.22 6.32
1918	0.32	0.35	0.90	0.80	0.54	1.27	2.42	2.87	3.24	0.79	0.40	0.36	14.25	4.18	2.61	11.93	13.53 11.13	10.59	9.32	6.90	4.03
1919	0.45	0.40	0.34	0.35	0.37	0.80	2.77	3.56	1.69	0.49	0.25	0.24	11.71	2.71	1.52	10.03	9.68	9.31	8.51	5.74	2.18
1920	0.34	0.40	0.37	0.47	0.47	0.62	1.32	3.15	2.33	0.82	0.28	0.27	10.84	2.67	1.56	9.18	8.71	8.24	7.62	6.30	3.15
1921	0.42	0.53	0.47	0.79	0.66	1.90	2.76	5.77	5.03	1.23	0.44	0.34	20.34	4.77	3.35	18.14	17.35	16.69	14.79	12.03	6.26
1922	0.39	0.55	0.63	0.43	0.37	0.80	2.24	5.26	4.62	1.04	0.46	0.34	17.13	3.17	1.60	14.76	14.33	13.96	13.16	10.92	5.66
1923	0.36	0.34	0.37	0.43	0.36	0.65	1.92	3.18	2.63	1.35	0.47	0.30	12.36	2.51	1.44	10.52	10.09	9.73	9.08	7.16	3.98
1924	0.43	0.37	0.36	0.34	0.51	0.44	0.95	1.70	0.54	0.25	0.17	0.18	6.24	2.45	1.29	4.73	4.39	3.88	3.44	2.49	0.79
1925	0.27	0.38	0.30	0.34	0.91	1.35	3.51	4.90	2.57	1.07	0.42	0.33	16.35	3.55	2.60	14.65	14.31	13.40	12.05	8.54	3.64
1926	0.41	0.36	0.44	0.34	0.45	0.98	1.63	1.73	0.73	0.30	0.22	0.21	7.80	2.98	1.77	6.16	5.82	5.37	4.39	2.76	1.03
1927 1928	0.24 0.47	0.47	0.59	0.44	0.75	1.30	2.62	4.62		1.64	0.52	0.40	18.70	3.79	2.49	16.48	16.04	15.29	13.99	11.37	6.75
1928	0.47	1.00	0.69	0.63 0.33	0.55 0.34	1.93 0.75	2.21	5.96 2.52		0.81	0.36	0.27	17.02	5.27	3.11	14.23	13.60	13.05	11.12	8.91	2.95
1363	0.33	0.33	0.33	0.33	0.34	0.75	1.25	2.32	2.00	0.68	0.25	0.22	9.37	2.45	1.42	7.87	7.54	7.20	6.45	5.20	2.68

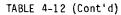


TABLE 4-12 (Cont'd)

RUNOFF VOLUME SUMMARY (BASIN INCHES)

LUCKY PEAK TOTAL UNREGULATED INFLOW Runoff in Basin Inches 1.0 Basin Inch =142,933 A.F. for 2,680 Square Mile Basin

MATER COT NOW DEC JAN FEB MAR APR MAY JUN JUL AUG SEP SEP MAR														_								
930 0.28 0.26 0.49 0.31 0.45 0.72 1.92 2.07 1.80 0.54 0.31 0.25 9.40 2.51 1.48 7.81 7.50 7.05 6.33 4.41 2.34 1931 0.38 0.32 0.31 0.32 0.56 0.59 2.35 3.95 3.21 1.08 0.40 0.30 13.46 2.17 1.48 12.07 11.80 11.54 10.59 8.24 4.29 1933 0.27 0.40 0.28 0.31 0.28 0.45 0.45 0.45 0.45 0.40 0.30 13.46 2.17 1.48 12.07 11.80 11.54 10.59 8.24 4.29 1933 0.27 0.40 0.28 0.31 0.29 0.45 1.67 2.39 3.77 0.74 0.31 0.23 11.11 2.00 1.05 9.62 9.31 9.02 8.57 6.90 4.51 1934 0.29 0.33 0.39 0.55 0.55 1.06 1.75 1.43 0.60 0.25 0.16 0.18 7.55 3.18 2.17 6.20 5.64 5.09 4.02 2.28 0.85 1935 0.26 0.35 5.06 0.35 1.04 0.30 0.25 40 0.69 0.27 0.21 11.11 2.30 1.33 9.66 9.29 8.91 8.33 6.23 3.23 1936 0.24 0.27 0.25 0.35 0.33 0.77 0.44 4.39 2.23 0.55 0.30 0.27 11.11 8.2 1.30 1.33 9.66 9.29 8.91 8.33 6.23 3.23 1936 0.24 0.27 0.25 0.31 0.33 0.77 0.44 4.39 2.23 0.55 0.30 0.27 11.11 8.2 1.30 1.33 9.66 9.29 8.91 8.33 6.23 3.23 1938 0.25 0.35 0.38 0.38 0.34 0.38 0.39 0.39 0.39 0.39 0.39 0.35 0.35 0.38 0.39 0.39 0.39 0.39 0.39 0.39 0.39 0.39												•			0CT-	JAN-	JAN-	FEB-	MAR-	APR -	MAY-	JUN-
1932 0.22 0.32 0.31 0.31 0.32 0.64 1.24 1.76 0.78 0.24 0.17 0.17 6.64 2.28 1.27 5.29 4.98 4.66 4.02 2.78 1.02 1933 0.22 0.22 0.22 0.22 0.25 0.25 0.26 0.95 0.35 3.95 3.21 1.08 0.40 0.30 0.23 11.11 2.00 1.05 9.62 9.31 9.02 8.57 6.90 4.51 1934 0.29 0.33 0.39 0.56 0.55 1.06 1.75 1.43 0.20 0.25 0.16 0.18 7.55 3.18 2.17 6.20 5.64 5.09 4.03 2.28 0.35 1935 0.26 0.35 0.36 0.37 0.38 0.58 2.10 3.00 2.54 0.69 0.27 0.21 11.11 2.30 1.33 9.66 9.29 8.91 8.33 6.23 3.23 1936 0.24 0.27 0.26 0.31 0.33 0.70 4.04 4.38 2.23 0.55 0.30 0.27 13.88 2.11 1.34 12.54 12.23 11.90 11.20 7.16 2.78 1937 0.28 0.25 0.25 0.25 0.25 0.25 0.30 0.27 13.88 2.11 1.34 12.54 12.23 11.90 11.20 7.16 2.78 1938 0.25 0.35 0.81 0.47 0.50 1.34 3.53 4.98 3.90 1.41 0.50 0.33 18.37 3.72 2.31 16.13 15.66 15.16 13.82 10.29 5.31 1940 0.28 0.27 0.34 0.38 0.53 1.41 2.49 3.04 1.59 0.38 0.22 0.28 11.28 3.21 2.32 9.89 9.51 8.98 7.57 5.08 2.04 1941 0.37 0.42 0.40 0.38 0.46 0.79 0.32 2.56 0.38 0.29 0.34 0.25 0.38 0.25 1.18 3.02 1.49 9.67 9.23 8.79 8.18 5.79 3.51 1944 0.43 0.49 0.39 0.35 0.37 0.48 1.15 2.12 1.73 0.74 0.30 0.25 8.89 2.51 1.20 6.94 6.59 6.59 6.25 5.74 4.59 9.49 1944 0.49 0.39 0.35 0.35 0.46 0.45 0.35 0.38 0.29 0.27 13.38 0.25 1.177 2.55 1.170 6.64 0.18 0.25 0.27 0.33 0.35 0.38 0.39 0.40 0.39 0.40 0.39 0.40 0.39 0.40 0.30 0.45	YEAR	: OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	: SEP	MAR	MAR	JUL	JUL	JUL	JUL	JUL	JUL
1932 0.22 0.32 0.31 0.31 0.32 0.64 1.24 1.76 0.78 0.24 0.17 0.17 6.64 2.28 1.27 5.29 4.98 4.66 4.02 2.78 1.02 1933 0.22 0.22 0.22 0.22 0.25 0.25 0.26 0.95 0.35 3.95 3.21 1.08 0.40 0.30 0.23 11.11 2.00 1.05 9.62 9.31 9.02 8.57 6.90 4.51 1934 0.29 0.33 0.39 0.56 0.55 1.06 1.75 1.43 0.20 0.25 0.16 0.18 7.55 3.18 2.17 6.20 5.64 5.09 4.03 2.28 0.35 1935 0.26 0.35 0.36 0.37 0.38 0.58 2.10 3.00 2.54 0.69 0.27 0.21 11.11 2.30 1.33 9.66 9.29 8.91 8.33 6.23 3.23 1936 0.24 0.27 0.26 0.31 0.33 0.70 4.04 4.38 2.23 0.55 0.30 0.27 13.88 2.11 1.34 12.54 12.23 11.90 11.20 7.16 2.78 1937 0.28 0.25 0.25 0.25 0.25 0.25 0.30 0.27 13.88 2.11 1.34 12.54 12.23 11.90 11.20 7.16 2.78 1938 0.25 0.35 0.81 0.47 0.50 1.34 3.53 4.98 3.90 1.41 0.50 0.33 18.37 3.72 2.31 16.13 15.66 15.16 13.82 10.29 5.31 1940 0.28 0.27 0.34 0.38 0.53 1.41 2.49 3.04 1.59 0.38 0.22 0.28 11.28 3.21 2.32 9.89 9.51 8.98 7.57 5.08 2.04 1941 0.37 0.42 0.40 0.38 0.46 0.79 0.32 2.56 0.38 0.29 0.34 0.25 0.38 0.25 1.18 3.02 1.49 9.67 9.23 8.79 8.18 5.79 3.51 1944 0.43 0.49 0.39 0.35 0.37 0.48 1.15 2.12 1.73 0.74 0.30 0.25 8.89 2.51 1.20 6.94 6.59 6.59 6.25 5.74 4.59 9.49 1944 0.49 0.39 0.35 0.35 0.46 0.45 0.35 0.38 0.29 0.27 13.38 0.25 1.177 2.55 1.170 6.64 0.18 0.25 0.27 0.33 0.35 0.38 0.39 0.40 0.39 0.40 0.39 0.40 0.39 0.40 0.30 0.45																						
1932 0,22 0,22 0,25 0,27 0,26 0,95 2,35 3,95 3,21 1,08 0,49 0,30 13,46 2,17 1,48 12,07 11,80 11,54 10,59 8,24 4,29												0.31		9.40				7.50	7.05	6.33	4.41	
1934 0.27 0.40 0.28 0.31 0.29 0.45 1.67 2.39 3.77 0.74 0.31 0.23 11.11 2.00 1.05 9.62 0.31 0.02 8.57 6.90 4.51 1.934 0.29 0.33 0.39 0.56 0.55 1.06 0.55 1.06 1.75 1.43 0.60 0.25 0.16 0.18 7.55 3.18 2.17 6.20 5.64 5.09 4.03 2.28 0.85 1.935 0.26 0.35 0.36 0.37 0.38 0.58 2.10 3.00 2.54 0.69 0.27 0.21 11.11 2.30 1.33 9.66 9.29 8.91 8.33 6.23 3.23 1.936 0.24 0.27 0.26 0.29 0.26 0.26 0.29 0.26 0.29 0.26 0.29 0.26 0.26 0.29 0.26 0.26 0.29 0.26 0.26 0.29 0.26 0.26 0.29 0.26 0.26 0.29 0.26 0.26 0.29 0.26 0.26 0.29 0.26 0.26 0.29 0.26 0.26 0.26 0.29 0.26 0.26 0.29 0.26 0.26 0.29 0.26 0.26 0.29 0.26 0.26 0.29 0.26 0.29 0.26 0.26 0.29 0.26 0.29 0.26 0.29 0.26 0.29 0.26 0																1.27			4.66	4.02		
1935 0.26 0.35 0.36 0.37 0.38 0.56 0.55 1.06 1.75 1.43 0.60 0.25 0.16 0.18 7.55 3.18 2.17 6.20 5.64 5.00 4.03 2.28 0.85 1.935 0.26 0.35 0.35 0.37 0.38 0.58 2.10 3.00 2.54 0.69 0.27 0.21 11.11 2.30 1.33 9.66 9.29 8.91 8.33 6.23 3.23 1.936 0.24 0.27 0.26 0.23 0.25 0.35 0.35 0.37 0.27 13.88 2.11 1.34 12.54 12.23 11.90 11.20 7.16 2.78 1.937 0.28 0.26 0.29 0.28 0.29 0.63 1.45 2.67 1.25 0.42 0.18 0.18 8.16 2.01 1.18 6.97 6.71 6.42 5.79 4.34 1.67 1.938 0.25 0.35 0.35 0.37 0.38 0.35 0.39 0.55 0.30 0.27 13.88 2.11 1.34 12.54 12.23 11.90 11.20 7.16 2.78 1.938 0.25 0.35 0.35 0.37 0.33 1.55 2.50 2.39 0.95 0.42 0.20 0.21 9.64 3.17 1.85 7.91 7.54 7.21 6.06 3.76 1.37 1.999 0.42 0.47 0.43 0.37 0.33 1.15 2.30 2.39 0.95 0.42 0.20 0.21 9.64 3.17 1.85 7.91 7.54 7.21 6.06 3.76 1.37 1.94 1.05 0.33 0.33 0.34 0.46 0.79 1.32 2.56 1.87 0.60 0.38 0.29 9.84 2.82 1.63 7.98 7.50 9.51 1.94 1.94 1.94 1.94 1.94 1.94 1.94 1.9											1.08	0.40	0.30	13.46	2.17	1.48	12.07	11.80	11.54	10.59	8.24	4.29
1935 0.26 0.35 0.36 0.37 0.38 0.58 2.10 3.00 2.54 0.69 0.27 0.21 11.11 2.30 1.33 9.66 9.29 8.91 8.33 6.23 3.23 1936 0.24 0.27 0.26 0.31 0.33 0.70 4.04 4.38 2.23 0.55 0.30 0.27 13.88 2.11 1.34 12.54 12.23 11.90 11.20 7.16 2.78 1937 0.28 0.26 0.29 0.26 0.29 0.26 0.29 0.34 0.40 4.38 2.23 0.55 0.30 0.27 13.88 2.11 1.34 12.54 12.23 11.90 11.20 7.16 2.78 1938 0.25 0.35 0.81 0.47 0.50 1.34 3.53 4.98 3.90 1.41 0.50 0.33 18.37 3.72 2.31 16.13 15.66 15.16 15.16 13.82 10.29 5.31 1940 0.28 0.27 0.34 0.38 0.53 1.41 2.49 3.04 1.59 0.45 0.29 0.28 11.28 3.21 2.32 9.89 9.51 8.98 7.57 5.08 2.04 1942 0.37 0.40 0.38 0.46 0.79 1.32 2.56 1.87 0.60 0.38 0.29 9.84 2.82 1.63 7.98 7.60 7.14 6.35 5.03 2.47 1942 0.34 0.40 0.38 0.46 0.79 1.32 2.56 1.87 0.60 0.38 0.29 9.84 2.82 1.63 7.98 7.60 7.14 6.35 5.03 2.47 1942 0.34 0.40 0.38 0.57 1.07 0.82 1.65 7.04 5.06 4.39 2.52 0.70 0.33 0.25 11.78 3.02 11.49 9.67 9.23 8.79 8.18 5.79 3.51 1944 0.43 0.49 0.99 0.35 0.37 0.48 1.15 2.12 1.73 0.74 0.30 0.25 8.80 2.51 1.20 6.94 6.59 6.22 5.74 4.59 2.47 1944 0.40 0.30 0.56 0.69 1.42 3.31 2.84 0.97 0.35 0.27 11.77 2.50 1.60 1.18 1.20 6.94 6.59 6.22 5.74 4.59 2.47 1945 0.30 0.38 0.52 0.56 0.46 1.53 4.48 4.56 2.65 0.88 0.40 0.32 17.06 3.77 2.55 1.51 1.20 6.94 6.59 6.22 5.74 4.59 2.47 1946 0.32 0.38 0.52 0.56 0.46 1.53 4.48 4.56 2.65 0.88 0.40 0.32 17.06 3.77 2.55 1.51 1.45 6 14.10 12.57 8.09 3.53 1949 0.31 0.38 0.36 0.34 0.32 1.03 2.91 4.00 2.13 0.65 0.29 0.32 1.33 4.05 11.39 10.77 10.31 9.89 9.38 7.53 3.99 1949 0.31 0.38 0.36 0.34 0.32 1.03 2.91 4.00 2.13 0.65 0.29 0.37 0.38 1.09 10.57 9.96 8.69 6.67 2.28 1.91 1.91 1.91 1.92 1.92 1.92 1.92 1.92									2.39			0.31	0.23		2.00	1.05	9.62	9.31	9.02	8.57	6.90	4.51
1936 0.24 0.27 0.26 0.31 0.33 0.70 4.04 4.38 2.23 0.55 0.30 0.27 13.88 2.11 1.34 12.54 12.23 11.90 11.20 7.16 2.78 1937 0.28 0.26 0.29 0.26 0.29 0.63 1.45 2.67 1.25 0.42 0.18 0.18 8.16 2.01 1.18 6.97 6.71 6.42 5.79 4.34 1.67 1938 0.25 0.35 0.81 0.47 0.50 1.34 3.53 4.98 3.90 1.41 0.50 0.33 18.37 3.72 2.31 16.13 15.66 15.16 13.82 10.29 5.31 1939 0.42 0.47 0.43 0.37 0.33 1.15 2.30 2.39 0.95 0.42 0.20 0.21 9.64 3.17 1.85 7.91 7.54 7.21 6.06 3.76 1.37 1940 0.28 0.27 0.34 0.38 0.53 1.41 2.49 3.04 1.59 0.45 0.22 0.28 11.28 3.21 2.32 9.89 9.51 8.98 7.75 5.08 2.04 1941 0.37 0.42 0.40 0.38 0.46 0.79 1.32 2.56 1.87 0.60 0.38 0.29 9.84 2.82 1.63 7.98 7.50 7.14 6.35 5.03 2.47 1942 0.34 0.34 0.44 0.45 0.61 2.39 2.28 2.54 0.97 0.33 0.25 11.78 3.02 1.49 9.67 9.23 8.79 8.18 5.79 3.51 1943 0.30 0.45 0.57 1.07 0.82 1.65 7.04 5.06 4.39 2.52 0.70 0.37 24.94 4.86 3.54 22.55 21.48 20.66 19.01 11.97 6.91 1945 0.29 0.37 0.30 0.39 0.56 0.69 1.42 3.31 2.84 0.97 0.36 0.27 11.77 2.60 1.64 10.18 9.79 9.23 8.54 7.12 3.81 1946 0.32 0.38 0.52 0.56 0.46 1.53 4.84 4.56 2.65 0.88 0.40 0.32 17.06 3.77 2.55 15.12 14.56 14.10 12.57 8.09 3.53 1948 0.39 0.30 0.40 0.39 0.35 0.56 0.46 1.53 4.84 4.56 2.65 0.88 0.40 0.32 17.06 3.77 2.55 15.12 14.56 14.10 12.57 8.09 3.53 1948 0.39 0.30 0.34 0.44 0.61 0.48 0.52 1.08 2.98 2.08 0.77 0.32 0.27 13.33 4.05 2.30 10.99 10.57 9.96 8.69 6.67 2.85 1948 0.39 0.40 0.39 0.46 0.49 0.50 0.49 0.		0.29			0.56		1.06	1.75	1.43	0.60	0.25	0.16	0.18	7.55	3.18	2.17	6.20	5.64	5.09	4.03	2.28	0.85
1938 0.25 0.35 0.81 0.47 0.50 1.34 3.53 4.98 3.90 1.41 0.50 0.33 18.37 3.72 2.31 16.13 15.66 15.16 13.82 10.29 5.31 1939 0.42 0.47 0.43 0.37 0.33 1.15 2.30 2.39 0.95 0.42 0.20 0.21 9.64 3.17 1.85 7.91 7.54 7.21 6.06 15.16 13.82 10.29 5.31 1940 0.28 0.27 0.34 0.38 0.53 1.41 2.49 3.04 1.59 0.45 0.22 0.21 9.64 3.17 1.85 7.91 7.54 7.21 6.06 3.76 1.37 1940 0.28 0.27 0.34 0.38 0.46 0.79 1.32 2.56 1.87 0.60 0.38 0.29 9.84 2.82 1.63 7.98 7.60 7.14 6.35 5.03 2.47 1942 0.34 0.44 0.75 0.44 0.40 0.38 0.46 0.79 1.32 2.56 1.87 0.60 0.38 0.29 9.84 2.82 1.63 7.98 7.60 7.14 6.35 5.03 2.47 1942 0.34 0.44 0.75 0.44 0.44 0.61 2.39 2.28 2.54 0.97 0.33 0.25 11.78 3.02 1.49 9.67 9.23 8.79 8.18 5.79 3.51 1943 0.30 0.45 0.57 1.07 0.82 1.65 7.04 5.06 4.39 2.52 0.70 0.33 0.25 11.78 3.02 1.49 9.67 9.23 8.79 8.18 5.79 3.51 1944 0.43 0.49 0.39 0.35 0.37 0.48 1.15 2.12 1.73 0.74 0.30 0.25 8.80 2.51 1.20 6.94 6.59 6.22 5.74 4.59 2.47 1945 0.29 0.37 0.30 0.99 0.56 0.69 1.42 3.31 2.84 0.97 0.36 0.27 11.77 2.60 1.64 10.18 9.79 9.23 8.54 7.12 3.81 1947 0.47 0.51 0.77 0.42 0.61 1.27 2.02 3.82 2.08 0.77 0.32 0.32 1.03 2.17 0.30 10.99 10.57 9.96 8.69 6.22 5.74 4.59 2.47 1.94 0.39 0.40 0.39 0.46 0.42 0.51 1.85 3.54 3.22 0.077 0.31 0.62 1.25 2.55 1.39 10.77 10.31 9.89 9.38 7.53 3.99 1949 0.31 0.38 0.36 0.34 0.32 1.03 2.91 4.00 2.13 0.65 0.29 0.22 12.94 2.74 1.69 11.38 11.04 10.72 9.69 6.78 2.78 1950 0.34 0.40 0.36 0.44 0.52 1.08 2.82 3.94 3.84 1.67 0.54 0.34 0.34 0.52 1.08 2.39 14.04 0.51 0.38 0.35 1.20 0.48 0.35 2.05 0.34 0.38 0.71 0.62 0.89 2.30 0.49 0.39 0.40 0.36 0.44 0.52 1.08 2.28 2.39 0.77 0.31 0.65 0.30 1.78 2.30 1.39 1.40 0.37 1.75 1.33 1.44 1.48 1.30 1.38 11.04 10.72 9.69 6.78 2.78 1950 0.34 0.40 0.36 0.44 0.52 1.08 2.28 2.39 0.77 0.31 0.60 0.30 1.78 2.20 1.49 1.41 1.38 11.04 10.72 9.69 6.78 2.78 1950 0.34 0.40 0.30 0.40 0.30 0.40 0.30 0.40 0.30 0.40 0.30 0.40 0.30 0.40 0.30 0.40 0.30 0.40 0.30 0.40 0.30 0.40 0.30 0.40 0.30 0.40 0.4		0.26		0.36	0.37	0.38	0.58	2.10	3.00	2.54	0.69	0.27	0.21	11.11	2.30	1.33	9.66	9.29	8.91	8.33	6.23	3.23
1938 0.25 0.35 0.81 0.47 0.50 1.34 3.53 4.98 3.90 1.41 0.50 0.33 18.37 3.72 2.31 16.13 15.66 15.16 13.82 10.29 5.31 1939 0.42 0.47 0.43 0.37 0.33 1.15 2.30 2.39 0.95 0.42 0.20 0.21 9.64 3.17 1.85 7.91 7.54 7.21 6.06 3.76 1.37 1940 0.28 0.27 0.34 0.38 0.53 1.41 2.49 3.04 1.59 0.45 0.22 0.28 11.28 3.21 2.32 9.89 9.51 8.98 7.57 5.08 2.04 1941 0.37 0.42 0.40 0.38 0.46 0.79 1.32 2.56 1.87 0.60 0.38 0.29 9.84 2.82 1.63 7.98 7.60 7.14 6.35 5.03 2.47 1942 0.34 0.44 0.45 0.44 0.44 0.46 0.61 2.39 2.28 2.54 0.97 0.33 0.25 11.78 3.02 1.49 9.67 9.23 8.79 8.18 5.79 3.51 1943 0.30 0.45 0.57 1.07 0.82 1.65 7.04 5.06 4.39 2.52 0.70 0.37 24.94 4.86 3.54 22.55 21.48 20.66 19.01 11.97 6.91 1944 0.43 0.49 0.39 0.35 0.37 0.48 1.15 2.12 1.73 0.74 0.30 0.25 8.80 2.51 1.20 6.94 6.59 6.22 5.74 4.59 2.47 1946 0.32 0.38 0.52 0.50 0.39 0.56 0.69 1.42 3.31 2.84 0.97 0.36 0.27 11.77 2.60 1.64 10.18 9.79 9.23 8.54 7.12 3.81 1946 0.32 0.38 0.52 0.56 0.46 1.53 4.48 4.56 2.65 0.88 0.47 0.32 17.06 3.77 2.55 15.12 14.56 14.10 12.57 8.09 3.53 1948 0.39 0.40 0.39 0.46 0.42 0.51 1.85 3.54 3.22 0.77 0.31 0.26 12.52 2.57 1.39 10.77 10.31 9.89 9.38 7.53 3.99 1949 0.31 0.38 0.36 0.34 0.32 1.03 2.91 4.00 2.13 0.65 0.29 0.27 13.33 4.05 2.30 10.99 10.57 9.96 8.69 6.67 2.85 1951 0.38 0.36 0.34 0.35 0.36 0.34 0.35 0.35 1.38 11.04 10.72 9.69 6.78 2.78 1951 0.43 0.59 0.62 0.49 0.88 0.88 3.90 4.79 3.08 1.20 0.48 0.35 0.35 1.38 11.04 10.72 9.69 6.78 2.78 1951 0.43 0.59 0.62 0.44 0.64 0.52 1.08 2.82 3.94 3.84 1.67 0.54 0.35 0.35 1.38 11.74 17.62 17.14 16.60 15.88 11.14 4.83 1953 0.36 0.34 0.30 0.35 0.35 0.35 0.35 0.35 0.35 0.35		0.24		0.26	0.31	0.33	0.70	4.04	4.38	2.23	0.55	0.30	0.27	13.88	2.11	1.34	12.54	12.23	11.90	11.20	7.16	2.78
1939						0.29		1.45	2.67	1.25	0.42	0.18	0.18	8.16	2.01	1.18	6.97	6.71	6.42	5.79	4.34	1.67
1940 0.28 0.27 0.34 0.38 0.53 1.41 2.49 3.04 1.59 0.45 0.22 0.28 11.28 3.21 2.32 9.89 9.51 8.98 7.57 5.08 2.04 1941 0.37 0.42 0.40 0.38 0.46 0.79 1.32 2.56 1.87 0.60 0.38 0.29 9.84 2.82 1.63 7.98 7.60 7.14 6.35 5.03 2.47 1942 0.34 0.44 0.75 0.44 0.44 0.61 2.39 2.28 2.28 2.40 0.97 0.33 0.25 11.78 3.02 1.49 9.67 9.23 8.79 8.18 5.79 3.51 1943 0.30 0.45 0.57 1.07 0.82 1.65 7.04 5.06 4.39 2.52 0.70 0.33 0.37 24.94 4.86 3.54 22.55 21.48 20.66 19.01 11.97 6.91 1945 0.29 0.37 0.30 0.39 0.56 0.69 1.42 3.31 2.84 0.97 0.36 0.27 11.77 2.60 1.69 4.65 9.62 5.74 4.59 2.47 1945 0.29 0.37 0.30 0.39 0.56 0.69 1.42 3.31 2.84 0.97 0.36 0.27 11.77 2.60 1.64 10.18 9.79 9.23 8.54 7.12 3.81 1946 0.32 0.38 0.52 0.56 0.46 1.53 4.48 4.56 2.65 0.88 0.40 0.32 17.06 3.77 2.55 15.12 14.56 14.10 12.57 8.09 3.53 1948 0.39 0.40 0.39 0.46 0.42 0.51 1.85 3.54 3.22 0.77 0.31 0.26 12.52 2.57 1.39 10.57 9.96 8.69 6.62 2.85 1948 0.39 0.40 0.38 0.36 0.34 0.32 1.03 2.91 4.00 2.13 0.65 0.29 0.22 12.94 2.74 1.69 11.38 11.04 10.72 9.69 6.78 2.78 1951 0.43 0.59 0.66 0.34 0.45 0.55 1.08 2.89 2.30 2.97 13.36 0.55 0.35 0.35 0.35 0.37 0.48 0.40 0.36 0.44 0.55 1.08 2.83 3.99 3.84 1.67 0.54 0.34 16.29 3.14 2.04 14.31 13.37 13.25 12.27 9.45 5.51 1951 0.43 0.59 0.66 0.34 0.32 1.03 2.91 4.00 2.13 0.65 0.29 0.22 12.94 2.74 1.69 11.38 11.04 10.72 9.69 6.78 2.78 1951 0.44 0.55 0.44 0.61 0.48 0.54 0.72 4.74 6.31 3.63 1.20 0.40 0.35 0.34 0.32 0.33 0.28 0.37 0.38 0.30 0.39 0.40 0.38 0.40 0.35 0.44 0.55 1.08 2.82 3.94 3.84 1.67 0.54 0.34 16.29 3.14 2.04 14.31 13.37 12.27 9.45 5.51 1951 0.43 0.55 0.35 0.35 0.32 0.39 0.40 0.40 0.45 0.65 1.05 2.67 4.18 2.39 0.40 0.40 0.45 0.65 0.59 0.55 0.44 0.61 0.48 0.54 0.72 4.74 6.31 3.63 1.20 0.40 0.45 0.55 0.35 0.35 0.32 0.33 0.28 0.30 0.40 0.45 0.56 0.49 0.48 0.55 0.50 0.30 0.40 0.45 0.56 0.49 0.48 0.55 0.50 0.30 0.40 0.45 0.56 0.49 0.45 0.50 0.50 0.50 0.50 0.50 0.50 0.50			_				1.34		4.98	3.90	1.41	0.50	0.33	18.37	3.72	2.31	16.13	15.66	15.16	13.82	10.29	5.31
1941 0.37 0.42 0.40 0.38 0.46 0.79 1.32 2.56 1.87 0.60 0.38 0.29 9.84 2.82 1.63 7.98 7.00 7.14 6.35 5.03 2.47 1942 0.34 0.44 0.75 0.44 0.61 2.39 2.28 2.54 0.97 0.33 0.25 11.78 3.02 1.49 9.67 9.23 8.79 8.18 5.79 3.51 1944 0.43 0.49 0.39 0.35 0.37 0.48 1.15 2.12 1.73 0.74 0.30 0.25 14.94 4.86 3.54 22.55 21.48 20.66 19.01 11.97 6.91 1945 0.29 0.37 0.30 0.39 0.56 0.69 1.42 3.31 2.84 0.97 0.36 0.27 11.77 2.60 1.64 10.18 9.79 9.23 8.54 7.12 3.81 1946 0.32 0.38 0.52 0.56 0.66 1.53 4.48 4.56 2.65 0.88 0.40 0.32 17.06 3.77 2.55 15.12 14.56 14.10 12.57 8.09 3.53 1947 0.47 0.51 0.77 0.42 0.61 1.27 2.02 3.82 2.08 0.77 0.32 0.27 13.33 4.05 2.30 10.99 10.57 9.96 8.69 6.67 2.85 1948 0.39 0.40 0.39 0.40 0.39 0.46 0.42 0.51 1.85 3.54 3.22 0.77 0.31 0.26 12.52 2.57 1.39 10.77 10.31 9.89 9.38 7.53 3.99 1949 0.31 0.38 0.36 0.34 0.32 1.03 2.91 4.00 2.13 0.56 0.29 0.22 12.94 2.74 1.69 11.38 11.04 10.72 9.69 6.78 2.78 1950 0.34 0.40 0.36 0.44 0.52 1.08 2.82 3.94 3.84 1.67 0.54 0.34 16.29 3.14 2.04 14.31 13.87 13.35 12.27 9.45 5.51 1951 0.43 0.44 0.45 0.44 0.45 0.45 0.45 0.45 0.45						0.33	1.15	2.30	2.39	0.95	0.42	0.20	0.21	9.64	3.17	1.85	7.91	7.54	7.21	6.06	3.76	1.37
1942 0.34 0.44 0.75 0.44 0.45 0.61 2.39 2.28 2.54 0.97 0.33 0.25 11.78 3.02 1.49 9.67 9.23 8.79 8.18 5.79 3.51 1943 0.30 0.45 0.57 1.07 0.82 1.65 7.04 6.06 4.39 2.52 0.70 0.37 24.94 4.86 3.54 22.55 21.48 20.66 19.01 11.97 6.91 1944 0.43 0.49 0.39 0.35 0.37 0.48 1.15 2.12 1.73 0.74 0.30 0.25 8.80 2.51 1.20 6.94 6.59 6.22 5.74 4.59 2.47 1945 0.29 0.37 0.30 0.39 0.56 0.69 1.42 3.31 2.84 0.97 0.36 0.27 11.77 2.50 1.64 10.18 9.79 9.23 8.54 7.12 3.81 1947 0.47 0.51 0.77 0.42 0.61 1.27 2.02 3.82 2.08 0.77 0.32 0.27 13.33 4.05 2.30 10.99 10.57 9.96 8.69 6.62 2.85 1948 0.39 0.40 0.39 0.46 0.42 0.51 1.85 3.54 3.22 0.77 0.31 0.26 12.52 2.57 1.39 10.77 10.31 9.89 9.38 7.53 3.99 1949 0.31 0.38 0.36 0.34 0.32 1.03 2.91 4.00 2.13 0.65 0.29 0.22 12.94 2.74 1.69 11.38 11.04 10.72 9.69 6.78 2.78 1950 0.34 0.40 0.36 0.44 0.52 1.08 2.82 3.94 3.84 1.67 0.54 0.34 16.29 3.14 2.04 14.31 13.87 13.35 12.27 9.45 5.51 1951 0.43 0.59 0.56 0.49 0.88 0.88 0.89 2.09 2.00 0.30 17.82 3.89 2.25 15.38 14.89 14.01 13.13 9.23 4.44 1952 0.55 0.55 0.52 0.49 0.88 0.88 0.89 2.00 0.30 17.82 3.89 2.25 15.38 14.89 14.01 13.13 9.23 4.44 1952 0.55 0.44 0.61 0.62 0.89 2.02 0.38 0.36 0.36 0.34 0.32 0.37 0.38 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35				0.34	0.38	0.53		2.49	3.04	1.59	0.45	0.22	0.28	11.28	3.21	2.32	9.89	9.51	8.98	7.57	5.08	2.04
1942 0.34 0.44 0.75 0.44 0.44 0.61 2.39 2.28 2.54 0.97 0.33 0.25 11.78 3.02 1.49 9.67 9.23 8.79 8.18 5.79 3.51 1944 0.43 0.49 0.39 0.35 0.37 0.48 1.15 2.12 1.73 0.74 0.30 0.25 8.80 2.51 1.20 6.94 6.59 6.22 5.74 4.59 2.47 1945 0.29 0.37 0.30 0.39 0.56 0.69 1.42 3.31 2.84 0.97 0.36 0.27 11.77 2.60 1.64 10.18 9.79 9.23 8.54 7.12 3.81 1946 0.32 0.38 0.55 0.56 0.46 1.53 4.48 4.56 2.55 0.88 0.40 0.32 17.06 3.77 2.55 15.12 14.56 14.10 12.57 8.09 3.53 1947 0.47 0.51 0.77 0.42 0.61 1.27 2.02 3.82 2.08 0.77 0.32 0.27 13.33 4.05 2.30 10.99 10.57 9.96 8.69 6.67 2.85 1948 0.39 0.40 0.39 0.46 0.42 0.51 1.85 3.54 3.22 0.77 0.31 0.26 12.52 2.57 1.39 10.77 10.31 9.89 9.38 7.53 3.99 1949 0.31 0.38 0.36 0.34 0.32 1.03 2.10 2.10 2.13 0.65 0.55 0.49 0.22 12.94 2.74 1.59 11.38 11.04 10.72 9.69 6.78 2.78 1950 0.34 0.40 0.36 0.44 0.52 1.08 2.82 3.94 3.84 1.67 0.54 0.34 16.29 3.14 2.04 14.31 13.87 13.35 12.27 9.45 5.51 1951 0.43 0.59 0.62 0.49 0.88 0.88 3.90 4.79 3.08 1.36 0.55 0.30 1.30 1.78 2.25 15.38 14.89 14.01 13.13 9.23 4.44 1.83 1953 0.36 0.34 0.32 0.45 0.72 4.74 6.31 3.63 1.20 0.48 0.35 20.05 3.34 1.74 17.62 17.14 16.60 15.88 11.14 4.83 1953 0.36 0.34 0.40 0.45 0.55 1.05 2.67 4.74 6.31 3.63 1.20 0.48 0.35 20.05 3.34 1.74 17.62 17.14 16.60 15.88 11.14 4.83 1953 0.36 0.34 0.40 0.45 0.55 1.05 2.67 4.18 2.38 1.25 0.40 0.29 10.25 2.02 13.24 12.53 11.91 11.02 8.72 5.90 1955 0.35 0.35 0.32 0.33 0.28 0.39 0.91 2.78 2.39 0.92 0.40 0.29 10.25 2.02 13.04 12.53 11.91 11.02 8.72 5.90 1955 0.35 0.35 0.32 0.33 0.28 0.39 0.91 2.78 2.39 0.92 0.40 0.29 10.25 2.02 13.04 1.44 17.62 17.14 16.60 15.88 11.14 4.83 1955 0.36 0.36 0.44 0.49 0.37 0.55 1.36 2.35 2.53 0.73 0.34 0.47 0.39 0.45 0.45 0.49 0.49 0.49 0.49 0.45 0.55 1.05 2.67 4.18 2.38 1.25 0.40 0.39 1.25 1.26 1.25 1.25 1.26 0.38 0.55 0.35 0.35 0.35 0.35 0.35 0.35 0.35	1941	0.37	0.42	0.40	0.38	0.46	0.79	1.32	2.56	1.87	0.60	0.38	0.29	9.84	2.82	1.63	7.98	7.60	7.14	6.35	5.03	2.47
1944 0.43 0.49 0.39 0.35 0.37 0.48 1.15 2.12 1.73 0.74 0.30 0.25 8.80 2.51 1.20 6.94 6.59 6.22 5.74 4.59 2.47 1945 0.29 0.37 0.30 0.39 0.56 0.69 1.42 3.31 2.84 0.97 0.36 0.27 11.77 2.60 1.64 10.18 9.79 9.23 8.54 7.12 3.81 1947 0.47 0.51 0.77 0.42 0.61 1.27 2.02 3.82 2.08 0.47 0.32 0.27 13.33 4.05 2.30 10.99 10.57 9.96 8.69 6.67 2.85 1948 0.39 0.40 0.39 0.46 0.42 0.51 1.85 3.54 3.22 0.77 0.31 0.26 12.52 2.57 1.39 10.77 10.31 9.89 9.38 7.53 3.99 1949 0.31 0.38 0.36 0.34 0.32 1.03 2.91 4.00 2.13 0.65 0.29 0.22 12.94 2.74 1.69 11.38 11.04 10.72 9.69 6.78 2.78 1950 0.34 0.40 0.36 0.44 0.52 1.08 2.82 3.94 3.84 1.67 0.54 0.34 16.29 3.14 2.04 14.31 13.87 13.35 12.27 9.45 5.51 1951 0.43 0.59 0.62 0.49 0.88 0.88 3.90 4.79 3.08 1.36 0.50 0.30 17.82 3.89 2.25 15.38 14.89 14.01 13.13 9.23 4.44 1952 0.55 0.44 0.61 0.48 0.54 0.72 4.74 6.31 3.63 1.20 0.48 0.35 20.05 3.34 1.74 17.62 17.14 16.60 15.88 11.14 4.83 1953 0.36 0.34 0.38 0.30 0.34 0.38 0.30 0.39 0.91 2.78 2.38 1.25 0.46 0.29 14.51 3.28 2.15 12.63 12.18 11.53 10.48 7.81 3.63 1955 0.35 0.35 0.35 0.32 0.33 0.28 0.39 0.91 2.78 2.93 0.92 0.40 0.29 10.25 2.02 1.00 8.54 8.21 7.93 7.54 6.63 3.85 1955 0.35 0.35 0.35 0.35 0.35 0.37 0.40 0.45 0.65 1.94 2.32 2.53 0.94 0.40 0.43 0.40 0.36 0.44 0.49 0.37 0.65 1.94 2.32 2.53 0.94 0.40 0.43 0.40 0.36 0.44 0.49 0.37 0.65 1.36 2.53 5.27 3.62 1.04 0.36 0.37 16.97 3.78 2.38 14.84 14.47 13.82 12.46 9.93 4.66 1956 0.36 0.48 1.44 1.03 0.73 1.60 4.45 5.89 4.08 1.32 0.44 0.39 2.22 1.564 3.36 19.10 18.07 17.34 15.74 11.29 5.40 1957 0.47 0.44 0.49 0.37 0.65 1.36 2.53 5.27 3.62 1.04 0.36 0.37 16.97 3.78 2.38 14.84 14.47 13.82 12.46 9.93 4.66 1958 0.38 0.36 0.44 0.49 0.37 0.65 1.94 2.32 2.53 5.77 3.62 1.04 0.36 0.37 16.97 3.78 2.38 14.84 14.47 13.82 12.46 9.93 4.66 1958 0.38 0.36 0.40 0.45 0.55 0.58 2.84 2.98 1.00 0.40 0.38 17.40 1.35 1.00 0.45 0.45 0.45 0.99 0.55 0.59 4.09 0.55 0.59 4.09 0.55 0.59 4.09 0.55 0.59 4.09 0.55 0.59 4.09 0.55 0.59 4.09 0.55 0.59 4.09 0.55 0.59 4.09 0.55 0.59 4.09 0.55 0.59 4.09 0.55 0.59 4.09 0.55 0.59 4.09 0.55 0.59		0.34	0.44	0.75	0.44	0.44	0.61	2.39	2.28	2.54	0.97	0.33	0.25	11.78	3.02	1.49	9.67	9.23	8.79	8.18	5.79	
1945 0.29 0.37 0.30 0.39 0.56 0.69 1.42 3.31 2.84 0.97 0.36 0.27 11.77 2.60 1.64 10.18 9.79 9.23 8.54 7.12 3.81 1946 0.32 0.38 0.52 0.56 0.46 1.53 4.48 4.56 2.65 0.88 0.40 0.32 17.06 3.77 2.55 15.12 14.56 14.10 12.57 8.09 3.53 1948 0.39 0.40 0.39 0.46 0.42 0.51 1.85 3.54 3.22 0.77 0.31 0.26 12.52 2.57 1.39 10.77 10.31 9.89 9.38 7.53 3.99 1949 0.31 0.38 0.36 0.34 0.32 1.03 2.91 4.00 2.13 0.65 0.29 0.22 12.94 2.74 1.69 11.38 11.04 10.72 9.69 6.78 2.78 1950 0.34 0.40 0.36 0.44 0.52 1.08 2.82 3.94 3.84 1.67 0.54 0.34 16.29 3.14 2.04 14.31 13.87 13.35 12.27 9.45 5.51 1951 0.43 0.59 0.62 0.49 0.88 0.88 3.90 4.79 3.08 1.36 0.50 0.30 17.82 3.89 2.25 15.38 14.89 14.01 13.13 9.23 4.44 1952 0.55 0.44 0.61 0.48 0.54 0.72 4.74 6.31 3.63 1.20 0.48 0.35 20.05 3.34 1.74 17.62 17.14 16.60 15.88 11.14 4.83 1953 0.36 0.34 0.34 0.40 0.45 0.65 1.05 2.67 4.18 2.38 1.25 0.46 0.29 14.51 3.28 2.15 12.63 12.18 11.53 10.48 7.81 3.63 1955 0.35 0.35 0.35 0.32 0.33 0.28 0.39 0.91 2.78 2.93 0.92 0.40 0.29 10.25 2.02 1.00 8.54 8.21 7.93 7.54 6.63 3.85 1955 0.34 0.34 0.44 1.03 0.73 1.60 4.45 5.89 4.08 1.32 0.44 0.39 2.21 5.64 3.36 1.91 18.07 17.34 15.74 11.29 5.40 1957 0.36 0.36 0.44 0.49 0.37 0.65 1.94 2.32 2.53 0.73 0.54 0.34 0.34 0.34 0.34 0.35 0.45 0.87 0.59 0.50 0.44 0.49 0.37 0.65 1.94 2.32 2.53 0.75 0.35 0.35 0.35 0.35 0.35 0.45 0.49 0.55 1.94 2.32 2.53 0.75 0.34 0.34 0.34 0.34 0.34 0.34 0.35 0.44 0.39 0.44 0.39 0.22 1 5.64 3.36 19.10 18.07 17.34 15.74 11.29 5.40 1957 0.36 0.36 0.44 0.38 0.35 0.44 0.38 0.35 0.49 0.65 1.94 2.32 2.53 0.75 0.32 0.33 0.34 0.34 0.34 0.35 0.45 0.49 0.55 1.94 2.32 2.53 0.75 0.32 0.32 0.33 0.38 0.34 0.30 0.41 0.38 0.55 0.58 2.85 2.84 2.98 1.00 0.40 0.35 13.01 2.59 1.51 11.18 10.80 10.25 9.67 6.82 3.98 1963 0.50 0.45 0.46 0.31 1.03 0.64 1.26 3.17 2.88 1.04 0.35 12.07 3.40 12.51 3.39 1.98 10.03 10.02 8.99 8.35 7.09 3.92		0.30	0.45	0.57	1.07	0.82	1.65	7.04	5.06	4.39	2.52	0.70	0.37	24.94	4.86	3.54	22.55	21.48	20.66	19.01	11.97	6.91
1946		0.43	0.49	0.39	0.35	0.37	0.48	1.15	2.12	1.73	0.74	0.30	0.25	8.80	2.51	1.20	6.94	6.59	6.22	5.74	4.59	2.47
1946 0.32 0.38 0.52 0.56 0.46 1.53 4.48 4.56 2.65 0.88 0.40 0.32 17.06 3.77 2.55 15.12 14.56 14.10 12.57 8.09 3.53 1947 0.47 0.51 0.77 0.42 0.61 1.27 2.02 3.82 2.08 0.77 0.32 0.27 13.33 4.05 2.30 10.99 10.57 9.96 8.69 6.67 2.85 1948 0.39 0.40 0.39 0.46 0.42 0.51 1.85 3.54 3.22 0.77 0.31 0.26 12.52 2.57 1.39 10.77 10.31 9.89 9.38 7.53 3.99 1949 0.31 0.38 0.36 0.34 0.32 1.03 2.91 4.00 2.13 0.65 0.29 0.22 12.94 2.74 1.69 11.38 11.04 10.72 9.69 6.78 2.78 1950 0.34 0.40 0.36 0.44 0.52 1.08 2.82 3.94 3.84 1.67 0.54 0.34 16.29 3.14 2.04 14.31 13.87 13.35 12.27 9.45 5.51 1951 0.43 0.59 0.62 0.49 0.88 0.88 3.90 4.79 3.08 1.36 0.50 0.30 17.82 3.89 2.25 15.38 14.89 14.01 13.13 9.23 4.44 1952 0.55 0.44 0.61 0.48 0.54 0.72 4.74 6.31 3.63 1.20 0.48 0.35 20.05 3.34 1.74 17.62 17.14 16.60 15.88 11.14 4.83 1953 0.36 0.34 0.38 0.71 0.62 0.89 2.30 2.82 4.12 1.78 0.51 0.34 15.17 3.30 2.22 13.24 12.53 11.91 11.02 8.72 5.90 1955 0.35 0.35 0.35 0.32 0.33 0.28 0.39 0.91 2.78 2.93 0.92 0.40 0.29 10.25 2.02 1.00 8.54 8.21 7.93 7.54 6.63 3.85 1956 0.35 0.35 0.35 0.32 0.33 0.28 0.39 0.91 2.78 2.93 0.92 0.40 0.29 10.25 2.02 1.00 8.54 8.21 7.93 7.54 6.63 3.85 1956 0.36 0.44 0.49 0.37 0.65 1.36 2.53 5.27 3.62 1.04 0.36 0.37 16.97 3.78 2.38 14.84 14.47 13.82 12.46 9.93 4.66 1958 0.38 0.36 0.44 0.49 0.37 0.65 1.36 2.53 5.27 3.62 1.04 0.36 0.37 16.97 3.78 2.38 14.84 14.47 13.82 12.46 9.93 4.66 1958 0.38 0.36 0.45 0.49 0.37 0.65 1.94 2.32 2.53 0.73 0.34 0.47 11.40 3.07 1.67 9.19 8.66 8.17 7.52 5.58 3.26 1960 0.61 0.43 0.38 0.34 0.30 0.44 0.64 1.20 2.09 1.60 0.40 0.28 0.27 8.24 12.07 3.40 2.02 10.05 9.69 9.24 8.03 5.52 2.90 1961 0.33 0.38 0.34 0.34 0.36 0.45 0.45 0.55 0.55 2.85 2.84 2.98 1.00 0.40 0.25 0.35 13.01 1.18 10.80 10.25 9.67 6.82 3.98 1963 0.36 0.45 0.46 0.31 1.03 0.64 1.20 2.09 1.60 0.40 0.35 13.01 2.51 3.39 1.98 10.80 10.25 9.67 6.82 3.98 1963 0.50 0.45 0.46 0.31 1.03 0.64 1.20 2.09 1.60 0.40 0.35 13.01 2.51 3.39 1.98 10.80 10.25 9.67 6.82 3.98 1963 0.50 0.45 0.46 0.31 1.03 0.64 1.26 3.17 2.88 1.04 0.37 0.40 12.51 3.39 1.98 10.83 10.0		0.29		0.30	0.39	0.56	0.69	1.42	3.31	2.84	0.97	0.36	0.27	11.77	2.60	1.64	10.18	9.79	9.23	8.54		
1947		0.32	0.38	0.52	0.56	0.46	1.53	4.48	4.56	2.65	0.88	0.40	0.32	17.06	3.77	2.55	15.12	14.56	14.10	12.57		
1948	1947	0.47	0.51	0.77	0.42	0.61	1.27	2.02	3.82	2.08	0.77	0.32	0.27	13.33	4.05	2.30	10.99	10.57	9.96			
1949	1948	0.39	0.40	0.39	0.46	0.42	0.51	1.85	3.54	3.22	0.77	0.31	0.26	12.52	2.57		10.77			9.38		
1950	1949	0.31	0.38	0.36	0.34	0.32	1.03	2.91	4.00	2.13	0.65	0.29	0.22	12.94								
1951		0.34	0.40	0.36	0.44	0.52	1.08	2.82	3.94	3.84	1.67	0.54	0.34	16.29	3.14							
1952		0.43	0.59	0.62	0.49	0.88	0.88	3.90	4.79	3.08	1.36	0.50	0.30	17.82								
1953		0.55	0.44	0.61	0.48	0.54	0.72	4.74	6.31	3.63	1.20	0.48	0.35	20.05								
1954 0.31 0.42 0.40 0.45 0.65 1.05 2.67 4.18 2.38 1.25 0.46 0.29 14.51 3.28 2.15 12.63 12.18 11.53 10.48 7.81 3.63 1955 0.35 0.35 0.32 0.33 0.28 0.39 0.91 2.78 2.93 0.92 0.40 0.29 10.25 2.02 1.00 8.54 8.21 7.93 7.54 6.63 3.85 1956 0.36 0.48 1.44 1.03 0.73 1.60 4.45 5.89 4.08 1.32 0.44 0.39 22.21 5.64 3.36 19.10 18.07 17.34 15.74 11.29 5.40 1957 0.47 0.44 0.49 0.37 0.65 1.36 2.53 5.27 3.62 1.04 0.36 0.37 16.97 3.78 2.38 14.84 14.47 13.82 12.46 9.93 4.66 1958 0.38 0.36 0.41 0.38 0.85 0.87 2.27 6.62 3.51 1.00 0.43 0.38 17.46 3.25 2.10 15.50 15.12 14.27 13.40 11.13 4.51 1959 0.36 0.45 0.59 0.53 0.49 0.65 1.94 2.32 2.53 0.73 0.34 0.47 11.40 3.07 1.67 9.19 8.66 8.17 7.52 5.58 3.26 1960 0.61 0.43 0.34 0.36 0.45 1.21 2.51 2.62 2.33 0.57 0.32 0.32 12.07 3.40 2.02 10.05 9.69 9.24 8.03 5.52 2.90 1961 0.33 0.38 0.34 0.30 0.41 0.64 1.20 2.09 1.60 0.40 0.28 0.27 8.24 2.40 1.35 6.64 6.34 5.93 5.29 4.09 2.00 1962 0.36 0.36 0.36 0.36 0.36 0.38 0.55 0.58 2.85 2.84 2.98 1.00 0.40 0.35 13.01 2.59 1.51 11.18 10.80 10.25 9.67 6.82 3.98 1963 0.50 0.45 0.46 0.31 1.03 0.64 1.26 3.17 2.88 1.04 0.37 0.40 12.51 3.39 1.98 10.33 10.02 8.99 8.35 7.09 3.92		0.36	0.34	0.38	0.71	0.62	0.89	2.30	2.82	4.12	1.78	0.51	0.34	15.17					-			
1955 0.35 0.35 0.32 0.33 0.28 0.39 0.91 2.78 2.93 0.92 0.40 0.29 10.25 2.02 1.00 8.54 8.21 7.93 7.54 6.63 3.85 1956 0.36 0.48 1.44 1.03 0.73 1.60 4.45 5.89 4.08 1.32 0.44 0.39 22.21 5.64 3.36 19.10 18.07 17.34 15.74 11.29 5.40 1957 0.47 0.44 0.49 0.37 0.65 1.36 2.53 5.27 3.62 1.04 0.36 0.37 16.97 3.78 2.38 14.84 14.47 13.82 12.46 9.93 4.66 1958 0.38 0.36 0.41 0.38 0.85 0.87 2.27 6.62 3.51 1.00 0.43 0.38 17.46 3.25 2.10 15.50 15.12 14.27 13.40 11.13 4.51 1959 0.36 0.45 0.59 0.53 0.49 0.65 1.94 2.32 2.53 0.73 0.34 0.47 11.40 3.07 1.67 9.19 8.66 8.17 7.52 5.58 3.26 1960 0.61 0.43 0.34 0.36 0.45 1.21 2.51 2.62 2.33 0.57 0.32 0.32 12.07 3.40 2.02 10.05 9.69 9.24 8.03 5.52 2.90 1961 0.33 0.38 0.34 0.36 0.41 0.64 1.20 2.09 1.60 0.40 0.28 0.27 8.24 2.40 1.35 6.64 6.34 5.93 5.29 4.09 2.00 1962 0.36 0.36 0.36 0.36 0.38 0.55 0.58 2.85 2.84 2.98 1.00 0.40 0.35 13.01 2.59 1.51 11.18 10.80 10.25 9.67 6.82 3.98 1963 0.50 0.45 0.46 0.31 1.03 0.64 1.26 3.17 2.88 1.04 0.37 0.40 12.51 3.39 1.98 10.33 10.02 8.99 8.35 7.09 3.92		0.31		0.40	0.45	0.65	1.05	2.67	4.18	2.38	1.25	0.46	0.29	14.51								
1956	1955	0.35	0.35	0.32	0.33	0.28	0.39	0.91	2.78	2.93	0.92	0.40		10.25								
1957		0.36	0.48	1.44	1.03	0.73	1.60	4.45	5.89	4.08	1.32	0.44	0.39									
1958	1957	0.47	0.44	0.49	0.37	0.65	1.36	2.53	5.27	3.62	1.04	0.36	0.37									
1959 0.36 0.45 0.59 0.53 0.49 0.65 1.94 2.32 2.53 0.73 0.34 0.47 11.40 3.07 1.67 9.19 8.66 8.17 7.52 5.58 3.26 1960 0.61 0.43 0.34 0.36 0.45 1.21 2.51 2.62 2.33 0.57 0.32 0.32 12.07 3.40 2.02 10.05 9.69 9.24 8.03 5.52 2.90 1961 0.33 0.38 0.34 0.30 0.41 0.64 1.20 2.09 1.60 0.40 0.28 0.27 8.24 2.40 1.35 6.64 6.34 5.93 5.29 4.09 2.00 1962 0.36 0.36 0.36 0.38 0.55 0.58 2.85 2.84 2.98 1.00 0.40 0.35 13.01 2.59 1.51 11.18 10.80 10.25 9.67 6.82 3.98 1963 0.50 0.45 0.46 0.31 1.03 0.64 1.26 3.17 2.88 1.04 0.37 0.40 12.51 3.39 1.98 10.33 10.02 8.99 8.35 7.09 3.92	1958	0.38	0.36	0.41	0.38	0.85	0.87	2.27		3.51		0.43										
1960 0.61 0.43 0.34 0.36 0.45 1.21 2.51 2.62 2.33 0.57 0.32 0.32 12.07 3.40 2.02 10.05 9.69 9.24 8.03 5.52 2.90 1961 0.33 0.38 0.34 0.30 0.41 0.64 1.20 2.09 1.60 0.40 0.28 0.27 8.24 2.40 1.35 6.64 6.34 5.93 5.29 4.09 2.00 1962 0.36 0.36 0.36 0.38 0.55 0.58 2.85 2.84 2.98 1.00 0.40 0.35 13.01 2.59 1.51 11.18 10.80 10.25 9.67 6.82 3.98 1963 0.50 0.45 0.46 0.31 1.03 0.64 1.26 3.17 2.88 1.04 0.37 0.40 12.51 3.39 1.98 10.33 10.02 8.99 8.35 7.09 3.92	1959	0.36	0.45	0.59	0.53	0.49	0.65	1.94														
1961 0.33 0.38 0.34 0.30 0.41 0.64 1.20 2.09 1.60 0.40 0.28 0.27 8.24 2.40 1.35 6.64 6.34 5.93 5.29 4.09 2.00 1962 0.36 0.36 0.36 0.38 0.55 0.58 2.85 2.84 2.98 1.00 0.40 0.35 13.01 2.59 1.51 11.18 10.80 10.25 9.67 6.82 3.98 1963 0.50 0.45 0.46 0.31 1.03 0.64 1.26 3.17 2.88 1.04 0.37 0.40 12.51 3.39 1.98 10.33 10.02 8.99 8.35 7.09 3.92	1960	0.61	0.43	0.34	0.36	0.45					- •											
1962 0.36 0.36 0.36 0.38 0.55 0.58 2.85 2.84 2.98 1.00 0.40 0.35 13.01 2.59 1.51 11.18 10.80 10.25 9.67 6.82 3.98 1.963 0.50 0.45 0.46 0.31 1.03 0.64 1.26 3.17 2.88 1.04 0.37 0.40 12.51 3.39 1.98 10.33 10.02 8.99 8.35 7.09 3.92	1961	0.33	0.38	0.34	0.30	0.41																
1963 0.50 0.45 0.46 0.31 1.03 0.64 1.26 3.17 2.88 1.04 0.37 0.40 12.51 3.39 1.98 10.33 10.02 8.99 8.35 7.09 3.92	1962	0.36	0.36	0.36	0.38	0.55																
100 100 100 100 100 100 100	1963	0.50	0.45	0.46	0.31	1.03						-		-								
3.50 3.60 3.60 3.60 3.60	1964	0.37	0.47	0.36																		
													,					3.00	,,,,	0.55	, • • •	0.75

LUCKY PEAK TOTAL UNREGULATED INFLOW Runoff in Basin Inches 1.0 Basin Inch =142,933 A.F. for 2,680 Square Mile Basin

																	1.				
WATER	:												0CT-	OCT-	JAN-	JAN-	/FEB-	MAR-	APR -	MAY -	JUN-
YEAR	: 0CT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	: SEP	MAR	MAR	e de la companya de l	/ JUL	JUL	JUL	JUL	JUL
1965	0.33	0.38	1.81	1.12	1.28	1.30	4.37	5.85	5.45	2.37	0.83	0.54	25.63	6.22	3.70	21	20.62	19.34	18.04	13.67	7.82
1966	0.46	0.43	0.37	0.44	0.33	0.69	1.74	2.29	1.25	0.38	0.27	0.26	8.91	2.72	1.46	7.12	6.68	6.35	5.66	3.92	1.63
1967	0.28	0.33	0.34	0.46	0.42	0.58	0.97	3.38	3.68	1.24	0.34	0.32	12.34	2.41	1.46	10.73	10.27	9.85	9.27	8.30	4.92
1968	0.41	0.39	0.35	0.33	0.69	0.83	1.07	1.81	1.95	0.53	0.51	0.39	9.26	3.00	1.85	7.21	6.88	6.19	5.36	4.29	2.48
1969	0.44	0.55	0.44	0.90	0.61	1.01	4.58	5.07	2.77	0.90	0.36	0.34	17.97	3.95	2.52	15.84	14.94	14.33	13.32	8.74	3. <u>6.7</u>
1970	0.39	0.33	0.37	0.89	0.71	1.04	1.33	4.04	4.00	1.44	0.43	0.38	15.35	3.73	2.64	13.45	12.56	11.85	10.81	9.48	5.4
1971	0.42	0.68	0.70	1.09	1.17	1.48	3.84	6.45	4.96	2.08	0.63	0.45	23.95	5.54	3.74	21.07	19.98	18.81	17.33	13.49	7.04 <u>.</u>
1972	0.48	0.43	0.46	0.71	0.71	3.12	2.76	5.26	5.22	1.46	0.50	0.43	21.54	5.91	4.54	19.24	18.53	17.82	14.70	11.94	6.68
1973	0.47	0.43	0.49	0.52	0.41	0.65	1.26	2.44	1.59	0.53	0.29	0.32	9.40	2.97	1.58	7.40	6.88	6.47	5.82	4.56	2.12
1974	0.33	0.68	0.63	0.92	0.64	1.82	4.20	5.15	5.51	1.67	0.55	0.38	22.48	5.02	3.38	19.91	18.99	18.35	16.53	12.33	7.18
1975	0.42	0.39	0.38	0.42	0.45	1.02	1.43	4.33	4.87	2.42	0.59	0.39	17.11	3.08	1.89	14.94	14.52	14.07	13.05	11.62	7.29
1976	0.49	0.46	0.62	0.50	0.53	0.76	2.68	4.46	2.35	0.88	0.48	0.48	14.69	3.36	1.79	12.16	11.66	11.13	10.37	7.69	3.23
1977	0.42	0.34	0.32	0.31	0.29	0.31	0.53	0.66	0.70	0.33	0.21	0.20	4.62	1.99	0.91	3.13	2.82	2.53	2.22	1.69	1.03
1978	0.28	0.32	0.73	0.57	0.63	1.55	2.67	3.30	3.29	1.61	0.46	0.47	15.88	4.08	2.75.	13.62	13.05	12.42	10.87	8.20	4.90
1979	0.38	0.33	0.34	0.34	0.38	0.74	0.98	2.45	1.39	0.41	0.31	0.27	8.32	2.51	1.46	6.69	6.35	5.97	5.23	4.25	1.80
1980	0.31	0.28	0.32	0.51	0.64	0.87	2.54	4.00	2.85	1.27	0.41	0.42	14.42	2.93	2.02	12.68	12.17	11.53	10.66	8.12	4.12
STATIS	TICS																				
N	85.	85.	85.	86.	86.	86.	86.	86.	86.	86.	86.	86.	85.	85.	86.	86.	86.	86.	86.	86.	86.
Mean	0.38	0.43	0.49	0.51	0.54	1.04	2.47	3.62	2.96	1.07	0.40	0.33	14.27	3.38	2.09	12.20	11.70	11.16	10.12	7.65	4.03
Max.	0.61	1.40	1.81	1.12	1.28	3.97	7.04	6.62	10.24	2.70	0.83	0.54	25.63	7.71	5.00	22.55	21.48	20.66	19.01	16.83	12.94
Min.	0.22	0.22	0.25	0.24	0.26	0.31	0.53	0.66		0.24		0.17	4.62	1.99	0.91	3.13	2.82	2.53	2.22	1.69	0.79
Std.													•			• -	- • • -				
Dev.	0.08	0.15	0.24	0.22	0.20	0.58	1.15	1.31	1.50	0.57	0.13	0.08	4.70	1.10	0.85	4.36	4.20	4.09	3.78	3.00	2.00

TABLE 7-3 OPERATIONAL RULE CURVE (PLATE 7-1) ASSURANCES

FLOOD CONTROL ASSURANCES (Control to 6,500 cfs at Glenwood Bridge)

FORECAST DATE (THRU 31 JULY)	ASSUMED VOLUME FORECAST ERROR (UNDER FORECAST) (ACRE-FEET)	PERCE VOLUME ERROR (SMALLER VOLUMI	NT CHANCE OF: LESS CRITICAL TIMING SEQUENCE
1 January	860,000	99	98
16 January	780,000	99	98
1 February	700,000	99	98
15 February	640,000	99	98
1 March	580,000	99	98
16 March	490,000	99	98
1 April	400,000	99	98
16 April	380,000	99	98
1 May	370,000	99	98
16 May	360,000	99	98
1 June	350,000	99	80
16 June	310,000	98	50

REFILL ASSURANCES (TOTAL SYSTEM - 974,149 ACRE-FEET)

FORECAST	ASSUMED VOLUME		
DATE	FORECAST ERROR	PERCENT	CHANCE OF:
(THRU	(UNDER FORECAST)	VOLUME ERROR	LESS CRITICAL
31 JULY)	(ACRE-FEET)	(SMALLER VOLUME)	TIMING SEQUENCE
1 January	610,000	95	98
16 January	550,000	95	98
1 February	490,000	, 95	98
15 February	450,000	95	98
1 March	410,000	95	98
16 March	350,000	95	98
1 April	280,000	95	98
16 April	270,000	95	98
1 May	140,000	80	50
16 May	110,000	75	50
1 June	40,000	60	50
16 June	10,000	52	50

SUMMARY OF STEWART AND BRYAN DECREE FILINGS BY CANAL

		Total Filing
Name of Canal		(cfs)
Andrew Ditch		23.50
Ballentyne		15.3526
Baxter		4.00
Boise City		36.3745
Boise Valley		55.78 12.70
Boone Ditch Bowman & Swisher		9.38
Bubb (South Boise Mutual)		21.14
Caldwell Highline		79.20
Campbell (Canyon Ditch Company)		28.14
Canyon County		80.37
Davis (Little Davis)		13.94
Eagle Islands Canals Aiken	5.20	54.02
Conway & Hamming	5.70	
Graham & Gilbert	4.40	
Hart & Davis	9.96	
Lemp Ditch	6.00	
Mace & Catlin	10.92	
Mace & Mace	1.76	
Seven Suckers	1.28	
Warm Springs Slough Eureka No. 1	8.80	33.32
Eureka No. 2		50.00
Farmers Union		191.4995
Haas Ditch		17.34
Island High Line		20.00
Little Pioneer		26.82
Lower Center Point		19.60
Manmon		9.36
Meeves Middleton Mill		1.80 64.562
Middleton Water		112.794
Miscellaneous		11.40
R.B. Betty	0.10	
Crawforth Pump	1.60	
Boise River	1.60	
Drainage District #4	1.04	
Manville-Leonard McCurry Pump	3.50 0.56	
Surprise Valley Farms	3.00	
New Dry Creek	3100	62.0842
New Union		13.76
New York Main		2904.58 <u>1</u> /
Parma Ditch		12.76
Penitentiary		2.24
Phyllis Pioneer Dixie		692.215 58.50
Ridenbaugh		535.14
Riverside		290.374
Roedel Ditch		3.20
Rossi Mill		10.00
Sebree (Farmers Co-op)		318.59
Settlers Sighanhana		186.443 12.28
Siebenberg Thurman Mill		12.28 35.652
Upper Center Point		14.82
TERES. OCHOCK FORMS		11102
	TOTAL	6145.0038

This data is taken from 1973, "Watermaster Report," Water Distribution of Boise River, District No. 63. Details on individual rights are identified in detail in that report.

 $[\]underline{1}/$ 300 cfs of New York Main Canal not decreed

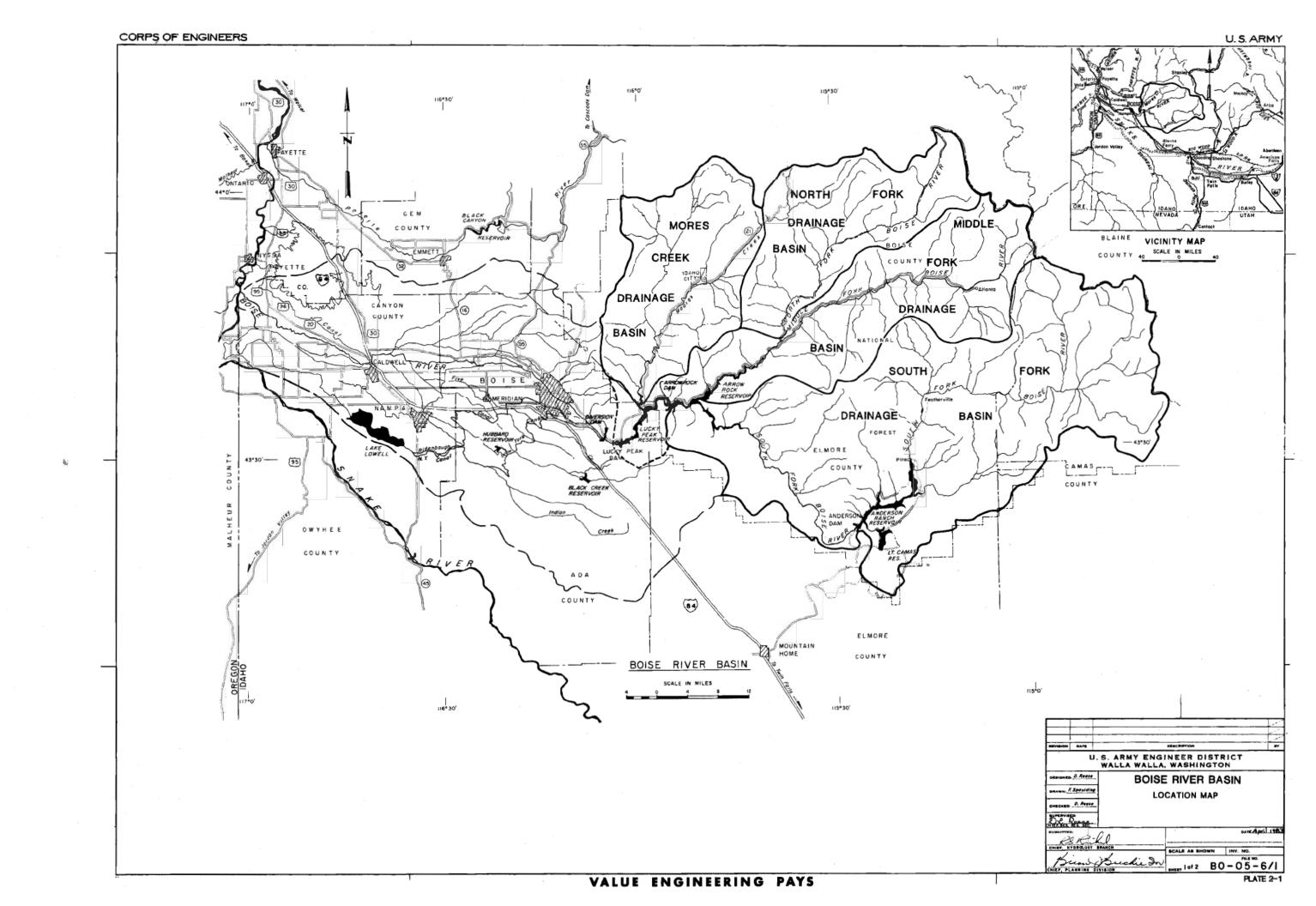
ANDERSON RANCH STORAGE WATER ALLOCATIONS

NAME	ACRE FEET OF STORAGE WATER	PERCENT OF SPACE
Boise-Kuna Irrigation District	112,149	26.83
New York Irrigation District	41,006	9.81
Wilder Irrigation District	125,108	29.93
Big Bend Irrigation District	3,887	•93
Nampa & Meridian	77,784	18.61
Total Board of Control	359,93	3 4
Ridenbaugh	15,137	3.62
Pioneer Irrigation District	25,582	6.12
Farmers Union Ditch Co.	5,727	1.37
New Dry Creek Ditch Co.	1,296	•31
Settlers Irrigation District	5,810	1.39
Boise Valley Irrigation Ditch Co.	961	.23
South Boise Mutual Irrigation Co.	543	.13
Ballentyne Ditch Co.	376	.09
Capitol View Irrigation District	460	.11
Pioneer Ditch Company	2,174	•52
TOTAL	418,000	100.00
POWER	5,200	

TABLE 7-6 ARROWROCK STORAGE WATER ALLOCATIONS

NAME	ACRE FEET OF STORAGE WATER	PERCENT OF SPACE
Boise Project Board of Control Nampa & Meridian Pioneer Irrigation District Farmers Union Ditch Co. Settlers Irrigation District Farmers Co-op Canal Co. Ridenbaugh Canal	177,816 55,055 21,018 2,874 1,778 1,227 3,832 23,000	62.01 19.25 7.333 1.000 .62 .428 1.337 8.02
TOTAL	286,600	99.998

TABLE 7-7


LUCKY PEAK STORAGE WATER ALLOCATIONS

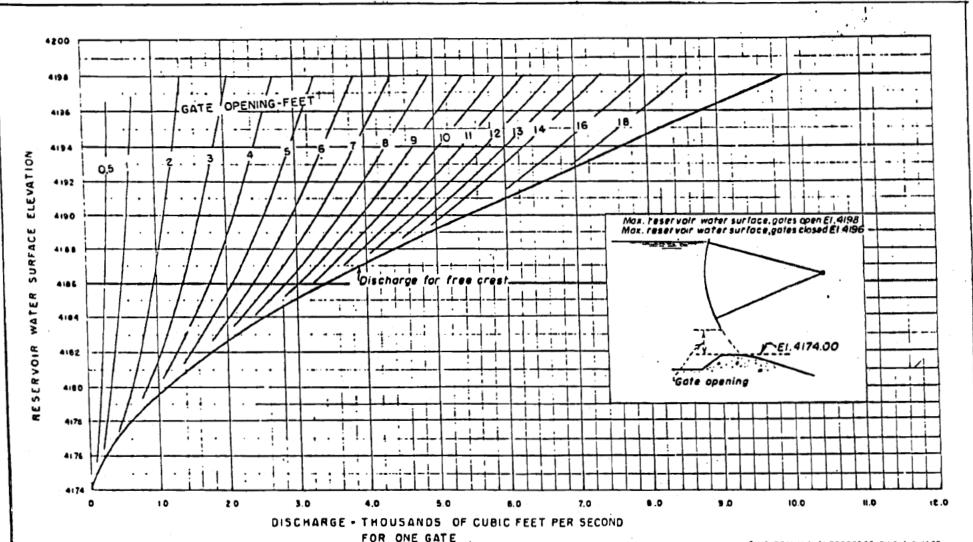

NAME	ACRE FEET OF STORAGE WATER	PERCENT OF SPACE
	0.000.00	
Ballentyne	1,300	0.492
Boise City	1,000	0.378
Boise Valley	2,500	0.946
Bubb (South Boise Mutual)	500	0.189
Canyon County	6,000	2.271
Capital View Irrig. Dist.	300	0.114
Davis Ditch (Village of Garden City)	1,500	0.568
Eagle Island Water Co.	7,650	2.895
Eureka Water Co. #1	2,800	1,060
Farmers Union	10,000	3.784
Little Pioneer	500	0.189
Middleton Irrig. Assn.	6,380	2.414
Middleton Mill	4,620	1.748
New Dry Creek	3,000	1.135
New Union	1,400	0.530
Phyllis (Pioneer Irrig. Dist.)	16,000	6.055
Ridenbaugh	35,000	13.245
Rossi Mill (South Boise Water)	700	0.265
Settlers	10,000	3.784
Thurman Mill	800	0.303
Idaho Fish & Game	50,000	18.921
Streamflow Maintenance	102,300	38.713
TOTAL	264,250	100.0

TABLE 8-1

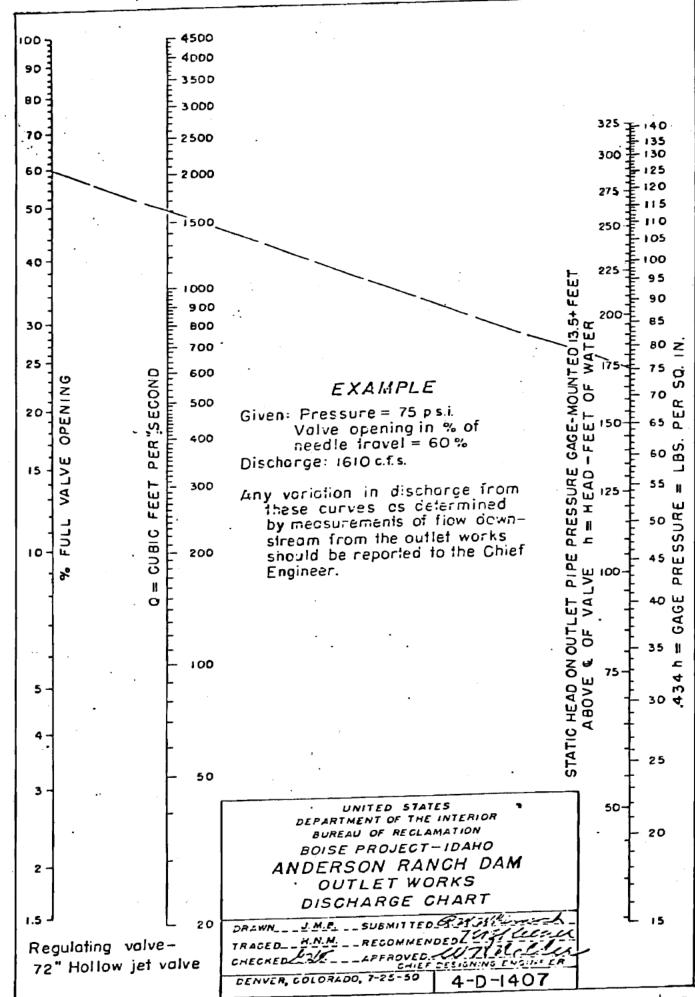
BOISE BASIN - NATURAL AND REGULATED PEAK DISCHARGES

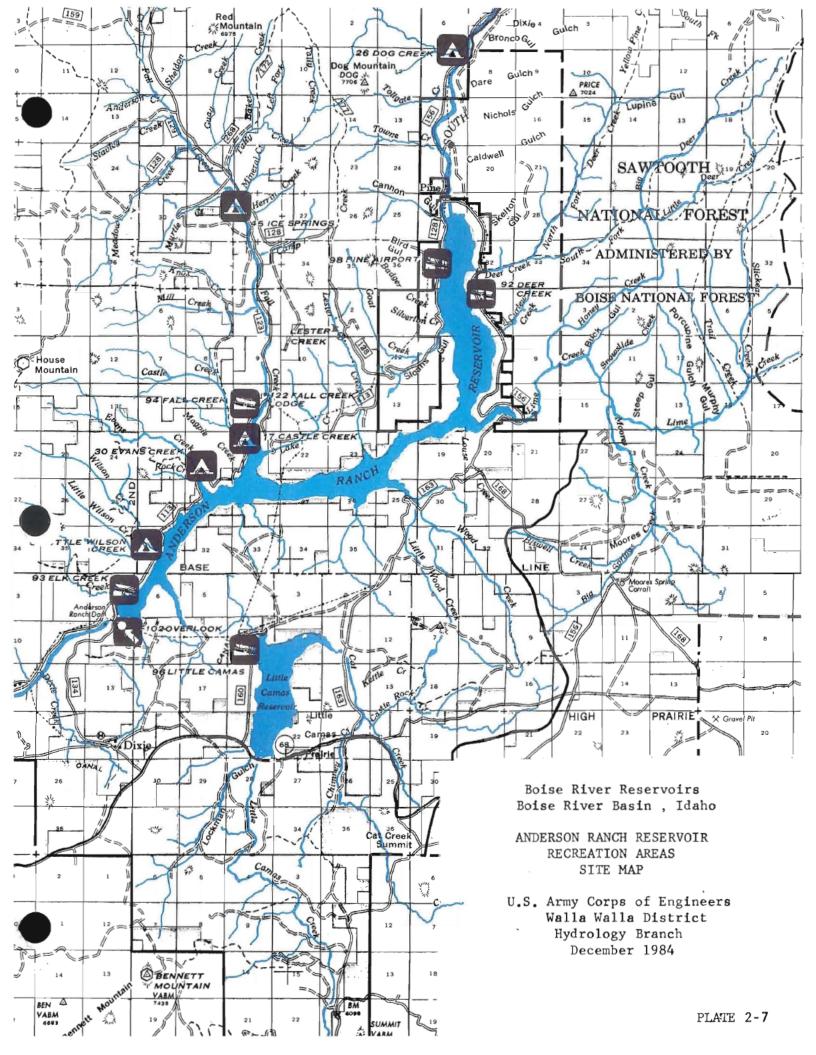
		NATURA			R	EGULATED	
WATER	MONTH	DAY	DISCHARGE		MONTH	DAY	DISCHARGE
YEAR	MUNTH	DAT	(cfs)	ľ	חואוטוי	DAT	(cfs)
1955	Jun	10	10478		Aug	1	1880
1956	May	25	22949		Mar	10	7010
1957	May	21	16930		Jun	8	6910
1958	May	22	21745		May	13	6620
1959	May	16	9040		Apr	16	1830
1960	May	13	11842		Apr	10	5840
1961	May	27	7830		Apr	28	1580
1962	Apr	21	11343		Jul	1	1600
1963	May	24	11480		May	25	5920
1964	May	21	10938		Jun	21	4690
1965	Dec	24	27294		May	22	7240
1966	May	10	8225		Apr	5	1770
1967	May	25	15598		Jul	5	1640
1968	Jun	4	7048		Apr	23	1870
1969	Apr	24	15935		Apr	22	5330
1970	May	28	14847		Jun	30	5300
1971	May	14	20253		Apr	23	6880
1972	Jun	2	19559		Apr	14	681 0
1973	May	20	9555		May	26	1680
1974	May	. 9	18469		Jun	19	8130
1975	May	17	20618		May	19	6900
1976	May	12	13732		Apr	30	5870
1977	Jun	9	3190		Apr	25	1290
1978	Jun	10	11896		Apr	29	5460
1979	May	25	9622	1	May	25	1560
1980	May	7	12958		Jun	22	5650

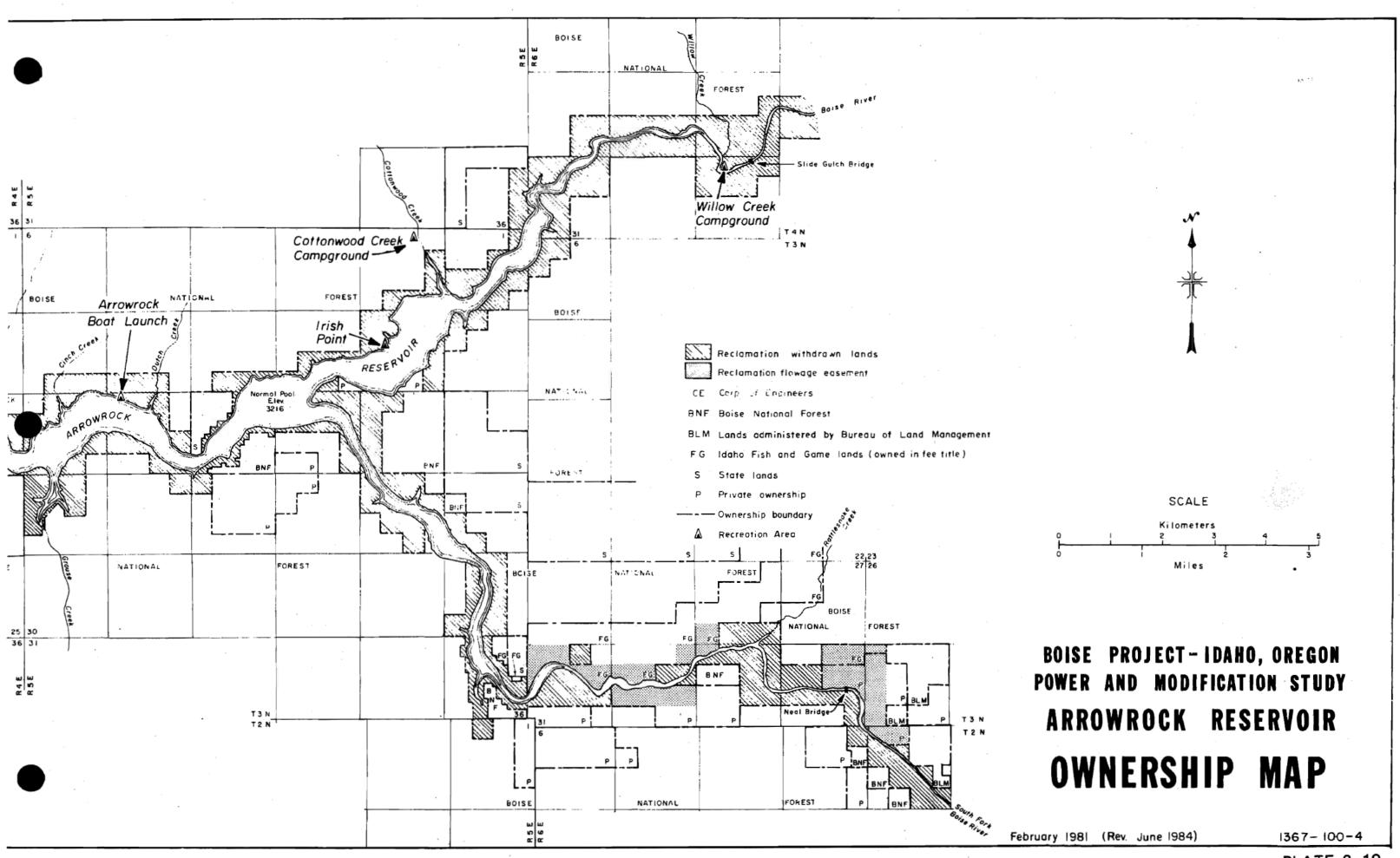
NOTES

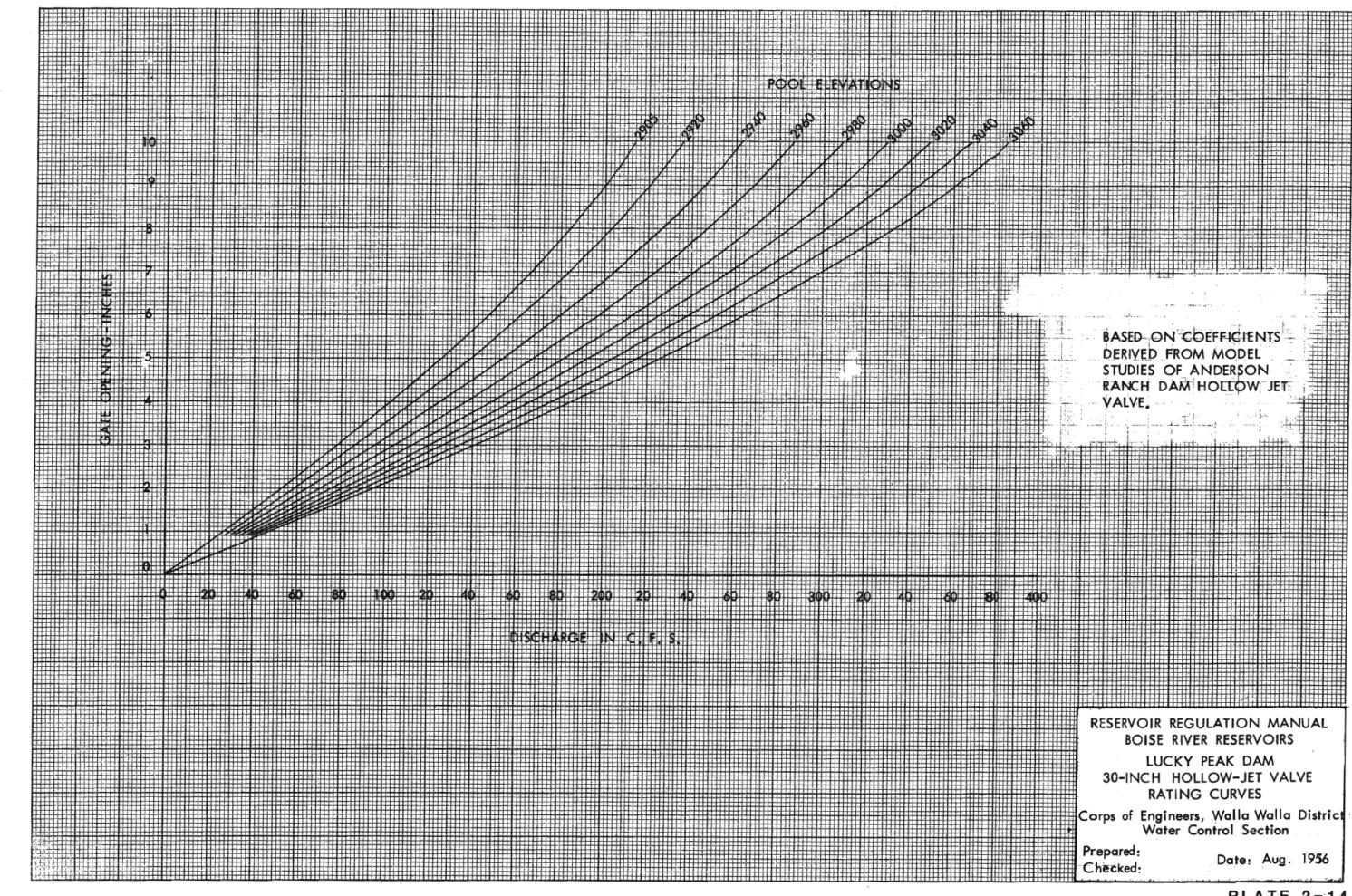
Installation consists of 2-25'x 22' radial gates.

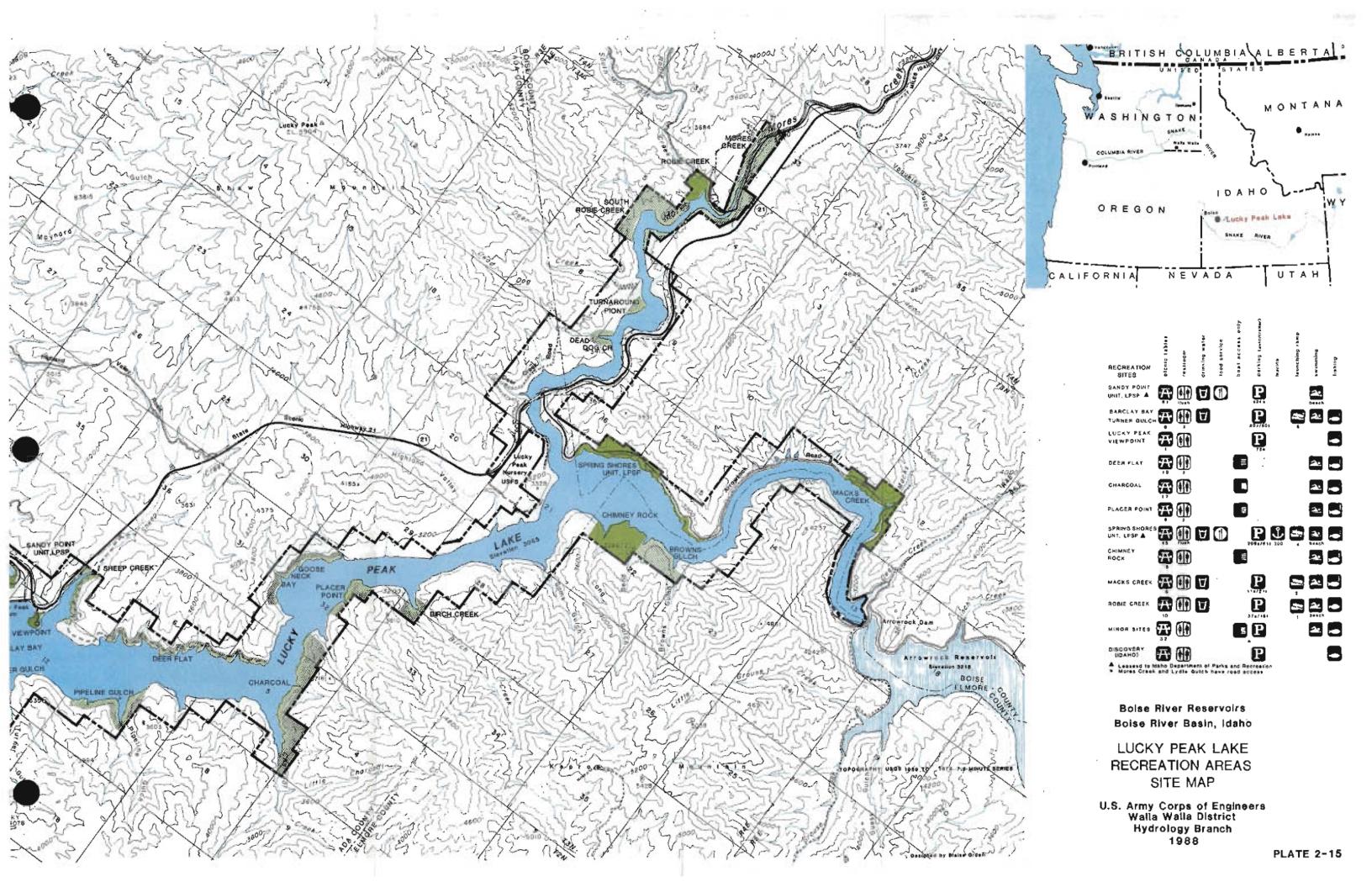
For normal operation, flow must be maintained equally under both gates.

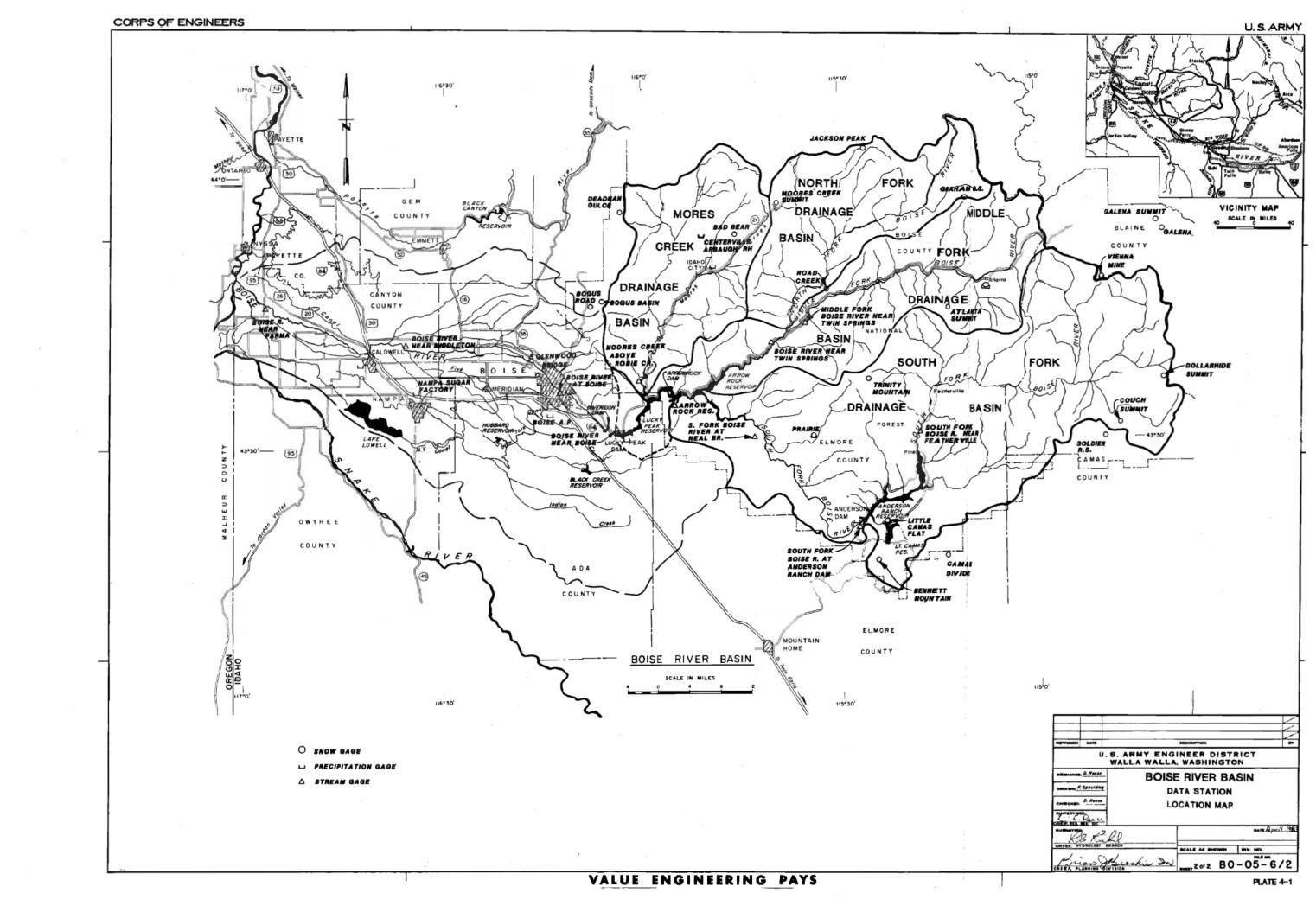

Curves show discharge for one gate only. Discharges for free crest obtained from 1:48 scale model. Discharges for partial gate openings are computed.

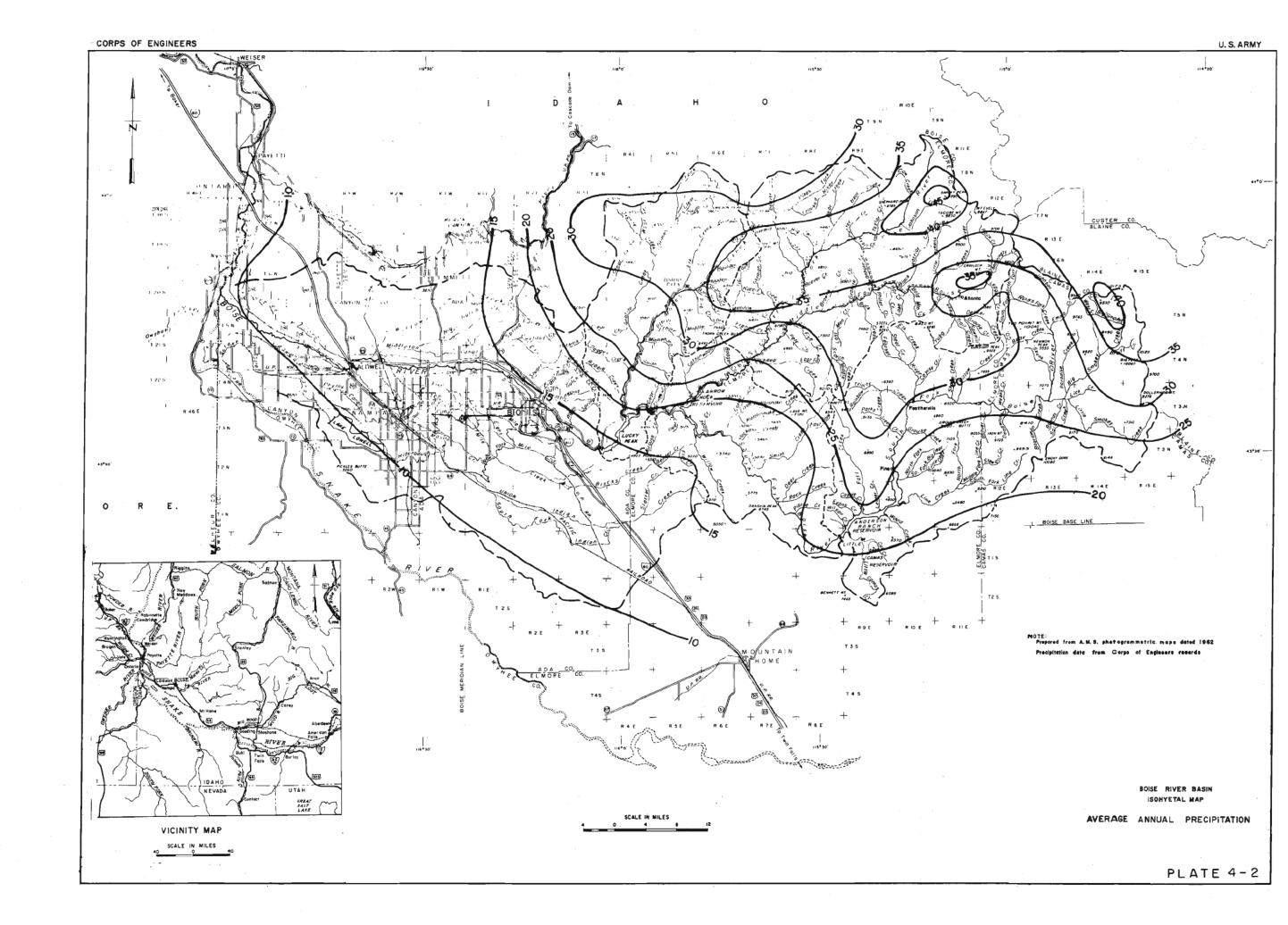

Any variations in discharge from these curves as determined by measurements of flow dawnstream from the spillway should be reported to the Chief Engineer.

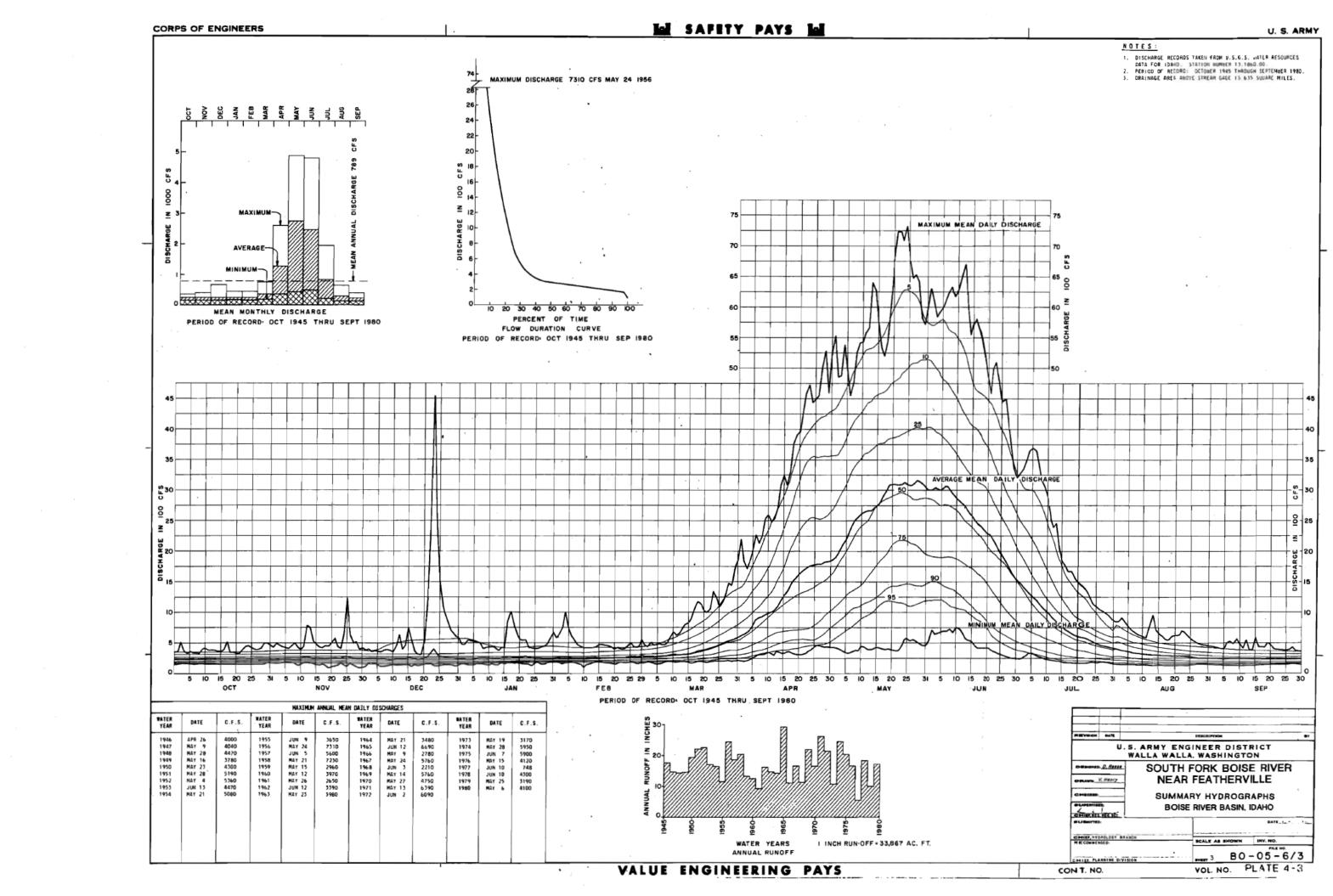

THIS DRAWING SUPERSEDES DWG 4-D-1409

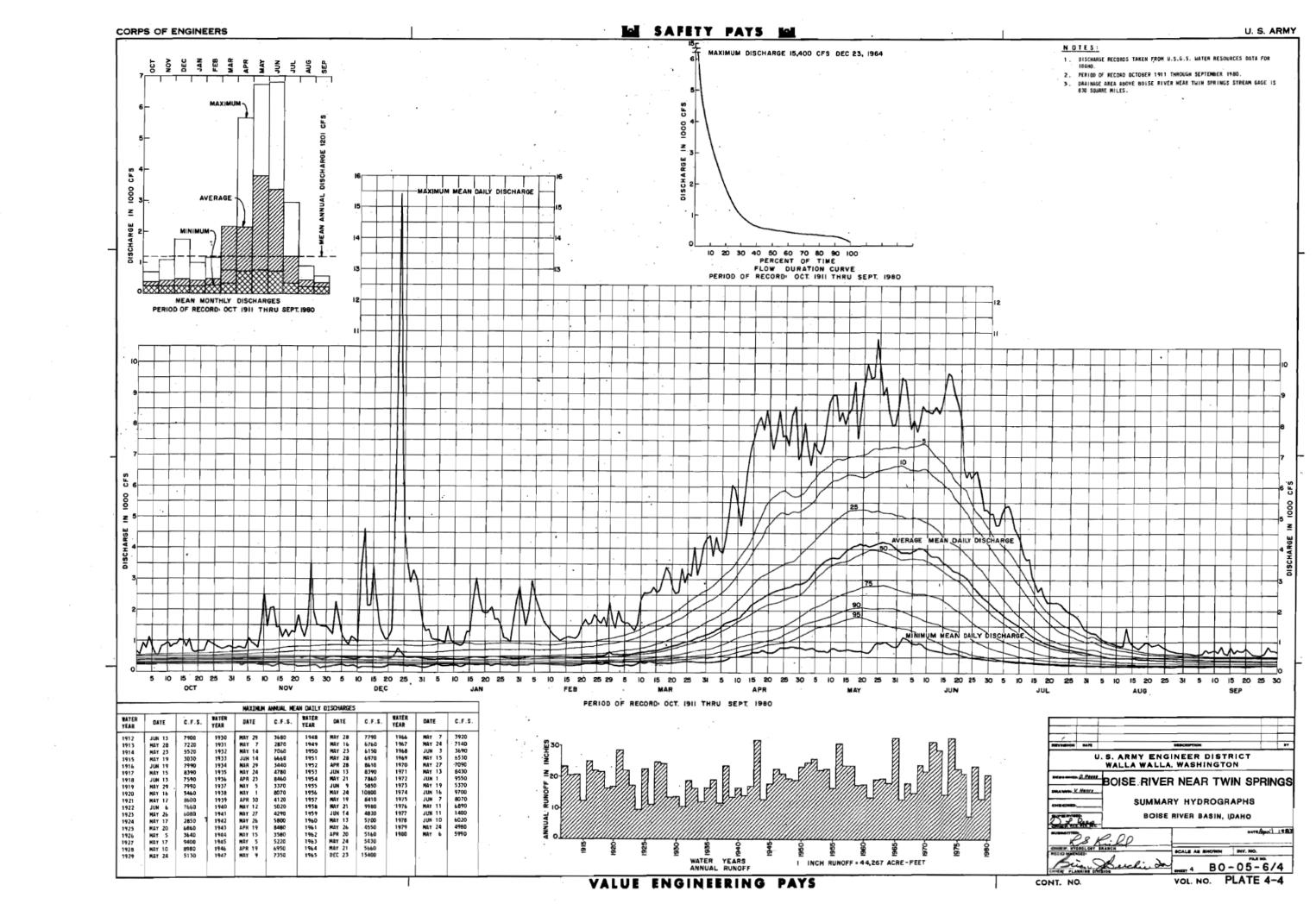

DEPARTMENT OF THE INTERIOR
RUREAU OF RECLAMATION
BOISE PROJECT-IDAHO


ANDERSON RANCH DAM SPILLWAY DISCHARGE CURVES


THAGER DAG RECOMMENTED TO THE COMMENTED OF THE COMMENT







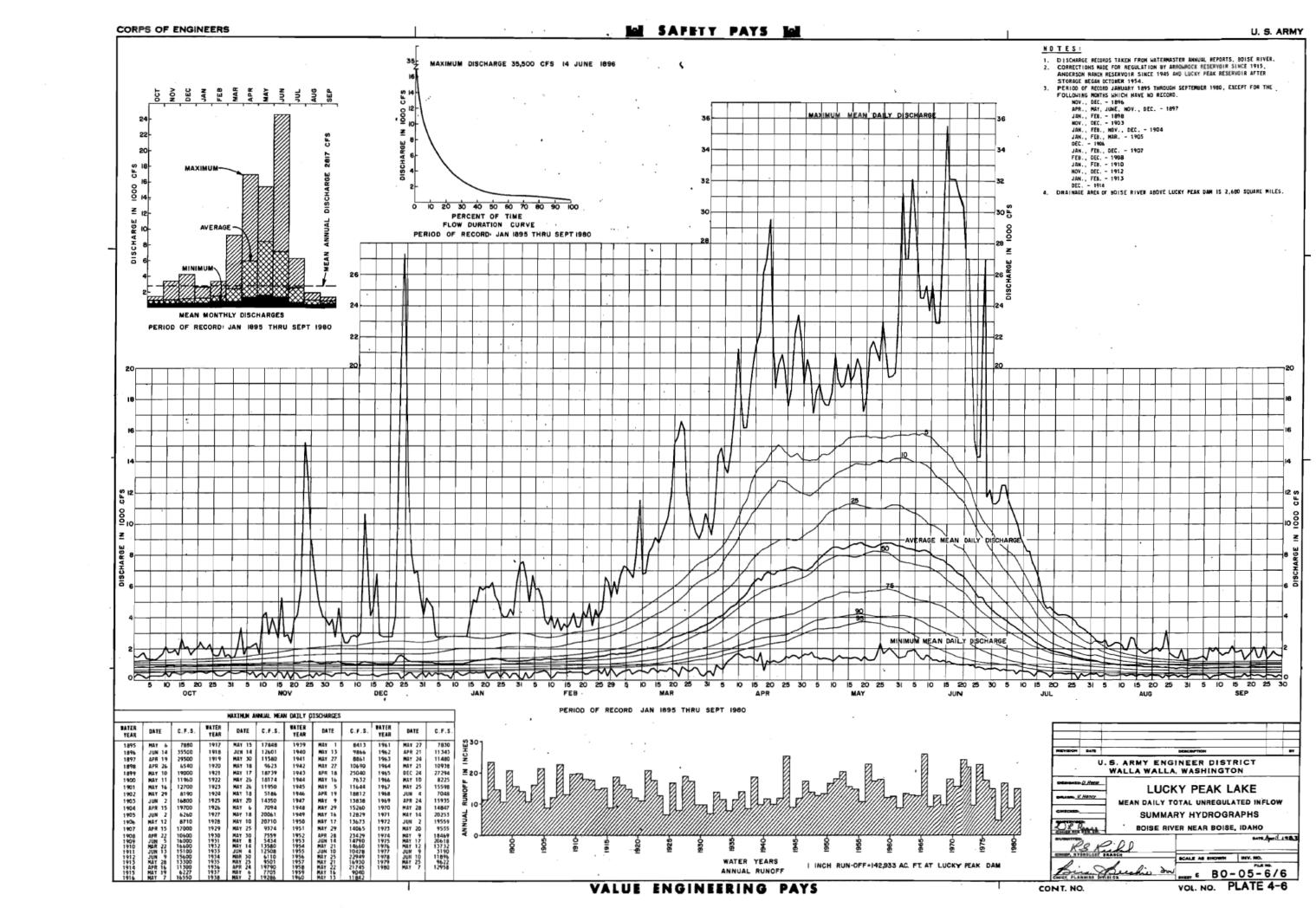
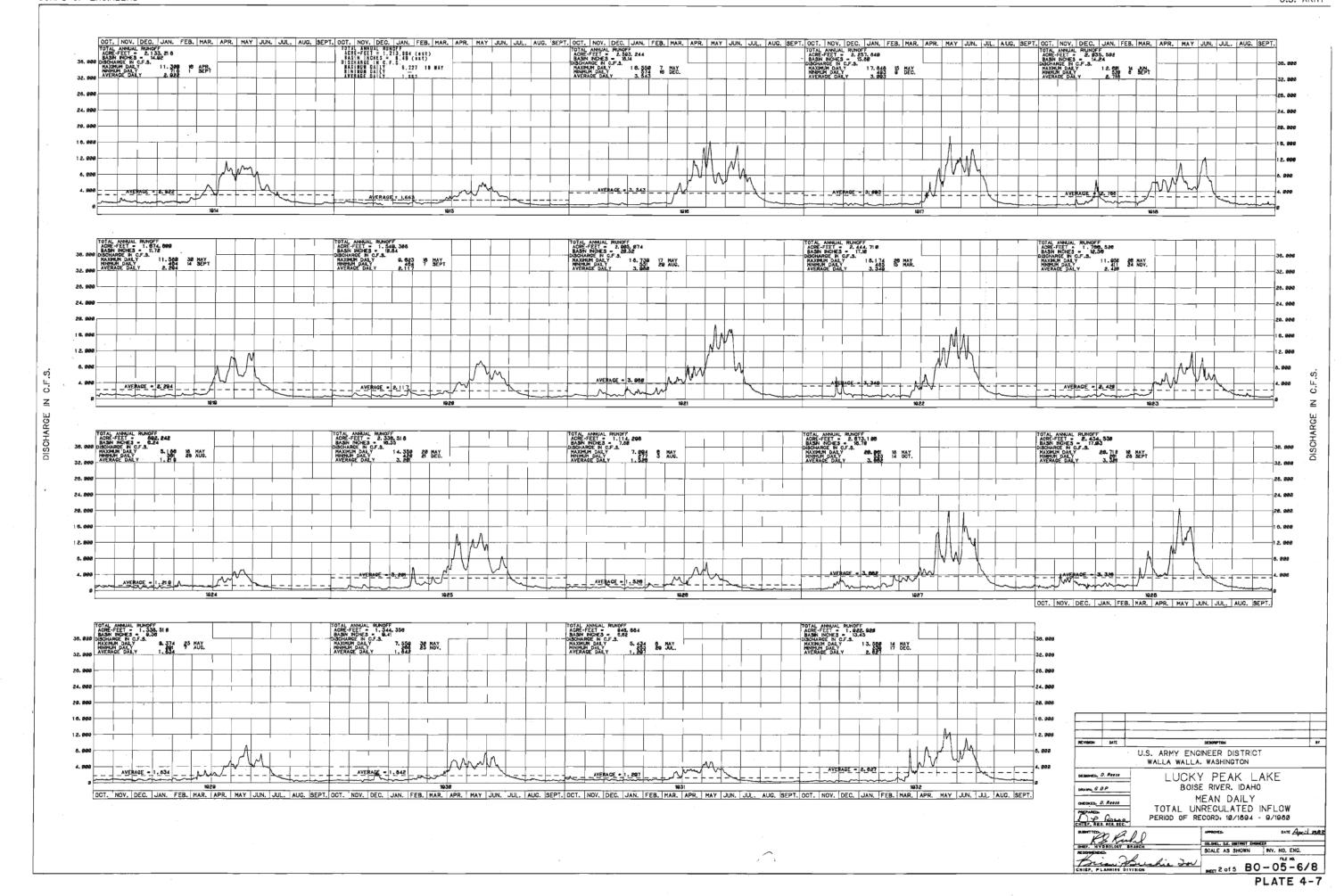
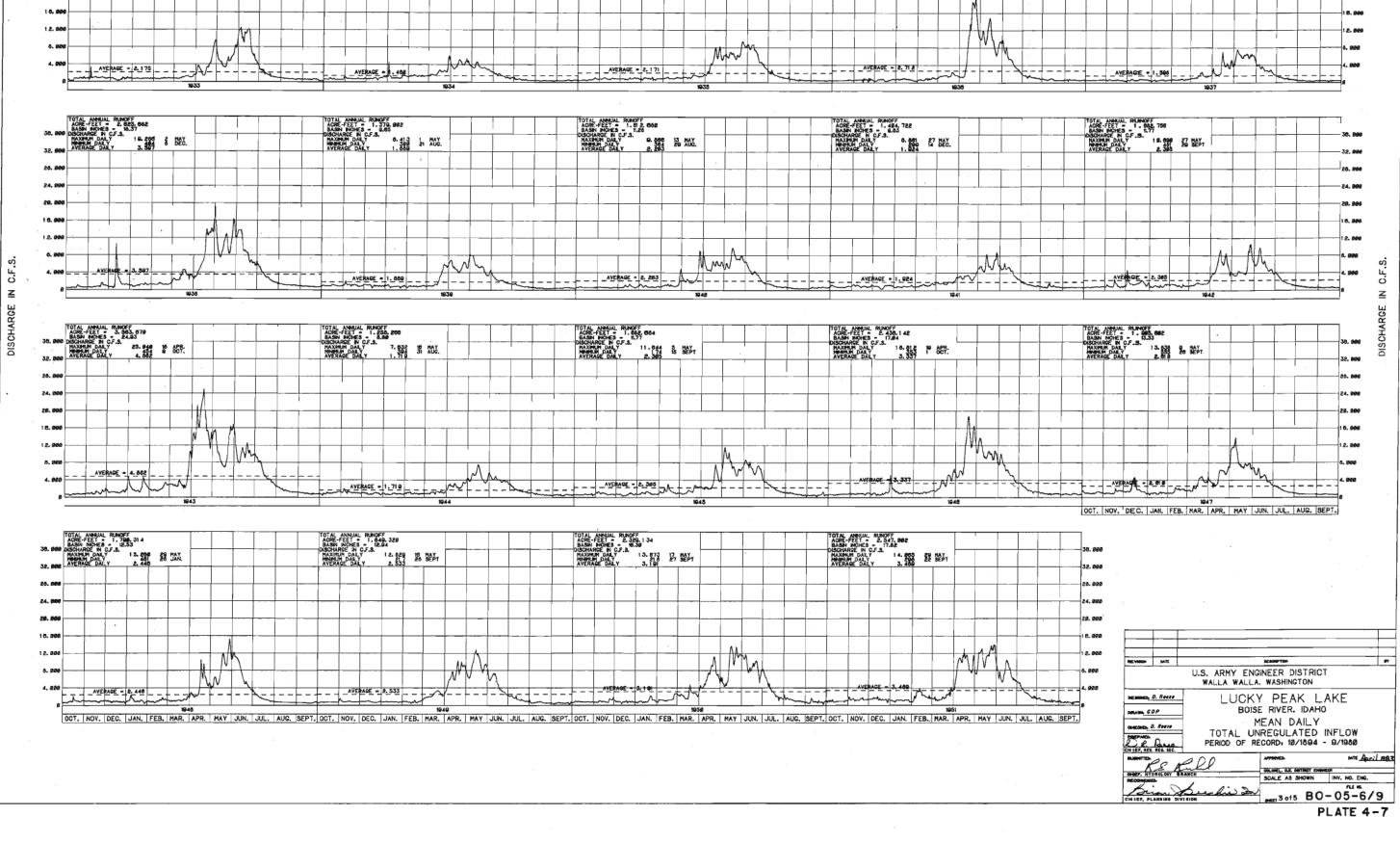
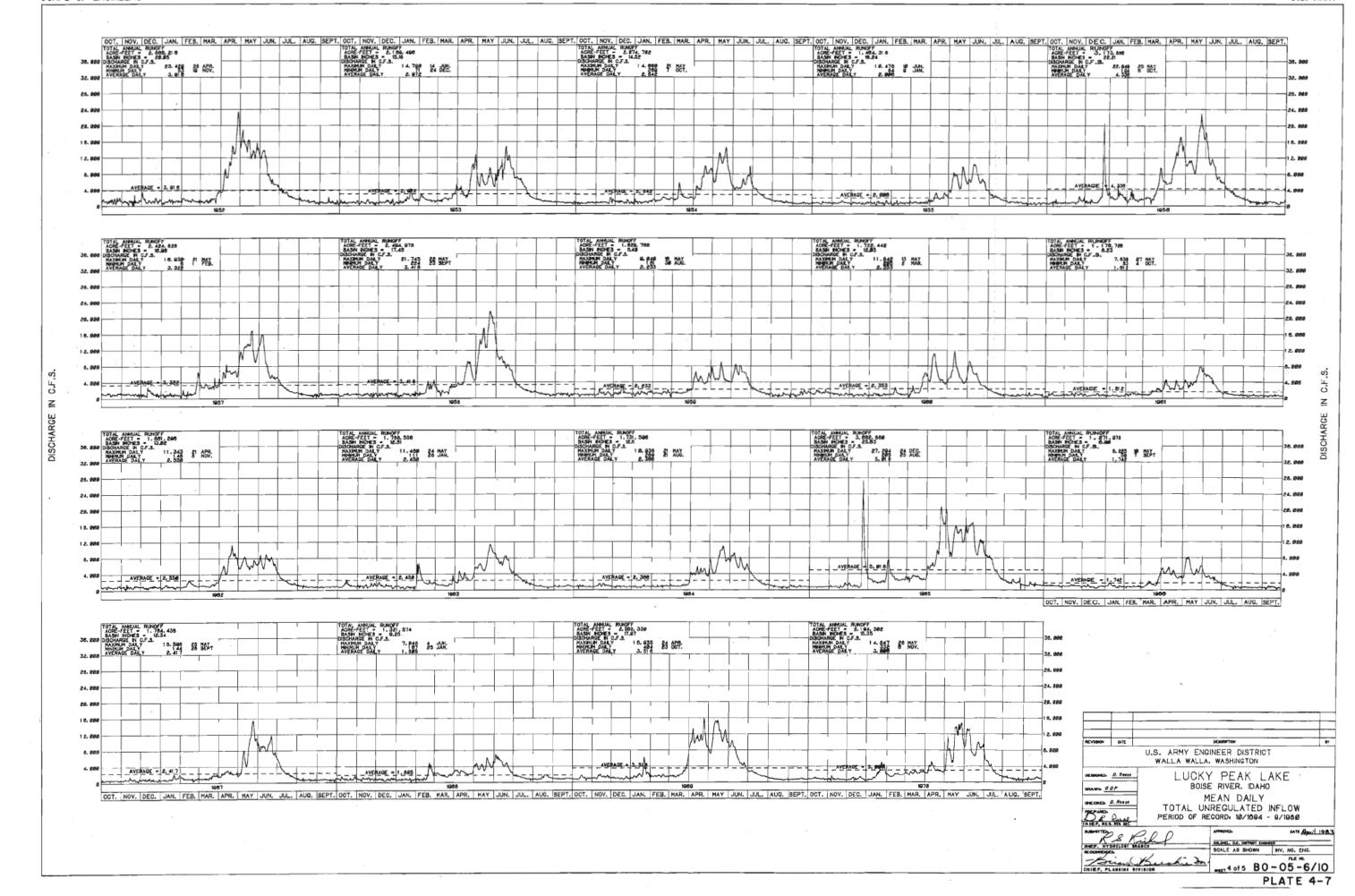
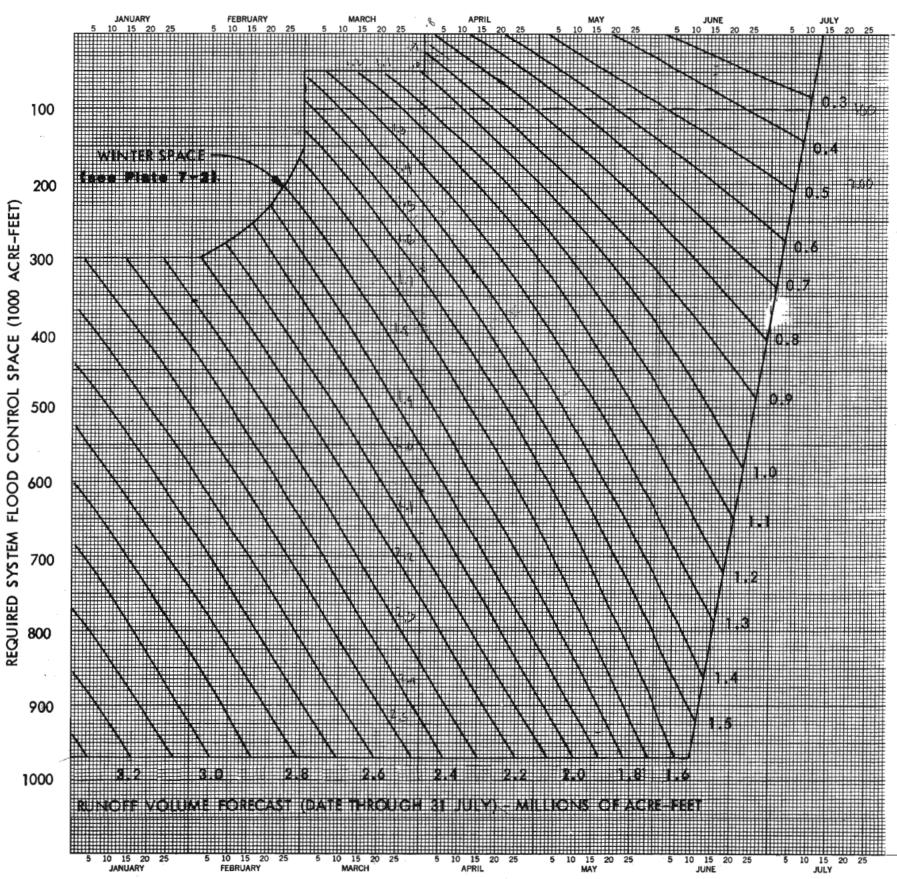






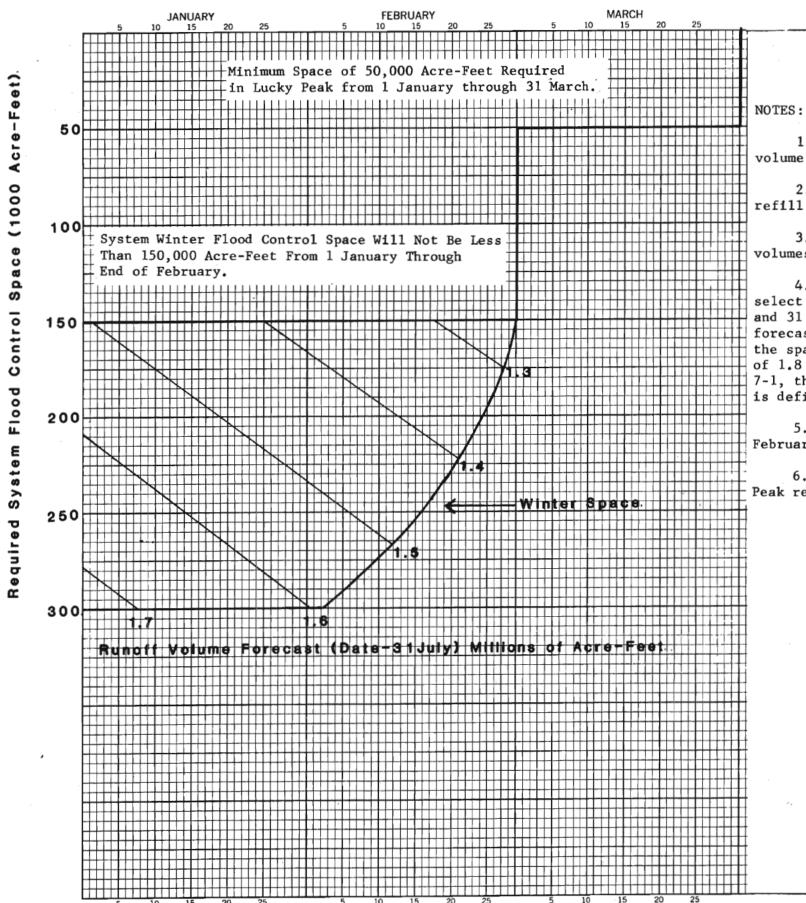
PLATE 4-7

NOTES:

- Parameters represent forecasted Lucky Peak Lake natural inflow volumes between the forecast date and 31 July. Operational rule curves were derived as follows:
- a. Flood Control: For a given volume forecast, the flood control space required for a 1-percent forecast error risk and the space which could be refilled with a 95-percent assurance were determined. If the refillable space plus 100,000 acro-feet exceeded the flood control space, then the flood control space value was used. If the refillable space (95-percent assurance) plus 100,000 acro-feet were less than the flood control space, then the value used was an arithmetic average of the refillable space plus 100,000 acro-feet and the flood control space.

b. Safety Factors - Operational Flood Control Curves:

FLOOD CONTROL ASSURANCES						
	(Control to 6,500 cfs	at Glenwood Bridge)				
	Assumed Volume					
•	Forecast Error	Percent Ch	ance of			
Forecast Date	(Under Forecast)	Volume Error	Less Critical			
(Thru 31 July)	(Acre-Feet)	(Smaller Volume)	Timing Sequence			
1 January	860,000	99	98			
16 January	780,000	99	98			
1 February	700,000	99	98			
15 February	640,000	99	98			
1 March	580,000	99	98			
16 March	490,000	99	98			
1 April	400,000	99	98			
16 April	380,000	99	98			
1 May	37 O, 000	99	98			
16 May	360,000	99	98			
1 June	350,000	99	80 -			
16 June	310,000	98	50			


	REFILL AS		
		74,149 Acre-Feet)	
	Assumed Volume		
	Forecast Error	Percent Ch	ance of
Forecast Date	(Over Forecast)	Volume Error	Less Critical
(Thru 31 July)	(Acre-Feet)	(Larger Volume)	Timing Sequence
1 January	610,000	95	98
16 January	550,000	95	98
1 February	490,000	95	98
15 February	450,000	95	9.9
1 March	410,000	95	98
16 March	350,000	95	98
1 April	280,000	95	98
16 April	270,000	95	98
1 May	140,000	80	50
16 May	110,000	75	50
1 June	40,000	60	50
16 June	10,000	52	50

- 2. To determine total vacant space required in all three reservoirs, select parameter corresponding to predicted runoff between that date and 31 July, then read the ordinate of this parameter corresponding to forecast date.
- 3. Minimum of 50,000 acre-feet of space required in Lucky Peak reservoir from 1 January through 31 March.

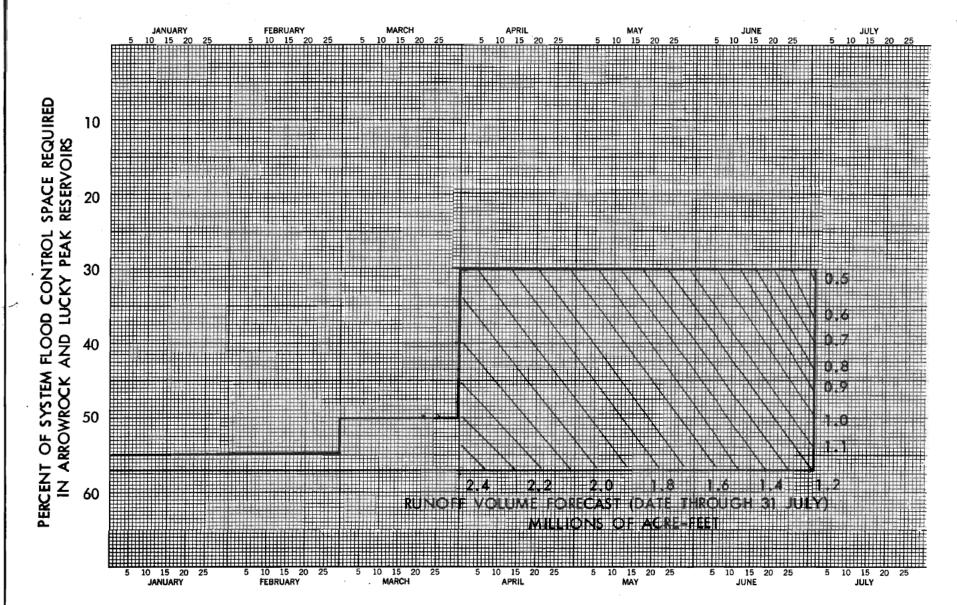
Boise River Reservoirs Boise River Basin, Idaho

OPERATIONAL FLOOD CONTROL RULE CURVES

U. S. Army Corps of Engineers Walla Walla District Hydrology Branch December 1982

FEBRUARY

JANUARY


- 1. Curves define winter flood control space requirements when runoff volume forecasts are below normal during the 1 January through 1 March period.
- 2. Curves provide 100-year winter flood protection and a 95 percent refill assurance for 871,728 acre-feet of system space.
- 3. Parameters represent forecasted Lucky Peak Lake unregulated inflow volumes between the forecast date and 31 July.
- 4. To determine total vacant space required in all three reservoirs, select parameter corresponding to the predicted runoff between that date and 31 July, then read the ordinate of this parameter corresponding to the forecast date. For runoff volume forecasts not defined by these curves, use the space requirements of Plate 7-1. For example, a runoff volume forecast of 1.8 million acre-feet on 1 February is not defined, hence entering Plate 7-1, the space required on 1 February for a 1.8 million acre-feet forecast is defined by the winter space curve and is 300,000 acre-feet.
- 5. Minimum allowable system space is 150,000 acre-feet, January through February time period.
- 6. A minimum of 50,000 acre-feet of space must be maintained in Lucky-Peak reservoir from 1 January through 31 March.

Boise River Reservoirs Boise River Basin, Idaho

WINTER FLOOD CONTROL RULE CURVES

For Below Normal Forecasts Occurring Between 1 January and 1 March

> U.S. Army Corps of Engineers Walla Walla District Hydrology Branch December 1982

NOTES:

1. Parameters represent forecasted Lucky Peak Lake natural inflow volumes between the forecast date and 31 July. Distribution curves were derived based on the following assumptions:

a. Arrowrock-Lucky Peak Release Schedule.

Date	Assumed Allowable Flow of Boise River at Glenwood Bridge (cfs)	Assumed Irrigation Diversions, Lucky Peak to Glenwood Bridge (cfs)	Total Assumed Maximum Allowable Lucky Peak Flood Control Releases (cfs)
1 Apr-30 Apr	6,500	1.600	8,100
1 May-31 May	6,500	3,700	10,200
1 Jun-31 Jul	6.500	3.800	10.300

b. Percentage values are based on (1) the 1-percent forecast error risk on the Arrowrock-Lucky Peak local volume forecast, (2) the 95-percent upper confidence limit timing sequence, and (3) a constant 300-cfs inflow (1 April - 31 July minimum Anderson Ranch release). Percentages were determined by dividing the Arrowrock-Lucky Peak local flood control space requirement by the Boise River system flood control space requirement for a given Lucky Peak Lake natural inflow volume forecast.

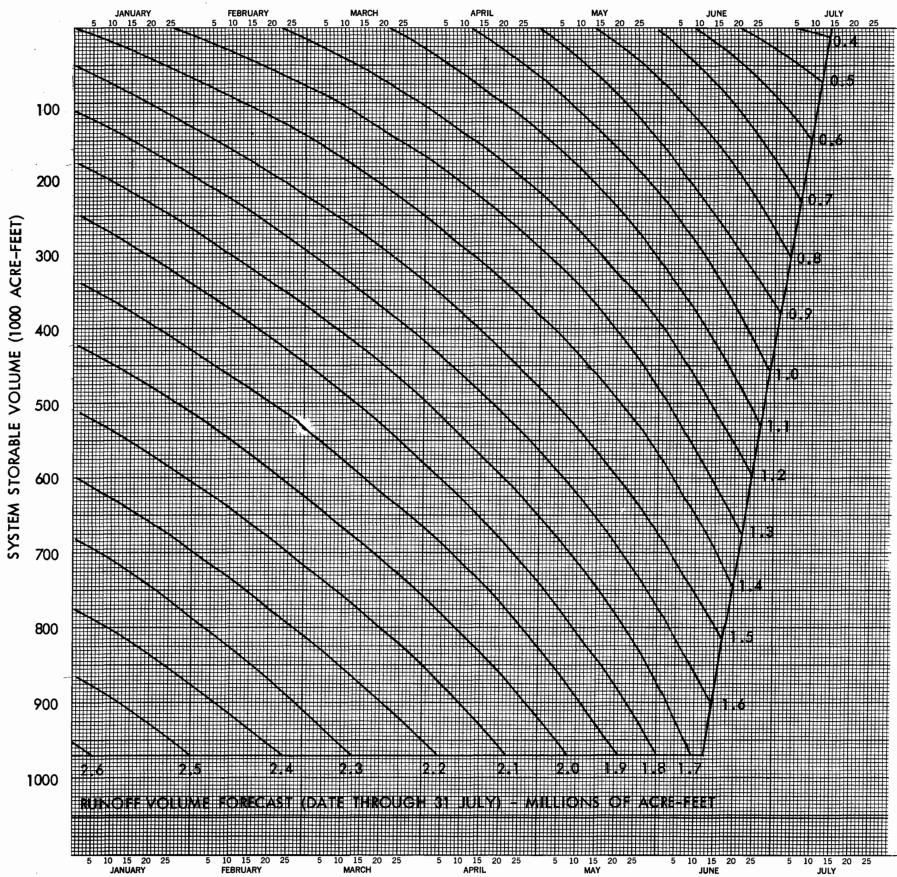
c. Arrowrock-Lucky Peak Local Volume Forecast and Standard Error. The Arrowrock-Lucky Peak local volume forecast is determined by multiplying the forecasted Lucky Peak Lake natural inflow volume by the appropriate contribution factor shown below:

Forecast Date	Contribution Factor	Standard Error (AF)	Forecast Error (2.3267)x(Standard Error)(AF)		
1 April	0.6331	103,400	241,000		
15 April	0.6270	86,950	202,000		
1 May	0.6209	70,500	164,000		
15 May	0.6196	70,500	164,000		
1 June	0.6182	70,500	164,000		
15 June	0.6300	70,500	164,000		
1 July	0.6418	70,500	164,000		

2. To determine the minimum percentage of system flood control space required in Arrowrock-Lucky Peak reservoirs, select the parameter corresponding to the predicted runoff between that date and 31 July. Then read the ordinate of this parameter corresponding to the forecast date. This ordinate is the minimum percent of the system flood control space required in Arrowrock-Lucky Peak reservoirs. The minimum space required is the minimum percent multiplied by the system flood control space requirement.

The following allocation has been made of the acre-feet of storage capacity available

Reservoir	Flood Control	Dead	Total
Arrowrock	286,600	0	286,600
Lucky Peak	264,300	28,800	293,100
Total Space	550,900	28.800	579,700


Boise River Reservoirs Boise River Basin, Idaho

FLOOD CONTROL SPACE DISTRIBUTION CURVES

Percent of system flood control space required in Arrowrock and Lucky Peak Reservoirs

> U. S. Army Corps of Engineers Walla Walla District Hydrology Branch December 1982

July 1983

NOTES

 Parameters represent forecasted Lucky Peak Lake natural inflow volumes between the forecast date and 31 July. Storable volume curves were derived on the following assumptions:

a. Project Release Schedule:

Date	Maximum Assumed Lucky Peak Releases for Fish & Wildlife (cfs)	Maximum Assumed Irrigation Requirements (cfs)	Total Assumed Lucky Peak Releases Required (cfs)
1 Jan-14 Feb	200	0	200
15 Feb-14 Mar	200 .	7001/	900
15 Mar-31 Mar	200	0	200
1 Apr-30 Apr	0	2,600	2,600
1 May-30 Jun	0	4,800	4,800
1 Jul-31 Jul	. 0	4,600	4,600

1/ Early diversions to Lake Lowell.

b. Refill: Storable volume values are based on (1) the 95-percent volume forecast error, and (2) the 40-percent, 70-percent, 85-percent, and 95-percent lower confidence limits on the expected timing sequence.

c. Standard Error for Runoff Volume Forecasts:

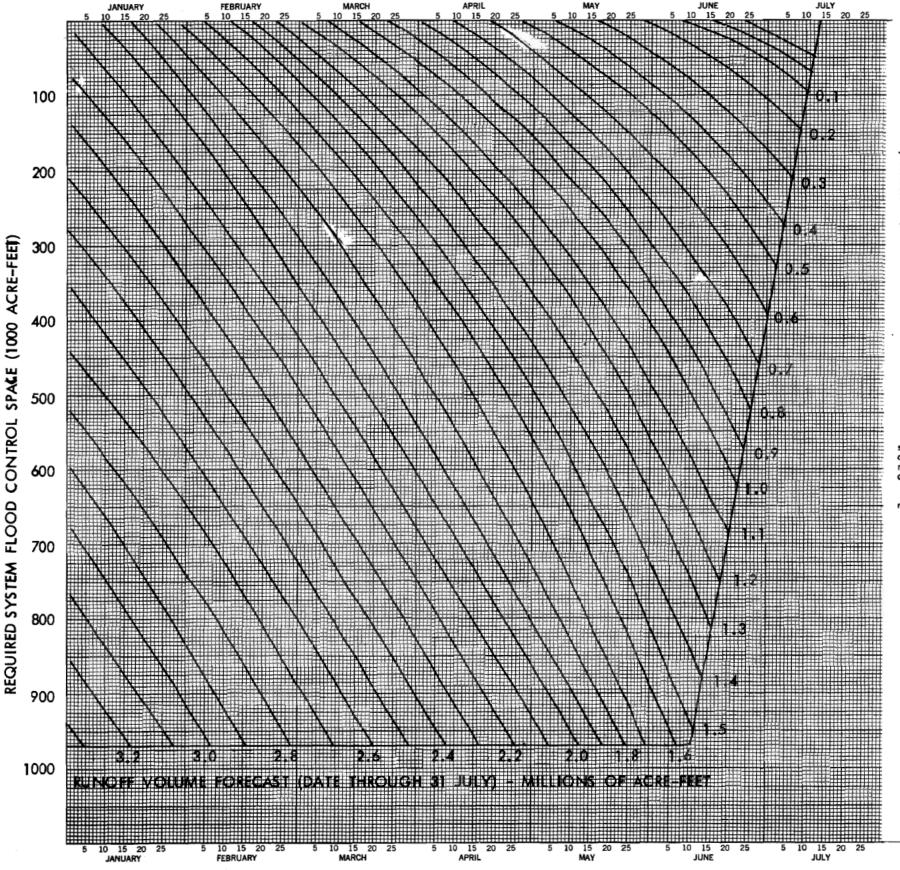
Forecast Date	Standard Error (AF)	Forecast Error (95%) (1.645)x(Standard Error)(AF)		
1 January	370,000	610,000		
15 January	335,000	550,000		
1 February	300,000	490,000		
15 February	275,000	450,000		
1 March	250,000	410,000		
15 March	210,000	350,000		
1 April	. 170,000	280,000		
15 April	165,000	270,000		
1 May	160,000	260,000		
15 May	155,000	250,000		
1 June	150,000	250,000		
15 June	150,000	250,000		
1 July	150,000	250,000		
15 July	150,000	250,000		

2. To determine total volume available for refill on any forecast date in all three reservoirs, select parameter corresponding to predicted runoff between that date and 31 July; then read the ordinate of this parameter corresponding to forecast date. This ordinate is the total volume available for refill of the system.

488

Figurial 150 (5) run

(loases April July e


3400 cts port cts July e

R

e River Reservoirs River Basin, Idaho

STORABLE VOLUME (95% ASSURANCE)

U.S. Army Corps of Engineers
Walla Walla District
Hydrology Branch
December 1982

605 M

NOTES

 Parameters represent forecasted Lucky Peak Lake natural inflow volumes between the forecast date and 31 July. Flood control curves were derived on the following assumptions:

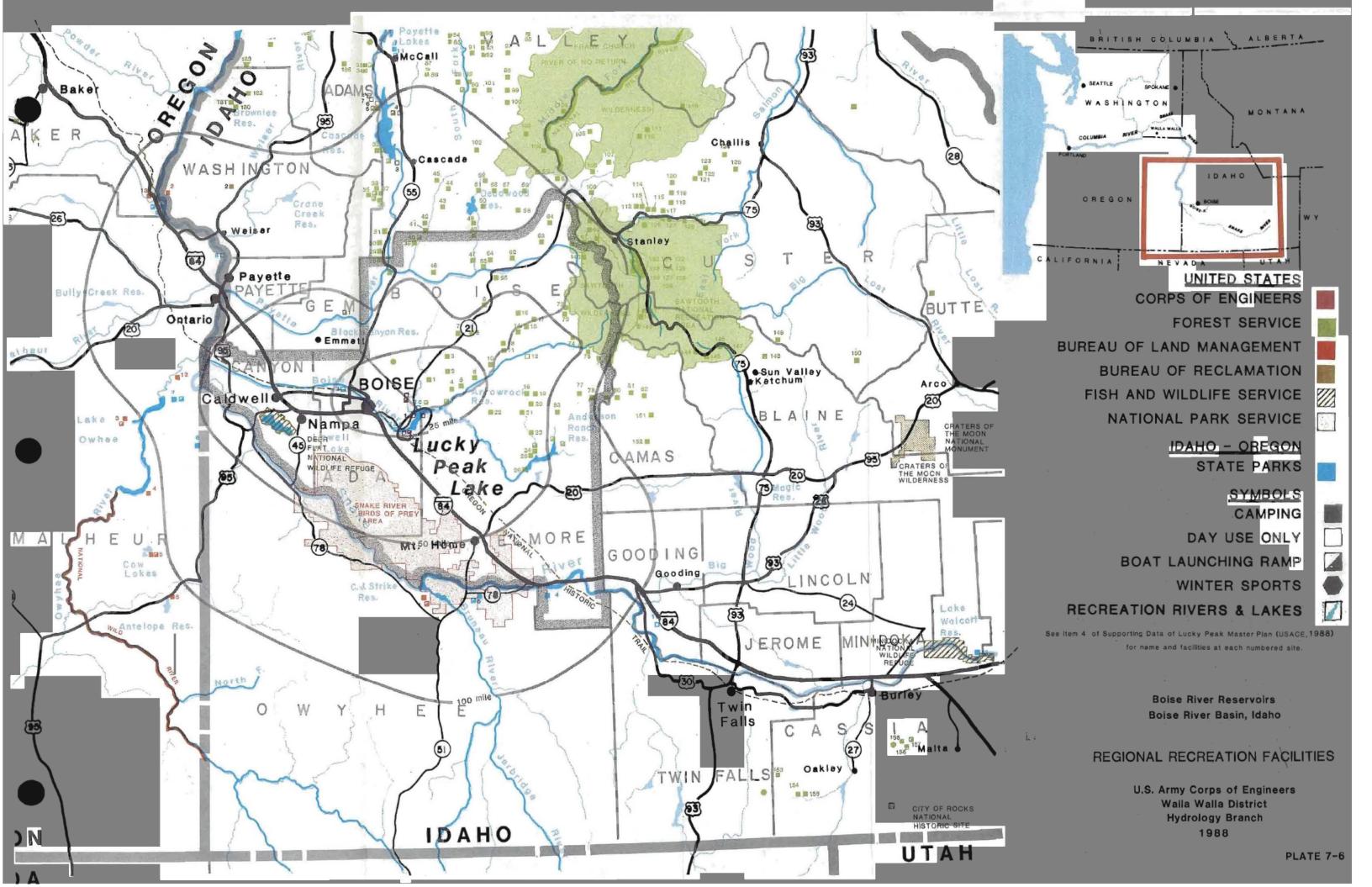
a. Project Release Schedule:

Date	Assumed Allowable Flow of Boise River at Glenwood Bridge (cfs)	Assumed Irrigation Diversions, Lucky Peak to Glenwood Bridge (cfs)	Total Assumed Maximum Allowable Lucky Peak Flood Control Releases (cfs)
1 Jan-31 Mar	6, 500	0	6,500
1 Apr-30 Apr	6, 500	1,600	8,100
1 May-31 May	6, 500	3,700	10,200
1 Jun-31 Jul	6, 500	3,800	10,300

b. Flood Control: Flood control space values are based on (1) the 1-percent volume forecast error risk, and (2) the 95-percent upper confidence limit timing sequence.

c. Standard Error for Runoff Volume Forecasts:

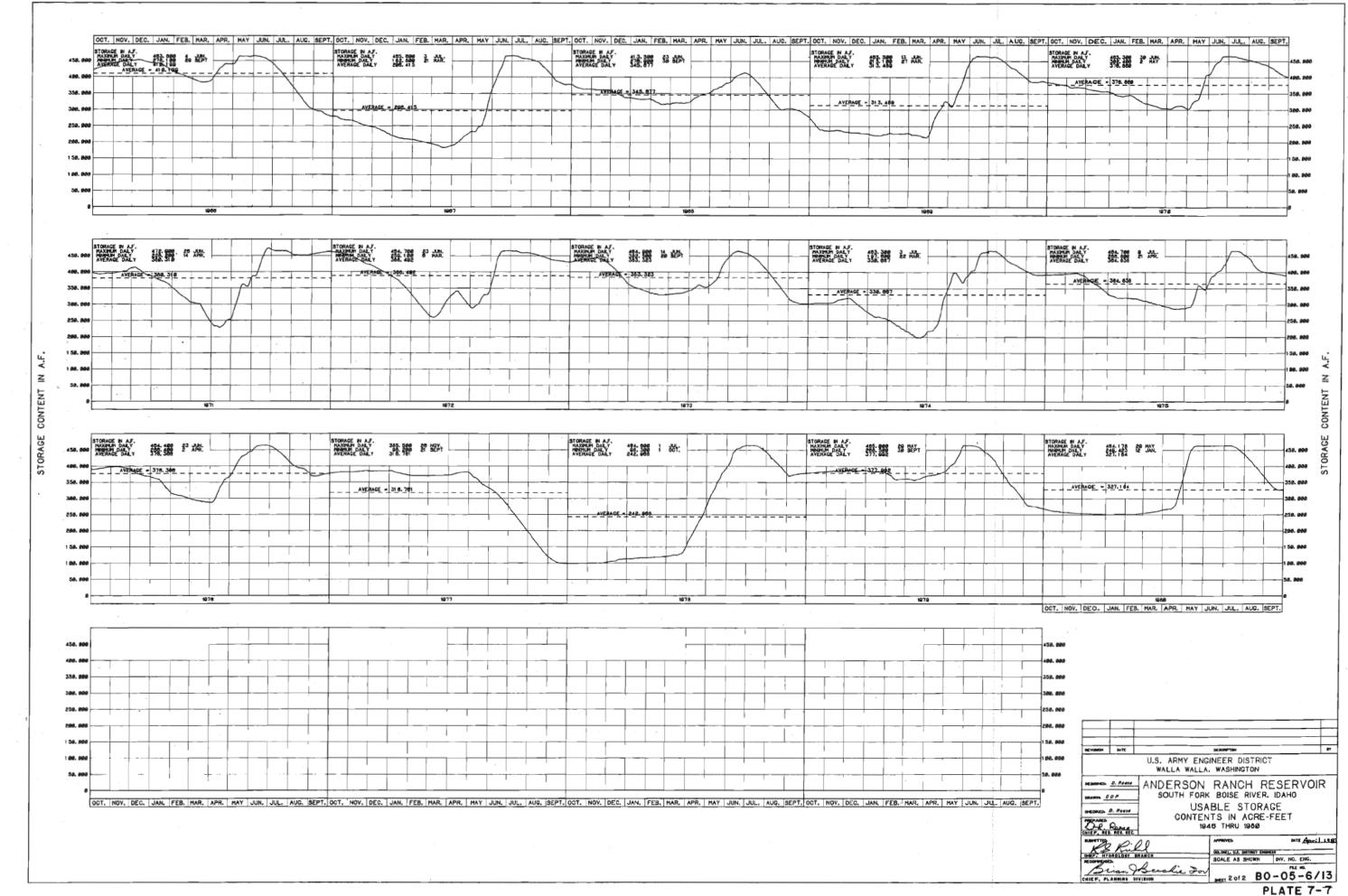
Forecast Date	Standard Error (AF)	Forecast Error (1%) (2.3267)x(Standard Error)(AF)
1 January	370,000	860,000
15 January	335,000	780,000
1 February	300,000	700,000
15 February	275,000	640,000
1 March	250,000	580,000
15 March	210,000	490,000
1 April	170,000	400,000
15 Apr11	165,000	380,000
1 May	160,000	370,000
15 May	155,000	360,000
1 June	150,000	350,000
15 June	150,000	350,000
1 July	150,000	350,000
15 July	150,000	350,000

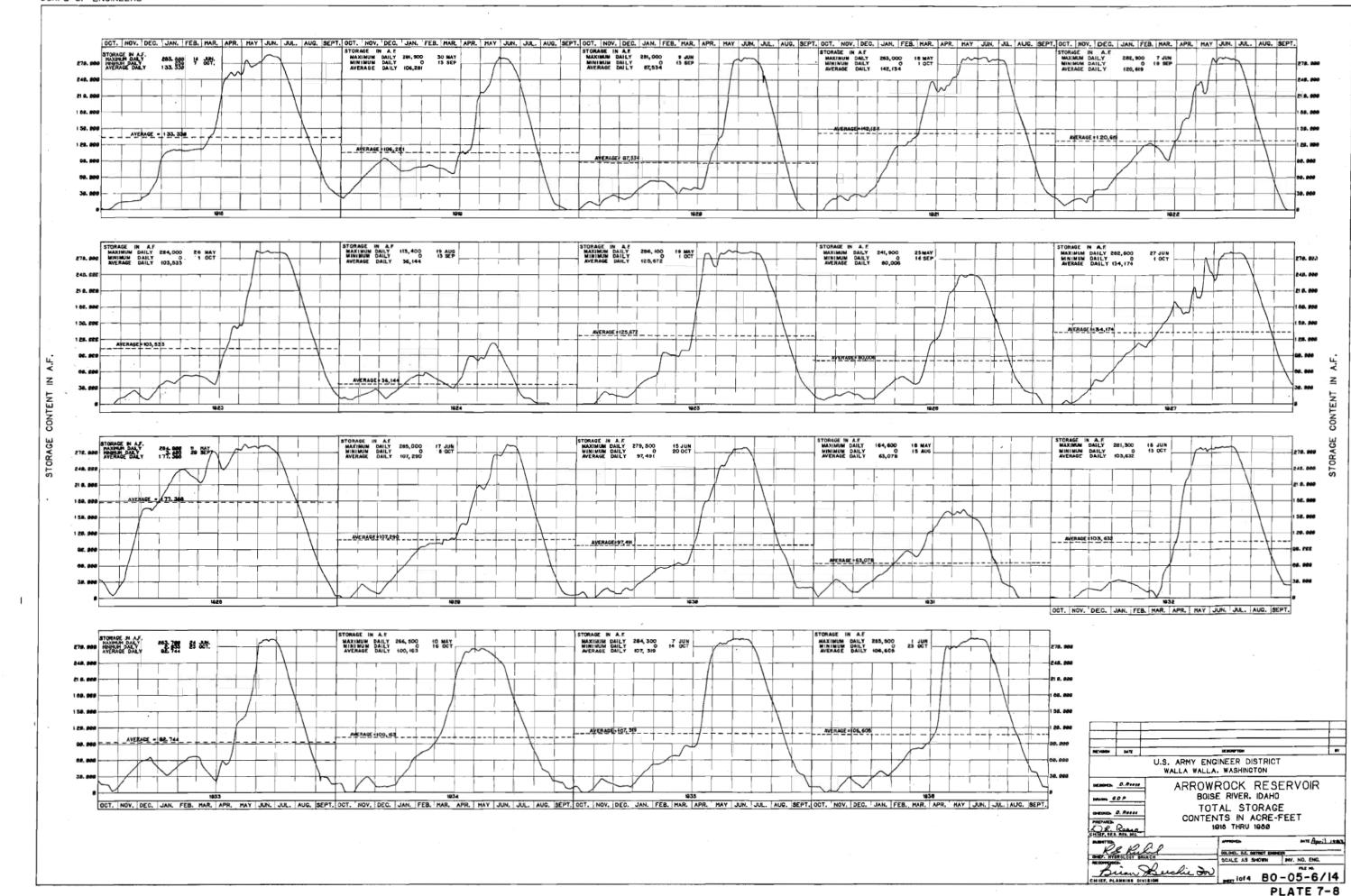

2. To determine total vacant space required on any forecast date in all three reservoirs, select parameter corresponding to predicted runoff between that date and 31 July, then read the ordinate of this parameter corresponding to forecast date. This ordinate is the total space required to control the predicted runoff and limit regulated discharge at Glenwood Bridge to 6,500 cfs.

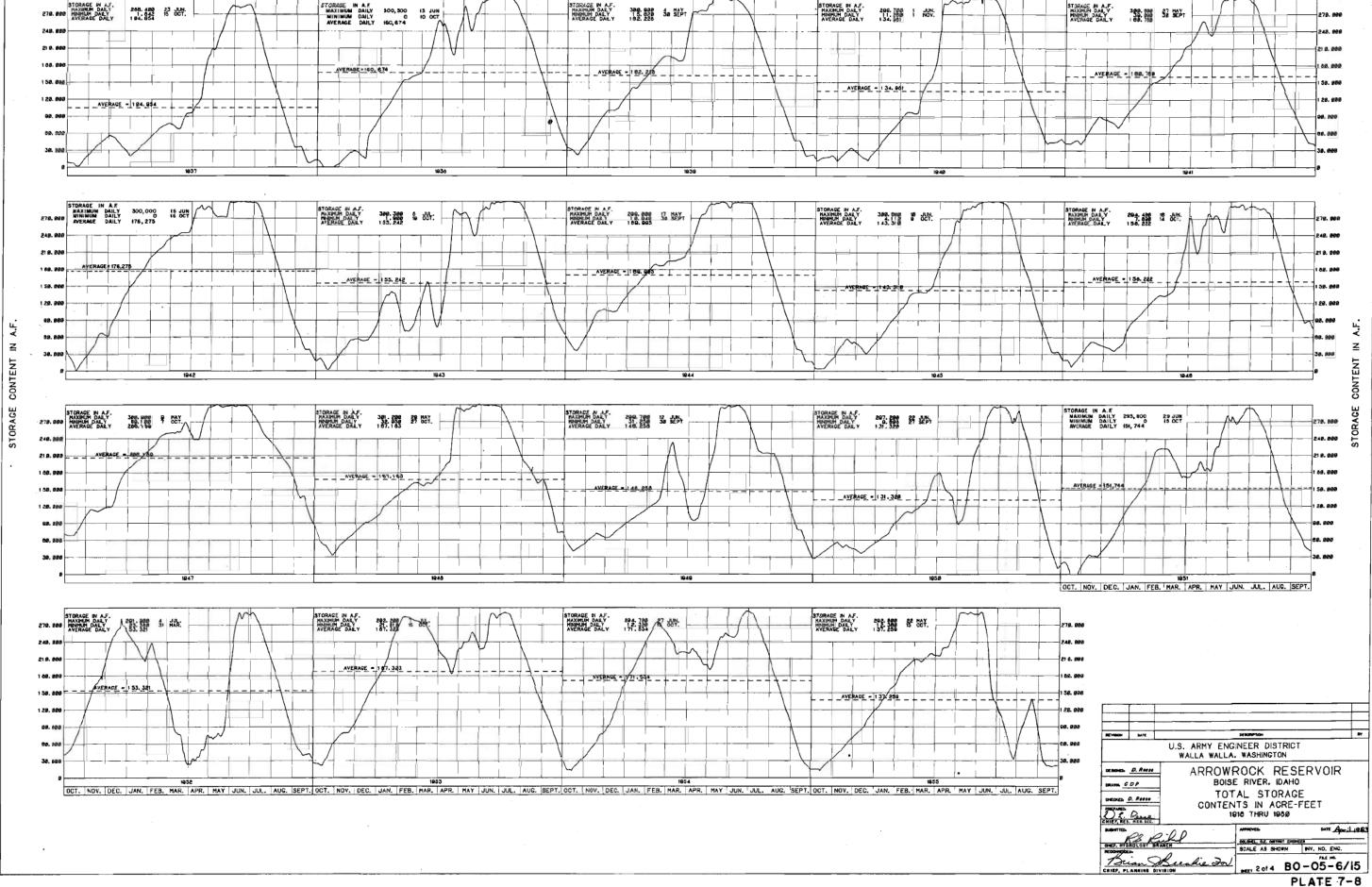
3. Note that these curves are different from the $\underline{0perating\ Rule\ Curves}$ which compromise required flood control space with space required to assure refill.

Boise River Reservoirs Boise River Basin, Idaho

FLOOD CONTROL SPACE (1% RISK)

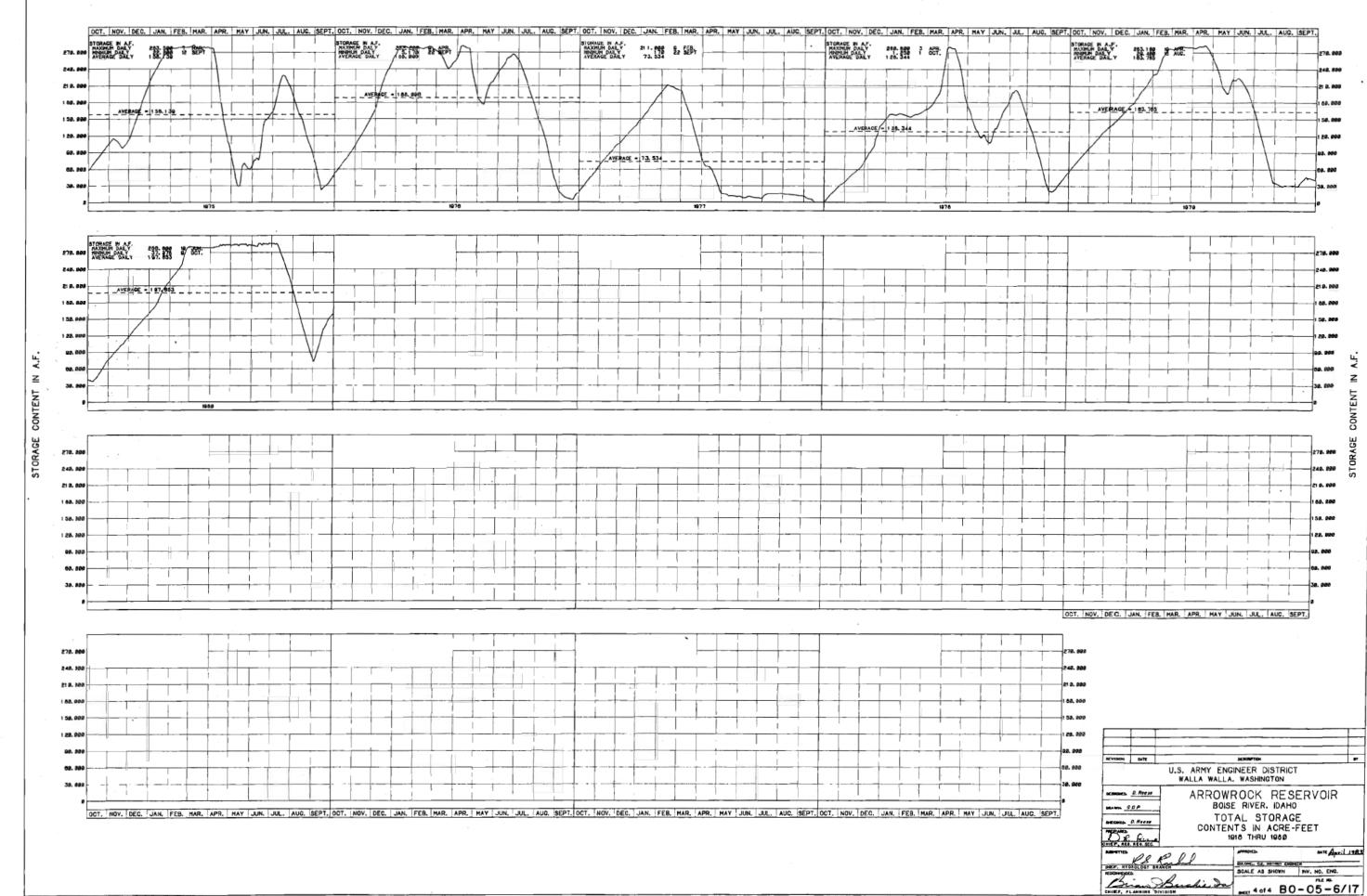

U.S. Army Corps of Engineers Walla Walla District Hydrology Branch December 1982

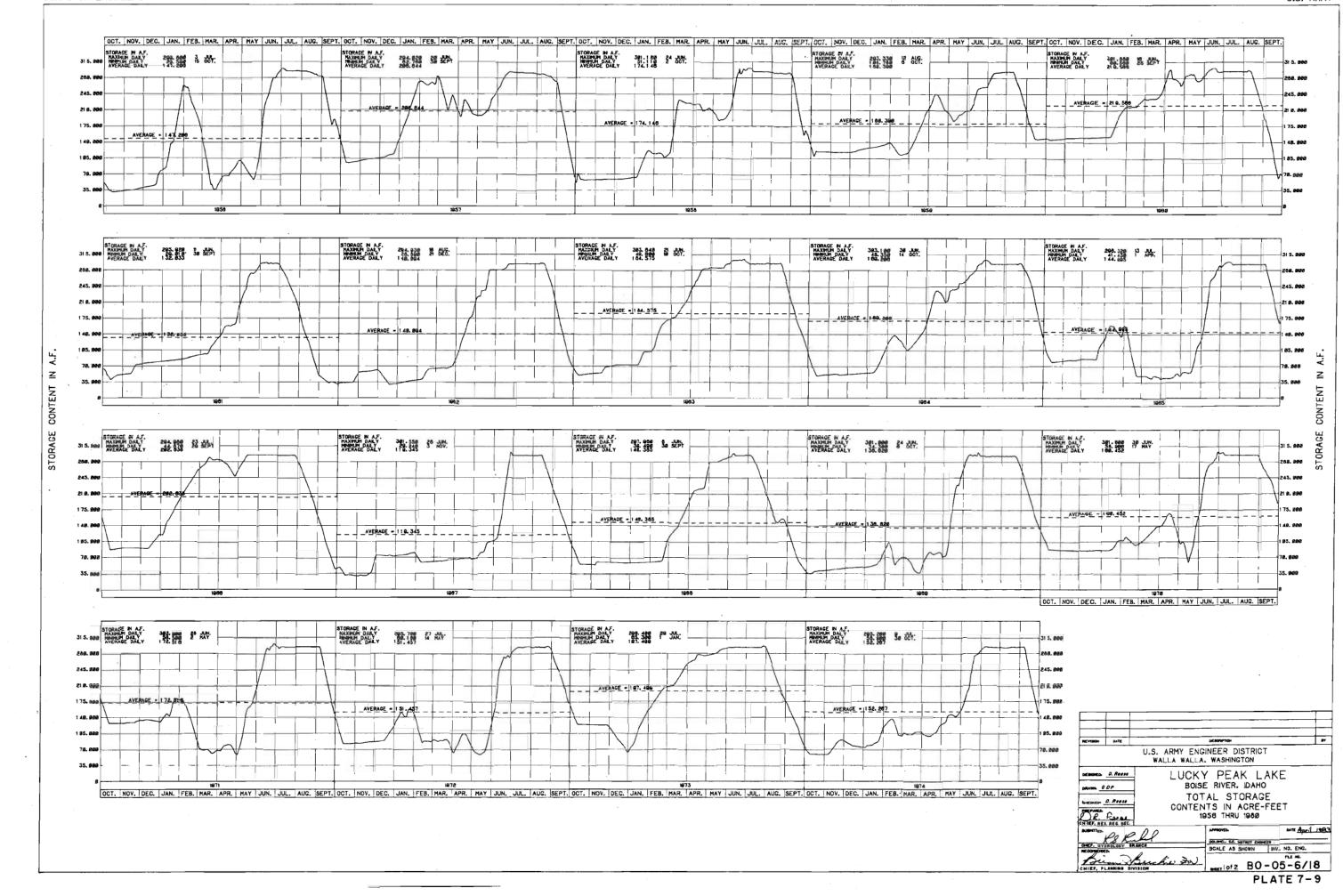



Ext 1 of 2 BO-05-6/12 PLATE 7-7

OULDING, GE DETRICT ENGINEER SCALE AS SHOWN NV. NO. ENG.

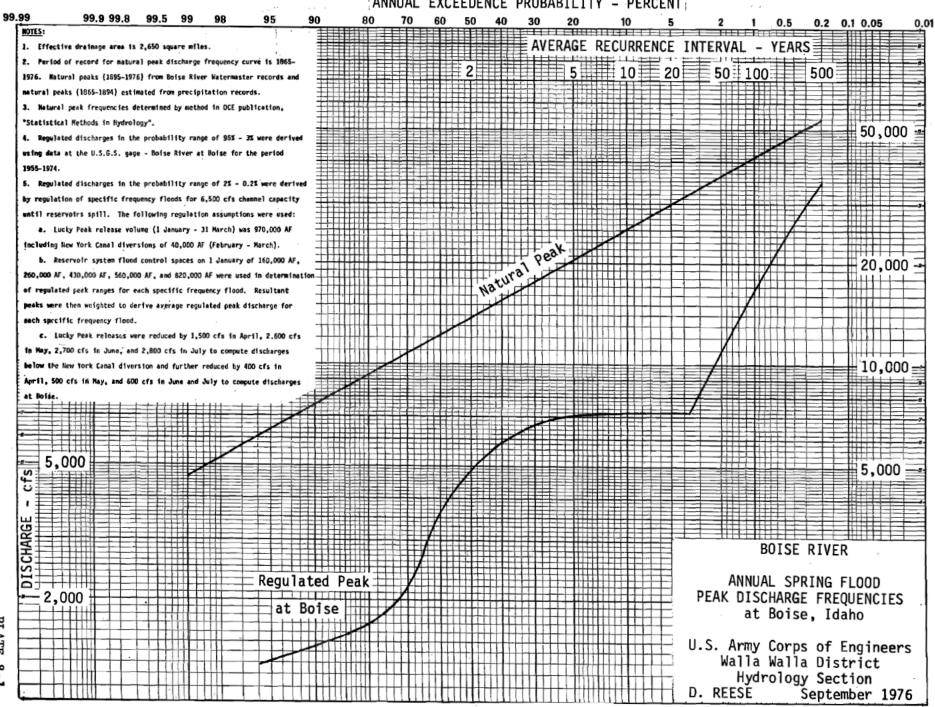
Suan Buclie de

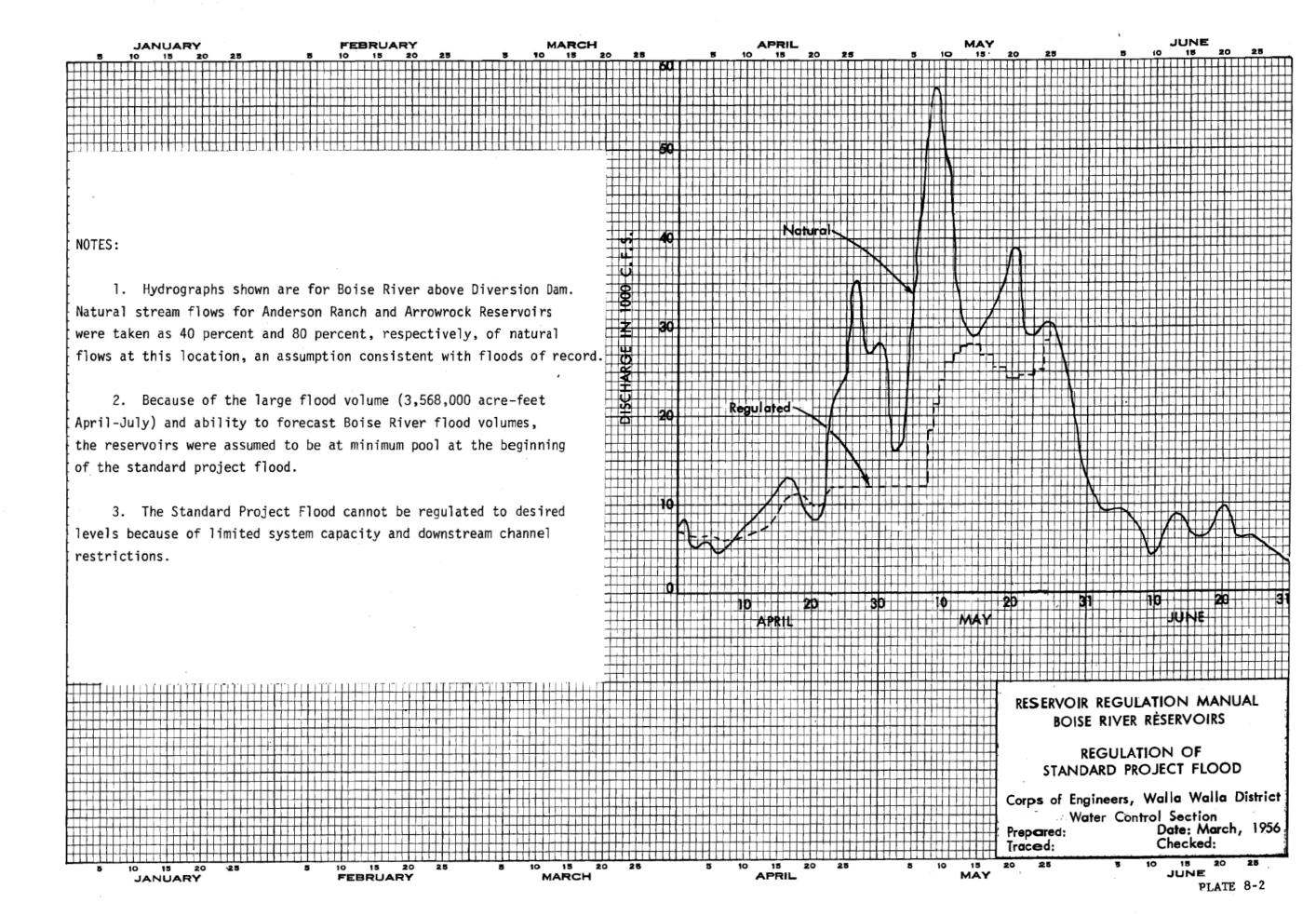


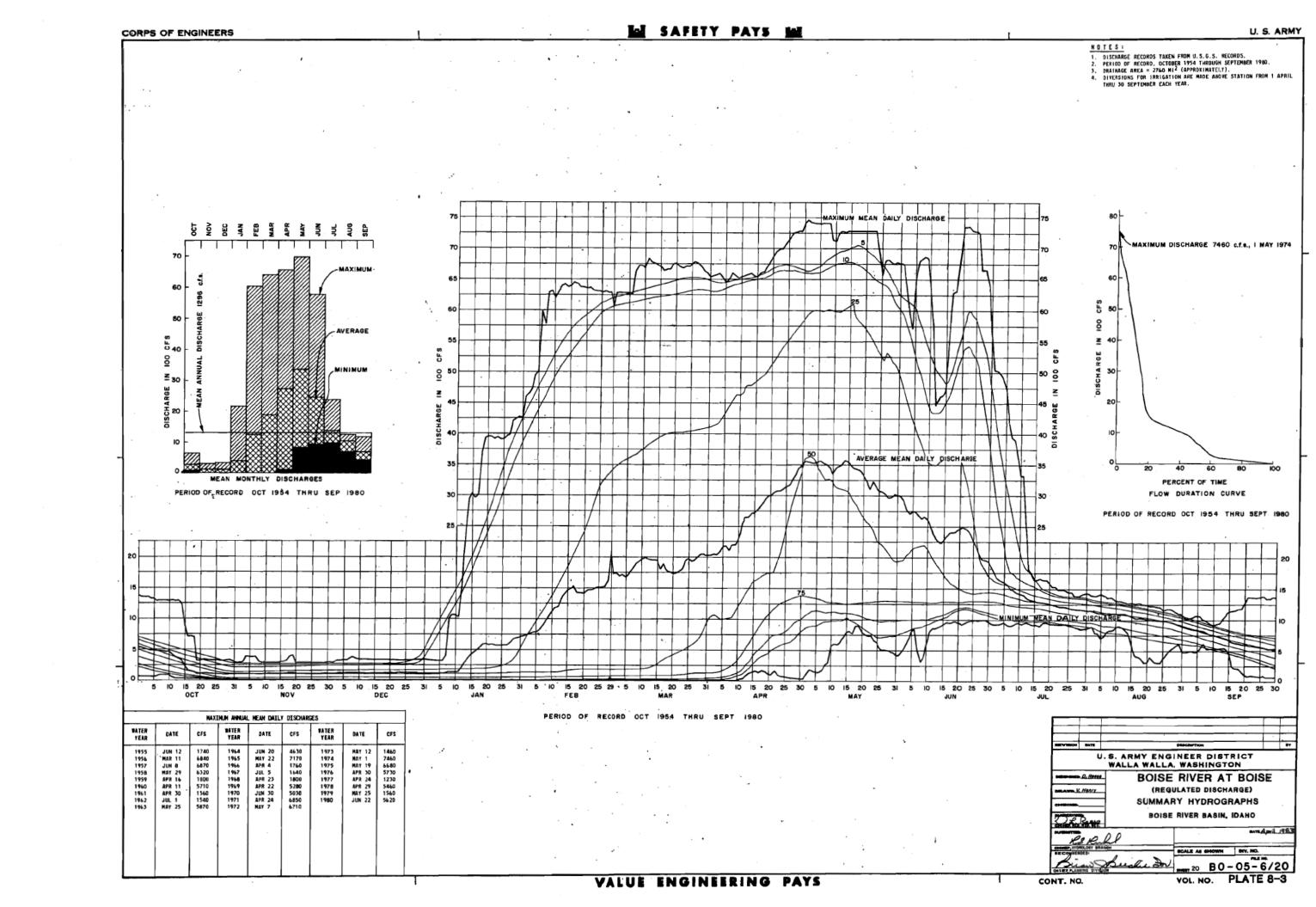

MATERIA SOLE AS SHOWN NV. NO. ENG.

DEAT 3 OF 4 BO - O5 - 6/16

PLATE 7-8


Brian Suelie Don




ANNUAL EXCEEDENCE PROBABILITY - PERCENT:

PLATE

8

$\underline{E} \ \underline{X} \ \underline{H} \ \underline{I} \ \underline{B} \ \underline{I} \ \underline{T} \quad \underline{A}$

RUNOFF VOLUME FORECAST PROCEDURES

Bureau of Reclamation and Corps of Engineers

BOISE RIVER VOLUME FORECAST PROCEDURE UNITED STATES DEPARTMENT OF THE INTERIOR BUREAU OF RECLAMATION PACIFIC NORTHWEST REGION

THE BUREAU OF RECLAMATIONS FORECAST PROCEDURE CONSISTS OF A MULTIPLE REGRESSION EQUATION OF THE FOLLOWING FORM:

Y = C0 + C1(X1) + C2(X2) + C3(X3) + C4(X4)

UHERE,

- Y FORECASTED RUNOFF VOLUME FOR THE PERIOD 1 OCTOBER THROUGH 31 JULY IN 1000'S OF ACRE-FEET (KAF).
- X1 INDEX OF OBSERVED RUNOFF VOLUME FOR THE PERIOD 1 OCTOBER THROUGH 31 DECEMBER IN KAF.
- X2 INDEX OF OBSERVED/EXPECTED TOTAL MONTHLY PRECIPITATION IN INCHES FOR THE 1 OCTOBER THROUGH 31 MARCH TIME PERIOD.
- x3 INDEX OF OBSERVED/EXPECTED 1 APRIL SHOW WATER CONTENT IN INCHES.
- X4 INDEX OF OBSERVED/EXPECTED TOTAL MONTHLY PRECIPITATION FOR THE PERIOD 1 APRIL THROUGH 30 JUNE IN INCHES.

C0,C1,C2,C3,C4 - COEFFICIENTS OF REGRESSION.

THE REGRESSION EQUATION IS FOR THE 1 OCTOBER THROUGH 31 JULY FORECAST PERIOD ONLY. TO FORECAST OTHER TIME PERIODS, SUBTRACT OBSERVED RUNOFF, 1 OCTOBER THROUGH DATE, FROM THE EQUATION RESULT. THE VARIABLES X1 THROUGH X4 ARE COMPUTED USING TABLES A1 THROUGH A4 ON PAGE A-1 SHEETS 2 AND 3.

TABLE A1

X1 INDEX (1 OCTOBER THROUGH 31 DECEMBER RUNOFF VOLUME)

MONTH	OBSERVED RUNOFF (1) (KAF)
OCTOBER	
NOVEMBER	
DECEMBER	·

(1) TOTAL OBSERVED LUCKY PEAK LAKE UNREGULATED INFLOW (KAF).

X1 = TOTAL OBSERVED OCT-DEC RUNOFF = ____ KAF (ENTER X1 ON PAGE A-1, SHEET 5)

TABLE AZ

XZ INDEX (1 OCTOBER THROUGH 31 MARCH PRECIPITATION)

STATION	OBSE	RVED/EX	RUED/EXPECTED MONTHLY PRECIPITATION (2)			OBSERVED/EXPECTED OCT-MAR TOTAL PRECIP	STATION UEIGHT	WEIGHTED OCT-MAR PRECIP	
	OCT	NOU	DEC	JAN	FEB	MAR	(INCHES)	(B)	(INCHES) (A)X(B)
ANDERSON								1.0	
ARROUROCK	ļ							2.0	
CENTERVILLE					ľ			1.0	
IDAHO CITY		<u> </u>						1.0	

(2) REFER TO TABLE AG, PAGE A-1, SHEET 4

X2 - TOTAL WEIGHTED OCT-MAR PRECIPITATION - _____ INCHES (ENTER X2 ON PAGE A-1, SHEET 5)

SHEET

TABLE A3
X3 INDEX - (1 APRIL WATER CONTENT)

STATION	OBSERUED WATER CONTENT (INCHES) (A)	NORMAL SNOW WATER ACCUMULATION (1) DATE THRU 1 APRIL (INCHES) (B)	EXPECTED 1 APRIL TOTAL WATER CONTENT (INCHES) (C)-(A)+(B)	STATION WEIGHT (D)	WEIGHTED 1 APRIL WATER CONTENT (INCHES) (C)X(D)
ATLANTA SUMMIT				1.0	
JACKSON				1.0	
MOORES CREEK SUMMIT				1.0	
TRINITY MOUNTAIN				1.0	
UIENNA MINE				2.0	

(1) REFER TO TABLE AS, PAGE A-1, SHEET 4

X3 - TOTAL WEIGHTED 1 APRIL WATER CONTENT = _____ INCHES. (ENTER ON PAGE A-1, SHEET 5)

TABLE A4
X4 INDEX - (1 APRIL THROUGH 30 JUNE PRECIPITATION)

STATION		OBSERVED/EXPECTED MONTHLY PRECIPITATION (土) (INCHES)		TOTAL PRECIPITATION APRIL THROUGH JUNE (INCHES)	STATION WEIGHT	WEIGHTED PRECIPITATION (INCHES)
	APR	MAY	JUN	(A)	(B)	(A)X(B)
ANDERSON					1.6	
ARROUROCK			1		2.0	
CENTERVILLE					1.0	,
IDAHO CITY				•	1.0	

(2) REFER TO TABLE AG, PAGE A-1, SHEET 4

X4 INDEX * TOTAL WEIGHTED APRIL-JUNE PRECIPITATION * _____ INCHES. (ENTER ON PAGE A-1, SHEET 5)

TABLE A5

STATION	NORMAL SNOW WATER ACCUMULATION (DATE - 1 APRIL) INCHES					
•	1 JAN	1 FEB	1 MAR			
ATLANTA SUMMIT	18.5	11.2	8.4			
JACKSON PEAK	11.4	9.2	5.1			
MOORES CREEK SUMMIT	20.9	10.9	4.6			
TRINITY MOUNTAIN	25.3	14.9	6.5			
VIENNA MINE	22.0	15.0	8.9			

TABLE AG

	EXPECTED MONTHLY PRECIPITATION (INCHES)							
STATION	JAN	FEB	MAR	APR	MAY	JUN		
ANDERSON	4.22	2.01	1.92	1.36	1.08	1.57		
ARROWROCK	3.60	1.99	1.70	1.39	1.20	1.38		
CENTERUILLE	4.85	2.80	2.67	1.80	1.60	2.06		
IDAHO CITY	4.56	2.71	2.48	1.84	1.76	1.80		

FORECAST PERIOD	FORECAST DATE
1 OCTOBER THROUGH 31 JULY VOLUME FORECAST	
Y1 = (-857.753) + (2.7132)X1 + (11.9259)X	2 + (5.2747)X3 + (9.1542)X4
	259) + (5.2747) + (9.1542) TABLE A2 TABLE A3 TABLE A4
KAF.	
FORECAST DATE THROUGH 31 JULY VOLUME FORECAST	,
Y (DATE-31 JULY) - Y1 (1 OCT - 31 JUL)	- OBSERVED RUNOFF IN KAF (1 OCT - DATE)
Y (DATE - 31 JUL)	
Y (DATE - 31 JUL) = KAF	

BOISE RIVER VOLUME FORECAST PROCEDURE U.S. ARMY CORPS OF ENGINEERS WALLA WALLA DISTRICT

1. SNOW-WATER CONTENT (UC) INDEX

SNOU COURSE	ELEVATION (FEET)	MEASURED UC (INCHES) (1)	SNOW COURSE WEIGHT FACTOR (SEE PAGE A-2, SHEET 3) (2)	SHOW COURSE WEIGHTED WC (1) X (2)
ATLANTA SUMMIT	7,500			
BOGUS BASIN	6,120			
DOLLARHIDE SUMMIT	8,620			F- 16 19 - 10/200-1
GALENA	7,300		The side of Stronggenes of problem is proper compressed a problem	
GALENA SUMMIT	8,795			The second second second contract of the second sec
JACKSON PEAK	7,000			
MOORES CREEK SUMMIT	6,100			
TRINITY MOUNTAIN	7,780			
UIENNA MINE	8,900			

	SUM OF SNOW COURSE WEIGHTED WC	
X1 - AUERAGE	(SUM/NO. OF SNOW COURSES USED)	
	LUME (INCHES) YUC = A0 + (A1)(X1) EET 3 FOR COEFFICIENTS A0 AND A1)	
	YUC (INCHES)	
YUC (ACRE	-FEET) - (143,000)(YUC INCHES)	

SEE HOTE SEE

USE AVERAGE FORECASTED RUNOFF COMPUTED FROM INDIVIDUAL EQUATIONS FOR TRIMITY MOUNTAIN, ATLANTA SUMMIT AND GALENA SUMMIT SHOW COURSES. AVERAGE IS THEN YUC.

DATE	SNOW COURSES	EQUATION
15 MAYI	ATLANTA SUMMIT GALENA SUMMIT TRINITY MOUNTAIN	Y0.88 + 0.223(X) Y- 0.72 + 0.259(X) Y1.25 + 0.199(X)
1 JUNE	ATLANTA SUMMIT GALENA SUMMIT TRINITY MOUNTAIN	Y- 1.63 + 0.129(X) Y- 2.16 + 0.170(X) Y- 2.74 + 177(X)

Y * RUNOFF FROM DATE - 31 JULY (INCHES) X • MEASURED UC (INCHES)

2. PRECIPITATION INDEX

PRECIPITATION STATION	STATION								
	(1)	OCT	NOU	DEC	JAN	FEB	MAR		
ANDERSON RANCH DAM	1.56								
ARROWROCK DAM	1.55		' i				1		
CENTERVILLE ARBAUGH RH	1.16						ĺ		
IDAHO CITY	1.26								
MONTHLY	UEIGHT (2)	.78	1.0	1.0	1.0	1.0	1.0		

PRECIPITATION STATION		STATION WEIG	HT(1) X	MONTHLY	UEIGHT(2) X PREC	IPITATION
	ELEVATION	OCT	NOU	DEC	JAN	FEB	MAR
ANDERSON RANCH DAM	3,882						
ARROUROCK DAM	3,275						·
CENTERVILLE ARBAUGH RH	4,300						
IDAHO CITY	3,965						
WEIGHTED MONTHLY SUM							
AVERAGE MONTHLY SUM							

		L		
x2 -	ACCUMULATED	AVERAGE MON	THLY SUMS	
ORECASTED RUNOFF VOLUM (REFER TO PAGE A-2, SH	E (INCHES) YP EET 3 FOR COE	RECIP - B0 FFICIENTS B	+ (B1)(X2) • AND B1)	
	YPRECIP (INCH	ES) •		
YPRECIP (ACRE-F	EET) - (143,0	OO) (YPRECI	P INCHES)	

HOTE SEE

- FOR MIDMONTH FORECAST, USE ACCUMULATED PRECIPITATION FOR FIRST 14 DAYS OF MONTH.
- 2. FOR THE 15 APRIL FORECAST:

YPRECIP (15 APRIL - 31 JULY) - YPRECIP (1 APRIL - 31 JULY) - OBSERUED RUNOFF (1 APRIL - 14 APRIL)

3. FOR THE 1 MAY FORECAST:

YPRECIP (1 MAY - 31 JULY) = YPRECIP (1 APRIL - 31 JULY) - OBSERUED RUNOFF (1 APRIL - 30 APRIL)

COMBINED RUNOFF VOLUME FORECAST (DATE - 31 JULY)

YUC (PAGE A-2, SHEET 1) = _____ ACRE-FEET

YPRECIP (PAGE A-2, SHEET 2) = _____ ACRE-FEET

SUM = _____ ACRE-FEET

YCOMB - AVERAGE - ---- ACRE-FEET

*** NOTE ***

IF FORECAST DATE IS AFTER 1 MAY, DO NOT INCLUDE YPRECIP. USE YCOMB = YMC.

SNOW COURSE WEIGHT FACTORS

SHOW COURSE	1 JAN	15 JAN	1 FEB	15 FEB	1 MAR	15 MAR	1 APR	15 APR	1 MAY
ATLANTA SUMMIT	1.88	1.54	1.19	1.06	0.93	0.87	0.80	0.80	0.80
BOGUS BASIN	2.98	2.37	1.76	1.57	1.38	1.27	1.15		
DOLLARHIDE SUMMIT	2.35	1.,98	1.61	1.47	1.33	1.23	1.12	1.11	1.10
GALENA	3.69	2.88	2.07	1.87	1.67	1.58	1.49		
GALENA SUMMIT	2.86	2.31	1.76	1.59	1.42	1.30	1.17	1.16	1.14
JACKSON PEAK		1.65	1.22	1.17	1.11	0.99	0.87	0.87	0.87
MOORES CREEK SUMMIT	2.14	1.71	1.28	1.14	0.99	0.92	0.85	0.90	0.94
TRINITY MOUNTAIN	1.53	1.25	0.96	0.91	0.85	0.75	0.65	0.66	0.66
VIENNA MINE		1.40	1.08	1.01	0.93	0.85	9.76	0.75	0.74

REGRESSION COEFFICIENTS

COEFFICIENT	1 JAN	15 JAN	1 FEB	15 FEB	1 MAR	15 MAR	1 APR	15 APR	1 MAY
Ae	5.65	4.46	3.26	1.68	0.09	-1.15	-2.38	-2.65	-8.92
A1	0.247	0.281	0.315	0.352	0.389	0.419	9.449	0.413	e.376
30	3.66	2.64	1.61	0.17	-1.27	-2.15	-3.03	-3.84	-4.65
B1	0.858	0.773	0.687	0.680	0.673	0.644	0.614	0.626	0.638

<u>E X H I B I T</u> <u>B</u>

LUCKY PEAK UNREGULATED INFLOW
PROJECTION DATA

LUCKY PEAK UNREGULATED INFLOW PROJECTION DATA SHEET

Forecast Period: 1 January-31 July

(1)	(2) Inflow	(3)	(4)
Inflow	Projection	Projection Equation	Standard
Projection	Period	$Y=A_0 + A_1 \times$	Error
Period	(Days)	(KAF)	(KAF)
(1 Jan thru)	(Days)	(ICAL)	
1 Jan	1	Y = 0.296 + 0.001096 x	1.313
2 Jan	2	Y = 1.400 + 0.001745 x	2.510
3 Jan	2 3 5 7	Y = 2.183 + 0.002484 x	3.352
5 Jan	5	Y = 3.917 + 0.003869 x	4.940
7 Jan	7	Y = 5.798 + 0.005176 x	6.191
10 Jan	10	Y = 9.007 + 0.006924 x	7.649
15 Jan	15	Y = 13.739 + 0.010502 x	10.703
20 Jan	20	Y = 12.733 + 0.018450 x	14.849
25 Jan	25	Y = 10.831 + 0.027198 x	19.316
30 Jan	30	Y = 12.260 + 0.033295 x	22.553
4 Feb	35	Y = 15.423 + 0.038770 x	25.637
9 Feb	40	Y = 21.375 + 0.042854 x	28.541
14 Feb	45	Y = 27.248 + 0.046915 x	31.082
19 Feb	50	Y = 32.629 + 0.051560 x	33.640
1 Mar	60	Y = 43.766 + 0.062329 x	38.210
11 Mar	70	$Y = 52.245 + 0.076834 \times$	45.267
21 Mar	80	$Y = 61.430 + 0.097161 \times$	57.557
31 Mar	90	Y = 68.792 + 0.129677 x	72.473
10 Apr	100	Y = 76.903 + 0.175792 x	91.894
20 Apr	110	Y = 78.704 + 0.245319 x	113.721
30 Apr	120	$Y = 68.905 + 0.331822 \times$	131.162
10 May	130	Y = 79.775 + 0.416645 x	149.544
20 May	140	Y = 112.556 + 0.497371 x	156.145
30 May	150	Y = 129.945 + 0.587569 x	154.842
9 Jun	160	Y = 102.983 + 0.700021 x	125.116
19 Jun	170	Y = 69.278 + 0.806113 x	80.537
29 Jun	180	Y = 37.939 + 0.889066 x	47.587
9 Jul	190	$Y = 14.362 + 0.945427 \times$	21.556
19 Jul	200	$Y = 2.263 + 0.979459 \times$	6.846
19 Jul	200	. 21200 01075105 //	

- 1. Column (1) is accurate for a non-leap year only.
- 2. Column (2) represents the number of days from forecast date.
- 3. Equations give expected inflow volumes during the inflow projection periods.
 - a. Y = projected inflow volume (KAF) expected during the inflow projection period.
 - b. x = forecasted runoff volume (KAF) corresponding to the forecast period.
- 4. Column (4) gives the standard error of regression (KAF) corresponding to the equation of Column (3).
- 5. Equations and standard errors developed from 1895 through 1980 period of record.

LUCKY PEAK UNREGULATED INFLOW PROJECTION DATA SHEET

Forecast Period: 15 January-31 July

(1) Inflow Projection Period (15 Jan thru)	(2) Inflow Projection Period (Days)	(3) Projection Equation Y=A _O + A ₁ x (KAF)	(4) Standard Error (KAF)
15 Jan 16 Jan 17 Jan 19 Jan 21 Jan 24 Jan 29 Jan 3 Feb 8 Feb 13 Feb 18 Feb 23 Feb 28 Feb 28 Feb 28 Feb 4 Apr 4 Apr 4 Apr 24 Apr 4 May 14 May 14 May 14 May 15 Jun 16 Jun 17 Jun 18 Jun 18 Jun 18 Jun 18 Jun 19 Jun 1	1 2 3 5 7 10 15 20 25 30 35 40 45 50 60 70 80 90 100 110 120 130 140 150 160 170 180	Y = 0.532 + 0.001088 x Y = 1.158 + 0.002160 x Y = 1.364 + 0.003496 x Y = 0.707 + 0.006932 x Y = -1.452 + 0.011366 x Y = -2.195 + 0.016502 x Y = -0.651 + 0.022709 x Y = 2.080 + 0.028373 x Y = 7.869 + 0.032671 x Y = 13.809 + 0.036743 x Y = 19.510 + 0.041199 x Y = 25.510 + 0.046008 x Y = 30.639 + 0.051880 x Y = 34.729 + 0.058944 x Y = 43.713 + 0.075119 x Y = 54.948 + 0.098693 x Y = 62.870 + 0.136635 x Y = 70.800 + 0.191230 x Y = 65.412 + 0.356744 x Y = 85.192 + 0.443254 x Y = 125.147 + 0.521616 x Y = 113.044 + 0.629910 x Y = 90.196 + 0.739368 x Y = 53.995 + 0.841366 x Y = 27.233 + 0.912933 x Y = 7.215 + 0.961324 x	1.378 2.505 3.862 6.694 9.425 12.608 16.305 19.640 22.707 25.586 28.422 31.045 33.315 36.303 46.128 60.509 76.996 96.961 118.442 137.550 152.499 155.877 143.588 110.389 65.085 36.904 14.037
23 Jul	190	Y = 0.613 + 0.987959 x	3.902

- 1. Column (1) is accurate for a non-leap year only.
- 2. Column (2) represents the number of days from forecast date.
- 3. Equations give expected inflow volumes during the inflow projection periods.
 - a. Y = projected inflow volume (KAF) expected during the inflow projection period.
 - b. x = forecasted runoff volume (KAF) corresponding to the forecast period.
- 4. Column (4) gives the standard error of regression (KAF) corresponding to the equation of Column (3).
- 5. Equations and standard errors developed from 1895 through 1980 period of record.

These

Forecast Period: 1 February-31 July

(1) Inflow Projection	(2) Inflow Projection		(3) Projection Equation	(4) Standard
Period (1 Feb thru)	Period (Days)		Y=A _O + A ₁ x (KAF)	Error (KAF)
(2) 65 611 47	(5033)		(Kni)	(1071)
1 Feb	1	Y =	0.176 + 0.001355 x	1.553
2 Feb	2	Y =	0.910 + 0.002394 x	3.053
3 Feb	3	Y =	1.635 + 0.003440 x	4.248
5 Feb	1 2 3 5 7	Y =	3.490 + 0.005517 x	7.033
7 Feb	7	Y =	5.723 + 0.007231 x	9.454
10 Feb	10	Y =	9.652 + 0.009646 x	12.042
15 Feb	15	Y =	15.744 + 0.013746 x	15.189
20 Feb	20	Y =	21.378 + 0.018435 x	17.912
25 Feb	25	Y =	27.736 + 0.023266 x	21.084
2 Mar	30	Y =	$30.212 + 0.031224 \times$	24.516
7 Mar	35	Y =	32.835 + 0.039845 x	28.580
12 Mar	40	Y =	35.211 + 0.049735 x	34.953
17 Mar	45	Y =	$37.993 + 0.060710 \times$	43.165
22 Mar	50	Y =	38.421 + 0.076226 x	56.137
1 Apr	60	Y =	44.194 + 0.111896 x	75.425
11 Apr	70	Y =	$50.363 + 0.161427 \times$	96. 088
21 Apr	80	Y =	45.360 + 0.239770 x	120.919
1 May	90	Y =	$37.506 + 0.329269 \times$	138.076
11 May	100	Y =	49.407 + 0.416323 x	152.975
21 May	110	Y =	$80.417 + 0.500635 \times$	158.554
31 May	120	Υ =	99.765 + 0.593000 x	156.001
10 Jun	130	Y =	$81.397 + 0.703782 \times$	125.520
20 Jun	140	Y =	$58.407 + 0.806095 \times$	80.921
30 Jun	150	Y =	34.384 + 0.886894 x	47.981
10 Jul	160	Y =	12.824 + 0.944047 x	22.135
20 Jul	170	Y =	2.007 + 0.978569 x	7.703

- 1. Column (1) is accurate for a non-leap year only.
- 2. Column (2) represents the number of days from forecast date.
- Equations give expected inflow volumes during the inflow projection periods.
 - a. Y = projected inflow volume (KAF) expected during the inflow projection period.
 - b. x = forecasted runoff volume (KAF) corresponding to the forecast period.
- 4. Column (4) gives the standard error of regression (KAF)
- corresponding to the equation of Column (3).

 5. Equations and standard errors developed from 1895 through 1980 period of record.

LUCKY PEAK UNREGULATED INFLOW PROJECTION DATA SHEET

Forecast Period: 15 February-31 July

(1) Inflow	(2) Inflow	(3)	(4)
Projection	Projection	Projection Equation	Standard
Period	Period	Y=A ₀ + A ₁ x	Error
(15 Feb thru)	(Days)	(KAF)	(KAF)
(TO LED CHI a)		(Kri)	
15 Feb	1 2 3 5 7	Y = 1.309 + 0.000824 x	1.088
16 Feb	2	Y = 2.293 + 0.001887 x	2.143
17 Feb	3	Y = 3.514 + 0.002769 x	2.934
19 Feb	5	Y = 5.878 + 0.004650 x	4.549
21 Feb	7	Y = 8.578 + 0.006442 x	6.464
24 Feb	10	Y = 12.448 + 0.009466 x	9.506
1 Mar	15	Y = 17.959 + 0.015629 x	14.669
6 Mar	20	Y = 21.931 + 0.023167 x	19.925
11 Mar	25	Y = 27.503 + 0.030521 x	25.801
16 Mar	30	Y = 32.031 + 0.040076 x	33.721
21 Mar	· 35	Y = 37.210 + 0.051734 x	42.924
26 Mar	40	Y = 42.879 + 0.066082 x	51.870
31 Mar	45	Y = 46.446 + 0.085270 x	59.385
5 Apr	50	Y = 53.311 + 0.105874 x	69.340
15 Apr	60	Y = 61.799 + 0.165133 x	91.396
25 Apr	70	Y = 54.579 + 0.251918 x	114.706
5 May	80	Y = 57.463 + 0.339317 x	136.202
15 May	90	Y = 80.536 + 0.429194 x	150.840
25 May	100	Y = 122.501 + 0.510590 x	154.870
4 Jun	110	Y = 106.721 + 0.626568 x	139.888
14 Jun	120	Y = 84.795 + 0.740104 x	105.298
24 Jun	130	Y = 50.063 + 0.843700 x	61.952
4 Jul	140	Y = 24.589 + 0.915445 x	33.826
14 Jul	150	Y = 6.093 + 0.963252 x	12.437
24 Jul	160	Y = 0.339 + 0.989439 x	3.227

- 1. Column (1) is accurate for a non-leap year only.
- 2. Column (2) represents the number of days from forecast date.
- Equations give expected inflow volumes during the inflow projection periods.
 - a. Y = projected inflow volume (KAF) expected during the inflow projection period.
 - b. x = forecasted runoff volume (KAF) corresponding to the forecast period.
- 4. Column (4) gives the standard error of regression (KAF)
- corresponding to the equation of Column (3).

 5. Equations and standard errors developed from 1895 through 1980 period of record.

LUCKY PEAK UNREGULATED INFLOW PROJECTION DATA SHEET

Forecast Period: 1 March-31 July

(1)	(2)		(3)	(4)
Inflow Projection Period (1 Mar thru)	Inflow Projection Period (Days)		Projection Equation Y=A _o + A ₁ x (KAF)	Standard Error (KAF)
1 Mar 2 Mar 3 Mar 5 Mar 7 Mar 10 Mar 15 Mar 20 Mar 25 Mar 30 Mar 4 Apr 9 Apr 14 Apr 19 Apr 19 Apr 29 Apr 29 May 19 May 29 May 8 Jun 18 Jun	1 2 3 5 7 10 15 20 25 30 35 40 45 50 60 70 80 90 100 110	Y = Y = Y = Y = Y = Y = Y = Y = Y = Y =	0.861 + 0.001513 x 1.953 + 0.002919 x 2.680 + 0.004579 x 3.997 + 0.007996 x 5.229 + 0.011561 x 7.900 + 0.016636 x 11.922 + 0.026655 x 13.947 + 0.040197 x 16.260 + 0.056865 x 17.921 + 0.076618 x 23.303 + 0.097398 x 27.548 + 0.123092 x 29.841 + 0.155327 x 30.664 + 0.195403 x 22.226 + 0.287595 x 34.254 + 0.375010 x 64.012 + 0.463976 x 99.593 + 0.550521 x 82.395 + 0.667840 x 64.631 + 0.775782 x	1.632 3.398 4.977 8.536 11.899 16.944 27.031 41.220 57.395 67.349 76.557 86.813 100.113 112.412 131.899 148.621 156.239 156.797 131.298 90.791
28 Jun 8 Jul 18 Jul	120 130 140	Y = Y = Y =	37.748 + 0.867819 x 16.779 + 0.931283 x 3.124 + 0.972164 x	53.252 26.647 9.621
28 Jul	150	Y =	0.078 + 0.994651 x	1.949

- Column (1) is accurate for a non-leap year only.
- 2. Column (2) represents the number of days from forecast date.
- 3. Equations give expected inflow volumes during the inflow projection periods.
 - a. Y = projected inflow volume (KAF) expected during the inflow projection period.
 - b. x = forecasted runoff volume (KAF) corresponding to the forecast period.
- 4. Column (4) gives the standard error of regression (KAF) corresponding to the equation of Column (3).
- 5. Equations and standard errors developed from 1895 through 1980 period of record.

LUCKY PEAK UNREGULATED INFLOW PROJECTION DATA SHEET

Forecast Period: 15 March-31 July

(1) Inflow	(2) Inflow		(3)	(4)
Projection	Projection		Projection Equation	Standard
Period	Period		$Y=A_0 + A_1 \times$	Error
(15 Mar thru)	(Days)		(KAF)	(KAF)
115 Mai chi u)	(Days)		(KAI)	
15 Mar	1	Υ =	1.196 + 0.002020 x	2.671
16 Mar	2	Υ =	$2.374 + 0.004148 \times$	5.465
17 Mar	3	Υ =	3.364 + 0.006560 x	8.404
19 Mar	1 2 3 5 7	Y =	$4.157 + 0.012819 \times$	15.812
21 Mar	7	Υ =	5.398 + 0.019303 x	23.768
24 Mar	10	Υ =	8.597 + 0.028716 x	33.513
29 Mar	15	Υ =	11.843 + 0.048029 x	45.165
3 Apr	20	Y =	17.676 + 0.068990 x	56.884
8 Apr	25	Y =	22.833 + 0.094835 x	68.991
13 Apr	30	Y =	25.378 + 0.128418 x	84.216
18 Apr	35	Υ =	25.715 + 0.170879 x	99.310
23 Apr	40	Y =	21.378 + 0.217827 x	111.496
28 Apr	4 5	Υ =	17.636 + 0.266604 x	122.506
3 May	50	Y =	23.087 + 0.309543 x	133.033
13 May	60	Υ =	46.051 + 0.401807 x	147.682
23 May	70	Y =	87.824 + 0.487215 x	151.973
2 Jun	80	Y =	90.437 + 0.597622 x	143.825
12 Jun	90	Y =	75.291 + 0.713319 x	111.863
22 Jun	100	Υ =	47.560 + 0.821412 x	67.753
2 Jul	110	Y =	25.874 + 0.899297 x	39.710
12 Jul	120	Y =	6.915 + 0.953946 x	16.128
22 Jul	130	Y =	$0.439 + 0.984478 \times$	5.489

- 1. Column (1) is accurate for a non-leap year only.
- 2. Column (2) represents the number of days from forecast date.
- 3. Equations give expected inflow volumes during the inflow projection periods.
 - a. Y = projected inflow volume (KAF) expected during the inflow projection period.
 - b. x = forecasted runoff volume (KAF) corresponding to the forecast period.
- 4. Column (4) gives the standard error of regression (KAF) corresponding to the equation of Column (3).
- 5. Equations and standard errors developed from 1895 through 1980 period of record.

Forecast Period: 1 April-31 July

	1) low	(2) Inflow		(3)	(4)
	ction	Projection	F	Projection Equation	Standard
Per	iod	Period		$Y=A_0 + A_1 \times$	Error
<u>(1 Ap</u>	r thru)	(Days)	_	(KAF)	<u>(KAF)</u>
					,
1	Apr	1	Y =	1.699 + 0.003859 x	
2	Apr	2	Y =	$3.600 + 0.007746 \times$	7.403
3	Apr	3	Υ =	5.346 + 0.012046 x	11.258
5	Apr	5	Y =	9.244 + 0.020671 x	18.374
7	Apr	7	Y =	$12.811 + 0.030417 \times$	25.133
	Apr	10	Y =	$15.712 + 0.048408 \times$	36.453
	Apr	15	Y =	$19.726 + 0.084950 \times$	56.041
	Apr	20	Y =	20.119 + 0.129621 x	76.612
	Apr	25	Y =	$17.863 + 0.179394 \times$	92.344
	Apr	30	Y =	17.487 + 0.229886 x	106.060
	May	35	Y =	$24.413 + 0.274515 \times$	117.953
	May	40	Y =	$35.160 + 0.323718 \times$	126.598
	May	45	Υ =	$50.817 + 0.371414 \times$	134.036
20	-	50	Y =	69.961 + 0.418401 x	137.059
	May	60	Υ =	$97.482 + 0.519284 \times$	142.844
9	Jun	70	Y =	80.835 + 0.646835 x	118.011
19	Jun	80	Y. =	60.008 + 0.765516 x	79.533
	Jun	90	Y =	$33.470 + 0.863534 \times$	47.941
9	Jul	100	· Y =	13.149 + 0.930968 x	23.172
19	Jul	110	Y =	$1.764 + 0.972853 \times$	8.216
	Jul	120	Υ =	$0.047 + 0.995934 \times$	1.494

- 1. Column (1) is accurate for a non-leap year only.
- 2. Column (2) represents the number of days from forecast date.
- Equations give expected inflow volumes during the inflow projection periods.
 - a. Y = projected inflow volume (KAF) expected during the inflow projection period.
 - b. x =forecasted runoff volume (KAF) corresponding to the forecast period.
- 4. Column (4) gives the standard error of regression (KAF) corresponding to the equation of Column (3).
- 5. Equations and standard errors developed from 1895 through 1980 period of record.

Forecast Period: 15 April-31 July

(1) Inflow	(2) Inflow	(3)	(4)
Projection Period (15 Apr thru)	Projection Period (Days)	Projection Equation Y=A ₀ + A ₁ x (KAF)	Standard Error (KAF)
15 Apr	1	Y = 1.471 + 0.008865 x	6.766
16 Apr	2	Y = 3.642 + 0.017201 x	13.737
17 Apr	3	Y = 5.529 + 0.025898 x	20.658
19 Apr	5	Y = 7.013 + 0.044337 x	29.734
21 Apr	7	Y = 8.011 + 0.064596 x	40.476
24 Apr	10	Y = 8.785 + 0.096472 x	54.379
	15	Y = 11.296 + 0.150415 x	75.344
29 Apr 4 May 9 May	20 25	Y = 21.022 + 0.197650 x Y = 34.662 + 0.250025 x	90.169 101.167
14 May	30	Y = 52.610 + 0.301187 x	111.155 117.579
19 May 24 May	35 40	Y = 94.614 + 0.401832 x	124.200
29 May	45	Y = 101.448 + 0.463587 x	128.796
3 Jun	50	Y = 92.317 + 0.535639 x	120.690
13 Jun	60	Y = 76.178 + 0.672062 x	95.435
23 Jun	70	Y = 44.755 + 0.800053 x	58.580
3 Jul	80	Y = 22.239 + 0.889830 x	34.249
13 Jul	90	Y = 4.382 + 0.951324 x	13.744
23 Jul	100	Y = -0.302 + 0.984686 x	4.657

- 1. Column (1) is accurate for a non-leap year only.
- 2. Column (2) represents the number of days from forecast date.
- 3. Equations give expected inflow volumes during the inflow projection periods.
 - a. Y = projected inflow volume (KAF) expected during the inflow projection period.
 - b. x =forecasted runoff volume (KAF) corresponding to the forecast period.
- 4. Column (4) gives the standard error of regression (KAF) corresponding to the equation of Column (3).
- 5. Equations and standard errors developed from 1895 through 1980 period of record.

Forecast Period: 1 May-31 July

(1 Infl	L) Low	(2) Inflow				(3	3)		(4)
Projec		Projection			Projecti	on	Equation		Standard
Peri		Period			-		A ₁ x		Error
	thru)	(Days)		_			F)	-	(KAF)
1	May	1	Y	=	3.431	+	0.009768	Х	5.735
2	May	2	Υ	=	7.143	+	0.019282	Х	11.021
3	May	3	Υ	=	11.152	+	0.028716	Х	15.890
5	May	5	Υ	=	18.839	+	0.049072	Х	24.950
	May	7	Υ	=	26.586	+	0.070923	Х	33.270
	May	10	Υ	=	38.222	+	0.106044	Х	44.433
15	May	15	Υ	=	60.102	+	0.163226	Х	63.217
20	May	20	Υ	=	81.331	+	0.223245	Х	78.052
	May	25	Υ	=	105.306	+	0.279843	Х	90.852
30	May	30	Υ	=	114.571	+	0.350973	х	100.209
	Jun	35	Υ	=	105.257	+	0.436713	Х	96.735
9	Jun	40	Υ	=	93.713	+	0.522889	Х	91.000
14	Jun	45	Υ	=	83.299	+	0.604035	х	82.358
19	Jun	50	Υ	=	63.254	+	0.688054	Х	66.369
29	Jun	60	Υ	=	30.798	+	0.822607	Х	43.893
9	Ju1	70	Υ	=	10.352	+	0.911481	Х	21.987
19	Jul	. 80	Υ	=			0.966161		8.460
29	Jul	90	Υ	=			0.994835		1.463

- 1. Column (1) is accurate for a non-leap year only.
- 2. Column (2) represents the number of days from forecast date.
- 3. Equations give expected inflow volumes during the inflow projection periods.
 - a. Y = projected inflow volume (KAF) expected during the inflow projection period.
 - b. x = forecasted runoff volume (KAF) corresponding to the forecast period.
- 4. Column (4) gives the standard error of regression (KAF) corresponding to the equation of Column (3).
- 5. Equations and standard errors developed from 1895 through 1980 period of record.

Forecast Period: 15 May-31 July

(1) Inflow	(2) Inflow	(3)	(4)
Projection	Projection	Projection Equation	Standard
Period	Period	$Y=A_0 + A_1 \times$	Error
		(KAF)	
(15 May thru)	<u>(Days)</u>	(NAF)	<u>(KAF)</u>
15 May	1	$Y = 6.575 + 0.012718 \times $	6.580
16 May	2	Y = 12.731 + 0.025854 x	12.817
17 May	3	Y = 18.941 + 0.039020 x	18.435
19 May	5	Y = 31.752 + 0.064492 x	28.798
21 May	7	$Y = 45.454 + 0.088249 \times$	38.220
24 May	10	Y = 63.776 + 0.127490 x	50.172
29 May	15	Y = 81.481 + 0.208614 x	65.625
3 Jun	20	Y = 77.725 + 0.311778 x	69.145
8 Jun	25	Y = 70.346 + 0.417122 x	70.755
13 Jun	30	Y = 63.450 + 0.516790 x	67.799
18 Jun	35	$Y = 45.330 + 0.621983 \times$	57.625
23 Jun	40	$Y = 30.132 + 0.713376 \times$	48.799
28 Jun	45	Y = 19.198 + 0.786674 x	40.874
3 Jul	50	Y = 12.139 + 0.844199 x	30.970
13 Jul	60	Y = -1.943 + 0.933419 x	13.708
23 Jul	70	$Y = -2.685 + 0.979518 \times$	4.921

- 1. Column (1) is accurate for a non-leap year only.
- 2. Column (2) represents the number of days from forecast date.
- Equations give expected inflow volumes during the inflow projection periods.
 - a. Y = projected inflow volume (KAF) expected during the inflow projection period.
 - b. x =forecasted runoff volume (KAF) corresponding to the forecast period.
- 4. Column (4) gives the standard error of regression (KAF) corresponding to the equation of Column (3).
- 5. Equations and standard errors developed from 1895 through 1980 period of record.

Forecast Period: 1 June-31 July

(1) Inflow	(2) Inflow	(3)	(4)
Projection	Projection	Projection Equation	Standard
Period	Period	$Y=A_0 + A_1 x$	Error
(1 Jun thru)	(Days)	(KAF)	(KAF)
1 Jun	1	Y = 2.728 + 0.024903 x	4.667
2 Jun	2	Y = 5.361 + 0.049426 x	9.085
3 Jun	3	Y = 7.185 + 0.075211 x	13.409
5 Jun	5	Y = 8.259 + 0.131188 x	21.345
7 Jun	7	Y = 10.874 + 0.183792 x	27.786
10 Jun	10	Y = 15.811 + 0.260511 x	35.427
15 Jun	15	Y = 15.702 + 0.394130 x	42.760
20 Jun	20	Y = 4.798 + 0.534306 x	42.668
25 Jun	25	Y = 0.139 + 0.647300 x	39.935
30 Jun	30	Y = -2.683 + 0.738186 x	33.958
5 Jul	35	Y = -4.782 + 0.812016 x	25.434
10 Jul	40	Y = -8.467 + 0.875569 x	17.817
15 Jul	45	Y = -9.673 + 0.923013 x	12.090
20 Jul	50	Y = -8.528 + 0.956439 x	8.092

- 1. Column (1) is accurate for a non-leap year only.
- 2. Column (2) represents the number of days from forecast date.
- Equations give expected inflow volumes during the inflow projection periods.
 - a. Y = projected inflow volume (KAF) expected during the inflow projection period.
 - b. x =forecasted runoff volume (KAF) corresponding to the forecast period.
- 4. Column (4) gives the standard error of regression (KAF) corresponding to the equation of Column (3).
- 5. Equations and standard errors developed from 1895 through 1980 period of record.

Forecast Period: 15 June-31 July

(1) Inflow	(2) Inflow	(3)	(4)
Projection	Projection	Projection Equation	Standard
Period	Period	$Y=A_0 + A_1 \times$	Error
(15 Jun thru)	(Days)	(KAF)	(KAF)
15 Jun	1	Y = 0.261 + 0.042917 x	4.026
16 Jun	2	Y = 0.036 + 0.086498 x	7.790
17 Jun	3	Y = -0.906 + 0.131443 x	11.137
19 Jun	: 5	Y = -4.263 + 0.222418 x	16.817
21 Jun	. 7	Y = -5.570 + 0.302843 x	20.699
24 Jun	10	Y = -5.085 + 0.406215 x	22.852
29 Jun	15	Y = -6.034 + 0.557465 x	22.875
4 Jul	20	$Y = -7.316 + 0.682713 \times$	18.241
9 Jul	25	Y = -10.186 + 0.790255 x	13.572
14 Jul	30	Y = -10.831 + 0.870625 x	9.935
19 Jul	35	Y = -9.269 + 0.927077 x	7.199
24 Jul	40	$Y = -5.278 + 0.964549 \times$	3.908

- 1. Column (1) is accurate for a non-leap year only.
- 2. Column (2) represents the number of days from forecast date.
- 3. Equations give expected inflow volumes during the inflow projection periods.
 - a. Y = projected inflow volume (KAF) expected during the inflow projection period.
 - b. x =forecasted runoff volume (KAF) corresponding to the forecast period.
- 4. Column (4) gives the standard error of regression (KAF) corresponding to the equation of Column (3).
- 5. Equations and standard errors developed from 1895 through 1980 period of record.

Forecast Period: 1 July-31 July

(1)	(2)	(3)	(4)
Inflow	Inflow		
Projection	Projection	Projection Equation	Standard
Period	Period	$Y=A_0 + A_1 \times$	Error
(1 Jul thru)	(Days)	(KAF)	(KAF)
1 Jul	1	Y = 0.153 + 0.055625 x	1.390
2 Jul	2	Y = 0.070 + 0.110169 x	2.405
3 Jul	3	Y = -0.511 + 0.166591 x	3.045
5 Jul	5	Y = -2.268 + 0.278195 x	3.812
7 Jul	7	Y = -3.666 + 0.378808 x	4.614
10 Jul	10	Y = -6.498 + 0.520251 x	5.228
15 Jul	15	Y = -8.343 + 0.702454 x	5 .67 0
20 Jul	20	Y = -7.495 + 0.829828 x	4.973
25 Jul	25	Y = -4.450 + 0.917502 x	3.015

- 1. Column (1) is accurate for a non-leap year only.
- 2. Column (2) represents the number of days from forecast date.
- Equations give expected inflow volumes during the inflow projection periods.
 - a. Y = projected inflow volume (KAF) expected during the inflow projection period.
 - b. x = forecasted runoff volume (KAF) corresponding to the forecast period.
- 4. Column (4) gives the standard error of regression (KAF) corresponding to the equation of Column (3).
- 5. Equations and standard errors developed from 1895 through 1980 period of record.

Forecast Period: 15 July-31 July

(1)	(2)	(3)	(4)
Inflow	Inflow		
Projection	Projection	Projection Equation	Standard
Period	Period	$Y=A_0 + A_1 \times$	Error
(15 Jul thru)	(Days)	(KAF)	(KAF)
	•	•.	
15 Jul	1	$Y = -0.543 + 0.094179 \times$	0.688
16 Jul	2	$Y = -0.893 + 0.180678 \times$	1.196
17 Jul	3	$Y = -1.330 + 0.263061 \times$	1.571
19 Jul	5	Y = -1.986 + 0.414538 x	2.025
21 Jul	7	$Y = -1.945 + 0.542943 \times$	2.179
24 Jul	10	$Y = -1.642 + 0.713646 \times$	1.821

- 1. Column (1) is accurate for a non-leap year only.
- 2. Column (2) represents the number of days from forecast date.
- Equations give expected inflow volumes during the inflow projection periods.
 - a. Y = projected inflow volume (KAF) expected during the inflow projection period.
 - b. x =forecasted runoff volume (KAF) corresponding to the forecast period.
- 4. Column (4) gives the standard error of regression (KAF) corresponding to the equation of Column (3).
- Equations and standard errors developed from 1895 through 1980 period of record.

$\underline{E} \ \underline{X} \ \underline{H} \ \underline{I} \ \underline{B} \ \underline{I} \ \underline{T} \quad \underline{C}$

MEMORANDUM OF UNDERSTANDING

AFPENDIX A

(COPY)

MEMORANDUM OF AGREEMENT
BETWEEN
THE DEPARTMENT OF THE ARMY
AND
THE DEPARTMENT OF THE INTERIOR

FOR FLOOD CONTROL OPERATION OF BOISE RIVER RESERVOIRS, IDAHO

THIS MEMORANDUM OF AGREEMENT entered into this (20th) day of (November), 1953, by and between the Department of the Army, represented by (Robert T. Stevens), SECRETARY OF THE ARMY, and the Department of the Interior, represented by (Fred G. Aandahl, Assistant), SECRETARY OF THE INTERIOR,

WHEREAS, the Department of the Army, through the Corps of Engineers, is engaged in constructing the Lucky Peak Dam and Reservoir on the Boise River in the State of Idaho, under authority of the Act of July 24, 1946 (60 Stat. 641), which authorized construction of Lucky Peak Reservoir substantially in accordance with the recommendations of the Chief of Engineers in his report of May 13, 1946; and

WHEREAS, said report concurred in the views and recommendations of the Board of Engineers for Rivers and Harbors that the Lucky Peak Reservoir be constructed with the understanding that complete or partial joint use of the storage in the three-reservoir system, viz., Lucky Peak, Arrowrock, and Anderson Ranch Reservoirs, may be undertaken at such time as may be mutually agreed upon by the Secretary

A War (now Secretary of the Army), the Secretary of the Interior, and local interests concerned with flood control and the use of irrigation water; and

WHEREAS, said report concurred in the views and recommendations of the Board of Engineers for Rivers and Harbors that Lucky Peak Reservoir be authorized for construction with the understanding that changes in the method of operation will be made in the future when the Secretary of War (now Secretary of the Army), upon the advice of the Chief of Engineers, finds that such changes are in the best interest of flood control, irrigation, and power development, and that they are agreeable to the Secretary of the Interior and to the local interests concerned with flood control and the use irrigation water; and

WHEREAS, said act provides that Lucky Peak Dam and Reservoir "shall be operated in such manner as not materially to interfere with the operation of said Arrowrock Reservoir"; and

WHEREAS, the Department of the Interior, through the Bureau of Reclamation, acting under the Federal Reclamation Laws (these being the Act of June 17, 1902, 32 Stat, 388, and acts amendatory thereof or supplemental thereto), has constructed and is operating Arrowrock Dam and Reservoir on the Boise River and Anderson Ranch Dam and Reservoir on the south fork of the Boise River, both upstream from the Lucky Peak Dam; and

WHEREAS, there are storage rights in Arrowrock, Anderson Ranch, and Lake Lowell Reservoirs by virtue of appropriations under the laws of Idaho and contracts between the United States, represented by the Department of the Interior, and various water users' organizations serving lands in the Boise Valley, and there are other existing rights in and to the use of waters of the Boise River, both stored and natural flow, which waters are in part diverted and distributed through the transferred works of the Boise Project being operated and maintained by the Boise Project Board of Control and in part by means of other works being operated and maintained by other water users' organizations; and

WHEREAS, certain of the rights above described are adjudicated rights, which are exercised under the supervision of the State of Idaho, represented by the watermaster of District No. 12-A. Boise River: and

WHEREAS, to comply with the above-quoted Congressional declaration of operational policy in regard to Lucky Peak and Arrow-rock Dams, and to achieve the greatest multiple-purpose use of the combined total usable flood control and irrigation storage of 983,000 acre-feet of water in all three reservoirs, a coordinated plan of operation is necessary for this reservoir system on the Boise River, a river totally within the State of Idaho, together with Diversion Dam, the New York Canal headworks, and Lake Lowell; and

WHEREAS, it is recognized that the successful operation of this coordinated irrigation and flood control plan will call for the cooperation and assumption of responsibilities by the two Departments and the water users having storage rights in the reservoir system, and that there is need for a policy of mutual coordination, information, and assistance in its performance;

NOW, THEREFORE, for and in consideration of the premises and certain benefits and advantages accruing hereunder to affected local interests, it is hereby agreed as follows:

7

The hydrologic situation is shown on Plate 1, attached hereto and made a part of this agreement, which depicts the general cation of the Lucky Peak, Arrowrock, and Anderson Ranch Reservoirs, herein referred to collectively as the reservoir system, Diversion Dam, the New York Canal headworks, and Lake Lowell.

2

The plan of operation hereinafter set forth is limited to the flood control operation phase of the respective general operating plans of the parties hereto and shall be used during the period commencing with the actual operation of Lucky Peak Reservoir.

3

To attain the maximum benefits from the reservoir system, the total capacity of 1,084,000 acre-feet will be utilized as follows:

a. 983,000 acre-feet (418,000 acre-feet in Anderson)
Ranch, 285,000 acre-feet in Arrowrock Reservoir, and

(COPY)

280,000 acre-feet in Lucky Peak Reservoir) will be operated primarily in the interests of irrigation and flood control and secondarily in the interests of power, as governed by forecasts of runOff. The allocation of flood control space is shown on Plate 2.

- b. 5,000 acre-feet in Anderson Ranch Reservoir will be used exclusively for power production.
- c. 96,000 acre-feet (70,000 acre-feet in

 Anderson Ranch and 26,000 acre-feet in Lucky Peak

 Reservoirs) will be reserved for dead storage and allocated exclusively to the maintenance of minimum power
 head, maintenance of permanent pools for the preservation
 and propagation of fish and wildlife and for silt control.

The above-designated 983,000 acre-feet or any part thereof in storage at the end of each flood season will be primarily considered as available for irrigation except as such amount must be reduced by evacuation requirements for flood control.

4

No reregulation of storage or annual exchange of storage as provided in this plan shall, however, deprive any entity of water accruing to it under existing rights in Arrowrock, Anderson Ranch, and Lake Lowell Reservoirs.

5

The Chief of Engineers, the Commissioner of Reclamation, and the watermaster, having agreed upon acceptable methods of

Diversion Dam, will periodically during the period from January 1 to June 30 of each year, determine the volume of runoff that may be expected in the drainage area tributary to the Boise River above Diversion Dam. Any differences in forecasted amounts shall be reconciled to arrive at a common forecast within 48 hours after basic data for forecasts are available. To facilitate forecasting of runoff, mutually satisfactory arrangements will be made among the Chief of Engineers, the Commissioner of Reclamation, and the State of Idaho, after consultation with the interested water users organizations, to expand the existing hydrologic network and to establish and operate continuously a system for the efficient sembly, analysis, and exchange of the basic data.

6

Beginning with the first year this plan is put into operation, the system will be operated, through close collaboration with all agencies concerned on the basis of periodic sequential forecasted runoffs made during each year, as nearly as practicable in accordance with the following particular terms and provisions:

a. The storage space to be allocated to flood control for each year is defined as follows:

It is the combined reservoir space which, using the governing forecast of flood runoff for the year, is required to control the forecasted flood volume,

from the time in that year that the natural flow as determined at Diversion Dam exceeds the allowable release through the succeeding July 31. The governing forecast of flood volume for each year is the forecast made as of the date the natural flow, as determined at Diversion Dam, first exceeds the allowable flow at that point and this date is usually about April 15. Allowable releases from the reservoir system during the period from the date of the governing forecast to the succeeding July 31 will be such that the flow in the river channel below Diversion Dam will not exceed 6,500 second-feet, in so far as this control can be accomplished with a total system capacity of 983,000 acre-feet together with the diversion to the New York Canal of an average of 1,365 second-feet during March and of 2,820 second-feet from April 1 through July 31, except that, due to 'decreased irrigation demand, diversions to the New York Canal may infrequently be reduced below the diversion figures indicated above. When the above decreased diversions are required, it may be necessary to increase flow in Boise River below Diversion Dam.

b. Attached hereto as Plate 2 is a scale figure depicting flood storage allocation parameters representing runoff volume anticipated at Diversion Dam between the

forecast date and July 31. These parameters were empirically derived from floods of record and are enveloping curves of the storage requirements for various volumes of total forecasted runoff from any given date to July 31. The total reservoir capacity required to control a flood to a discharge of 6,500 second-feet (or less) in the river channel past Diversion Dam is indicated by the ordinate of the parameter corresponding to the forecasted runoff on the date of the governing forecast.

of the first forecast, about January 1, to the date that natural flow of Boise River at Diversion Dam first exceeds allowable releases, herein designated as the evacuation period, the reservoir system will be operated in such a manner that the reservoir levels on the date of the governing forecast as determined by the parameters on Plate 2, can be attained with the minimum practicable rates and fluctuations of discharge. The rate of discharge during the evacuation period will be determined as far as practicable in the following manner: The combined total reservoir space required on or about April 15 (approximate date of the governing forecast) will be estimated by use of the parameters

on Plate 2 and an April 15 forecast, which would be derived by deducting from the forecast made on any periodic forecast date probable average inflows, as determined from Plate 3, or measured inflow for the intervening period from the date of periodic forecasts to April 15. The required reservoir capacities thus estimated would comprise tentative allocations of flood control space at which to aim the evacuation procedure. The rate of discharge at Lucky Peak Reservoir then will be selected as that required to release the probable average inflow, as determined from Plate 3, or measured inflow for the period between the date of forecast and April 15, plus the evacuation necessary to attain the required total reservoir capacity indicated by the latest tentative allocation.

d. The evacuation of the active capacity in the reservoirs will be made in the following order: First, from Lucky Peak; second, from Arrowrock; and last, from Anderson Ranch. At least forty thousand (40,000) acre-feet of vacant space will be maintained in Lucky Peak Reservoir from November 1 to January 1 of every year, and from January 1 to May 24 of every year, except when forecasted amount of runoff between date of forecast

and July 31 is less than six hundred thousand (600,000) acre-feet and except that storage space in Anderson Ranch Reservoir may be considered partially to fulfill this requirement in Lucky Peak Reservoir to the extent of forty percent (40%). Power operation from Anderson Ranch storage will be so limited that, to the extent possible as to space allocated to flood control for any year, at least sixty percent (60%) thereof will be provided in Lucky Peak and Arrowrock Reservoirs. Filling of the three reservoirs will follow the reverse of the evacuation schedule to the extent that water is available at each of the respective sites. In the event Anderson Ranch or Arrowrock Reservoirs are not filled by reason of having evacuated water for flood control, storage in Lucky Peak will be considered as belonging to Arrowrock and Anderson Ranch storage rights to the extent of the space thus remaining unfilled at the end of the storage season but not to exceed the amount évacuated for flood control.

e. From the date of the governing forecast each year through July 31 of that year, herein designated as the filling period, the reservoir system will be operated in such a manner that the combined reservoir content, as determined from the parameter chart (Plate 2), will be

maintained except when irrigation requirements necessitate a drawdown below such total content, but will not be exceeded except when total storage above such content is required to limit the releases to allowable flows (as determined by downstream channel capacity and irrigation diversions) at Diversion Dam. However, when the forecasted runoff indicates extraordinary flood flows, requiring storage capacity for flood control in excess of the total active storage capacity of the reservoir system (983,000 acre-feet), temporary releases at Lucky Peak in excess of the allowable flows may be required but such releases will be made at a rate so as to minimize the peak rate of flow in the river channel below the Diversion Dam. The rate of such releases shall be specified by the Chief of Engineers after consultation with the Commissioner of Reclamation to the extent consistent with paragraph 6g herein.

f. Release of water for irrigation will be made

from Lucky Peak Reservoir at such times and at such rates,

pursuant to rights established under law, as requested

by the owners thereof, or by officials or agencies

authorized to make such requests. Flood control releases

prescribed by the Chief of Engineers will be made in

such a manner as to cause minimum practicable short-time

fluctuations in the flow of the Boise River below Lucky
Peak Reservoir. Arrangements will be made to notify
the State Watermaster, and other officials upon request,
of contemplated significant changes in rate of release
from Lucky Peak Reservoir.

- g. The Chief of Engineers and the Commissioner of Reclamation may establish operating rules and regulations for the purpose of protecting from damage the dams and reservoirs being operated under their respective supervision but such rules and regulations shall, to the greatest extent practicable, avoid interference with the delivery of water accruing to rights established under law.
- h. In order to enhance the recreational value of Lucky Peak Reservoir after recession of the flood each year, that reservoir will be filled, if not already full from flood water storage or natural flow, by transfer of water from Arrowrock storage, and will be held full through September 15 each year except when Arrowrock Reservoir has been drawn down to a level from which it can no longer supply the irrigation requirements prior to that date, in which case irrigation releases will be made as required from Lucky Peak storage. In no case will storage be released from Anderson Ranch

(COPY)

Reservoir for the purpose of holding Lucky Peak Reservoir full for recreational purposes.

7

If operating experience indicates the desirability therefor or if justified by future changes or improvements in the Boise River system, the Chief of Engineers and the Commissioner of Reclamation or their duly authorized representatives, after consultation with the Reclamation Engineer of the State of Idaho or his authorized representative, the Watermaster, Boise River, and the Project Manager, Boise Project Board of Control, may, within the general objectives of this agreement, modify from time to time the operating plan herein described with respect to allowable releases and the amount of space allocated each year to flood control on the basis of advanced forecasts of runoff. However, no modification which would affect in any substantial way any storage rights in the reservoir system and Lake Lowell, shall be made without the concurrence of all entities having rights in the reservoir system and Lake Lowell.

8

If and when a power plant is installed at Lucky Peak Dam, it shall be operated in a manner consistent with this operating plan and in subordination to any water rights validly established under law.

(COPY)

9

This memorandum of agreement shall become effective when it has been formally accepted by the water users having storage rights in the reservoir system and Lake Lowell and after a revised allocation report for the Boise Project, supplemental to the report and finding of June 25, 1940, by the Secretary of the Interior (H. Doc. No. 916, 76th Cong., 3d Sess.), reflecting the flood control benefits based on the operating plan herein set forth, has been transmitted to the Congress.

10.

Except for the original execution thereof, this agreement shall be administered on behalf of the Department of the Army by the Thief of Engineers, representing the Corps of Engineers, and on beautiful of the Department of the Interior by the Commissioner of Reclamation, representing the Bureau of Reclamation, or their duly authorized representatives.

IN WITNESS WHEREOF, this memorandum of agreement has been executed as of the date first above stated.

DEPARTMENT OF THE ARMY

By /s/ Robert T. Stevens
Secretary of the Army

DEPARTMENT OF THE INTERIOR

Oct 30 1953

By /s/ Fred G. Aandahl
Assistant Secretary of the Interior

MEMORANDUM OF UNDERSTANDING for CONFIRMATION, RATIFICATION, AND ADOPTION OF WATER CONTROL MANUAL BOISE RIVER RESERVOIRS, BOISE RIVER, IDAHO

This Memorandum of Understanding is made and entered into by and between the Department of Army represented by the Division Engineer, Corps of Engineers, the authorized representative of the Chief of Engineers, hereinafter referred to as Corps, and the Department of Interior represented by the Regional Director, Pacific Northwest Region, Bureau of Reclamation, the authorized representative of the Secretary of Interior, hereinafter referred to as Bureau.

WITNESSETH

WHEREAS, the Boise River reservoirs (Anderson Ranch, Arrowrock, and Lucky Peak) have been regulated in accordance with a general operating plan and procedures developed by the parties pursuant to Article 6 of Memorandum of Agreement for Flood Control Operation of Boise River Reservoirs, dated 20 November 1953; and

WHEREAS, Article 7 of said Memorandum of Agreement provides that the operating plan and procedures may be changed or modified if operating experience indicates the desirability therefor, and future changes and improvements in the Boise River system are justified within the general objectives of the Agreement; and

WHEREAS, Department of the Army Engineer Regulation (ER) 1110-2-240, Engineering and Design, Water Control Management, 8 October 1982, and Engineer Technical Letter (ETL) 1110-2-251, Engineering and Design, Preparation of Water Control Manuals, 14 March 1980, prescribe that water control plans for such Federal projects be continually reviewed and adjusted to ensure that the best use is made of available water resources; and

WHEREAS, the Bureau and Corps, after consultation with the State of Idaho, Boise River Watermaster, and Project Manager of the Boise Project

Board of Control, have agreed based on past operating experiences that revision of the operating plan and procedures is needed to reflect current conditions, needs, and technology and have worked jointly to develop a Water Control Manual; and

WHEREAS, a final revision of the Water Control Manual has now been completed, reviewed, and approved by the Bureau, Corps, and State of Idaho.

NOW THEREFORE, the parties hereby confirm, ratify, and adopt Water Control Manual dated April 1985 as an integral part of "Memorandum of Agreement for Flood Control Operation of Boise River Reservoirs," dated 20 November 1953, and further agree that:

- a. The Water Control Manual shall constitute the current operating plan and procedures until further changed or modified by the parties in accordance with Article 7 of the Memorandum of Agreement and paragraph e. hereof.
- b. The Bureau, as project owner, shall be responsible for the operation and maintenance of the Anderson Ranch and Arrowrock Dams and related facilities subject to the reservoir regulation objectives established by the Water Control Manual in paragraph a.
- c. The Corps, as project owner, shall be responsible for the operation and maintenance of the Lucky Peak Dam and related facilities subject to the regulation objectives established by the Water Control Manual in paragraph a.
- d. The Bureau and the Corps shall regulate Anderson Ranch, Arrow-rock, and Lucky Peak Dams jointly as a system in accordance with regulation criteria and procedures within the Water Control Manual for Boise River reservoirs.
- e. Portions of the Water Control Manual for Boise River reservoirs may be updated from time to time as conditions warrant. Any portion of this manual which is revised shall be labeled as revised and shall show the date of revision. Either party may propose revisions to the Water Control Manual, but such proposed revision shall not be adopted or become

f. All terms and provisions of Memorandum of Agreement dated 20 November 1953 not inconsistent with this Memorandum of Understanding and the Water Control Manual shall remain in full force and effect.

THIS AGREEMENT shall become effective on the date of the last-dated signature hereto.

L. W. Lloyd

Regional Director

Pacific Northwest Region

Bureau of Reclamation

Authorized Representative of the Secretary of Interior

Lloyd

Division Engineer North Pacific Division Authorized Representative of

the Chief of Engineers

Brigadier General, Corps of Engineers

DATE 9/25/85

DATE 21 JUN 85

George R. Robertson