WATER CONTROL MANUAL

FOR

DWORSHAK DAM AND RESERVOIR

NORTH FORK

CLEARWATER RIVER, IDAHO

U.S. ARMY CORPS OF ENGINEERS

WALLA WALLA DISTRICT

NOVEMBER 1986

TABLE OF CONTENTS

Photographs	i
Notice To Users of This Manual	V
Emergency Regulation Assistance Procedures Pertinent Data	vi a
	a
1 INTRODUCTION	1-1
1-01 Authorization.	1-1
1-02 Purpose and Scope.	1-1
1-03 Related Manuals and Reports.	1-1
1-04 Project Owner and Operator.	1-2
1-05 Operating Agency.	1-2
1-06 Regulating Agencies.	1-2
2 DESCRIPTION OF PROJECT	2-3
2-01 Location.	2-3
2-02 Purpose.	2-3
2-03 Physical Components.	2-3
2-04 Related Control Facilities.	2-11
2-05 Real Estate Acquisition.	2-12
2-06 Public Facilities.	2-12
3 HISTORY OF PROJECT	3-1
3-01 Authorization.	3-1
3-02 Planning and Design.	3-1
3-03 Construction.	3-1
3-04 Related Projects.	3-3
3-05 Principal Regulation Problems.	3-3
4 WATERSHED CHARACTERISTICS	4-1
4-01 General Characteristics.	4-1
4-02 Topography.	4-1
4-03 Geology and Soils.	4-2
4-04 Sediment.	4-2
4-05 Climate.	4-3
4-06 Storms and Floods.	4-6
4-07 Runoff Characteristics.	4-8
4-08 Water Quality.4-09 Channel and Floodway Characteristics.	4-13 4-17
J	4-17 4-18
4-10 Upstream Structures.4-11 Downstream Structures.	4-18
4-11 Downstream Structures. 4-12 Economic Data.	4-18
	4-19
5 DATA COLLECTION AND COMMUNICATION NE	
5-01 Hydrometeorological Stations.	5-1
5-02 Water Quality Stations.	5-5

	5-03	Sediment Stations.	5-6
	5-04	Recording Hydrologic Data.	5-6
	5-05	Communication Network.	5-6
	5-06	Communication with Project.	5-6
	5-07	Project Reporting Instructions.	5-7
	5-08	Warnings.	5-7
6	HYDR	OLOGIC FORECASTS	6-1
	6-01	General.	6-1
	6-02	Flood Condition Forecasts.	6-1
	6-03	Conservation Purpose Forecasts.	6-1
	6-04	Long Range Forecasts.	6-1
	6-05	Drought Forecasts.	6-1
	6-06	Seasonal Runoff Volume Forecasts.	6-2
7	WATE 7-01 7-02 7-03 7-04 7-05 7-06 7-07 7-08 7-09 7-10 7-11 7-12 7-13 7-14 7-15 7-16	R CONTROL PLAN General Objectives. Constraints. Overall Plan for Water Control. Standing Instructions to Dam Tenders. Flood Control. Recreation. Water Quality. Fish and Wildlife. Water Supply. Hydroelectric Power. Navigation. Drought Contingency Plans Flood Emergency Action Plans Other Deviation from Normal Regulation Rate of Release Change	7-1 7-1 7-4 7-5 7-6 7-10 7-11 7-11 7-12 7-12 7-12 7-12 7-15 7-16 7-16 7-16 7-16 7-18
8	EFFE	CT OF WATER CONTROL PLAN	8-1
	8-01	General.	8-1
	8-02	Flood Control.	8-2
	8-03	Recreation.	8-7
	8-04	Water Quality.	8-8
	8-05	Fish and Wildlife.	8-8
9	WATE	R CONTROL MANAGEMENT	9-1
	9-01	Responsibilities and Organization.	9-1
	9-02	Interagency Coordination.	9-2
	9-03	Interagency Agreements.	9-6
	9-04	Commissions, River Authorities, Compacts and Committees.	9-7
	9-05	Non-Federal Hydropower.	9-7
	9-06	Reports.	9-7

<u>Tables</u>

<u>No.</u>

- 2-1 Spillway Rating (2 Sheets)
- 2-2 Single Outlet Discharge in 1,000 Cfs
- 2-3 90-MW Unit Discharge Rating (2 Sheets)
- 2-4 220-MW Unit Discharge Rating (5 Sheets)
- 2-5 Dworshak Reservoir near Ahsahka, Idaho, Storage Capacity in 1,000 Acre Feet (7 Sheets)
- 2-6 Dworshak Public Recreation Facilities
- 4-1 Extremes for Average Maximum Monthly Temperatures
- 4-2 Extremes for Average Minimum Monthly Temperatures
- 4-3 Monthly Extreme Maximum and Minimum Temperatures
- 4-4 Total Monthly Precipitation
- 4-5 Clearwater Basin Maximum 24-Hour Precipitation
- 4-6 Clearwater River Basin Average Snow Water Content
- 4-7 Total Evaporation in Inches
- 4-8 Spring Snowmelt Floods Summary of Unregulated Discharge and Runoff at Dworshak
- 4-9 Winter Rainstorm and Snowmelt Floods Summary of Unregulated Discharge and Runoff at Dworshak
- 4-10 Spring Snowmelt Floods Summary of Unregulated Discharge and Runoff at Spalding
- 4-11 Winter Rainstorm and Snowmelt Floods Summary of Unregulated Discharge and Runoff at Spalding
- 4-12 Key Gauging Stations
- 4-13 North Fork Clearwater River near Canyon Ranger Station Monthly Discharge Volume in 1,000 Acre-Feet
- 4-14 Dworshak Reservoir Unregulated Monthly Inflow Volume in 1,000 Acre-Feet (2 Sheets)
- 4-15 Clearwater River at Orofino Monthly Discharge Volume in 1,000 Acre-Feet
- 4-16 Clearwater River at Spalding Unregulated Monthly Discharge Volume in 1,000 Acre-Feet (2 Sheets)
- 4-17 Summary of Unregulated Low Runoff and Discharge Data North Fork Clearwater River at Dworshak Dam site
- 4-18 Summary of Unregulated Low Runoff and Discharge Data Clearwater River at Spalding
- 4-19 Maximum and Minimum Secchi Disc Readings in Feet North Fork Clearwater River, Dworshak Reservoir
- 4-20 Clearwater River Basin Average Monthly Water Temperatures
- 4-21 Dissolved Gas Reading North Fork Clearwater River at Dworshak National Fish Hatchery
- 4-22 Summary for Dworshak Daily Spill in Cfs (2 Sheets)
- 6-1 Reservoir Project Data for Columbia River Basin Flood Control System

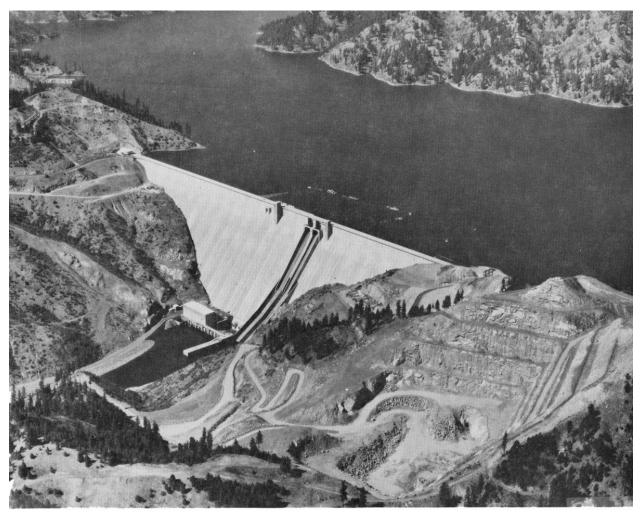
- 7-1 Project Release Limitations
- 7-2 Summary of Fall Drawdown Requirement
- 7-3 Dworshak Operational Constraints
- 8-1 Dworshak Dam Regulated Discharge Runoff Volume Summary
- 8-2 Clearwater River at Spalding Regulated Flow Runoff Volume Summary

<u>Plates</u>

- 2-1 Project Location Map
- 2-2.1 General Plan
- 2-2.2 Dam Elevations Upstream and Downstream Views
- 2-2.3 Spillway and Outlets Plan and Section
- 2-2.4 Isometric view Galleries, Penstocks, and Outlets
- 2-3.1 Spillway Gates Elevation and Arrangement
- 2-3.2 Spillway Rating Curves
- 2-4.1 Outlet Works Sections
- 2-4.2 Single Outlet Rating Curves
- 2-5.1 Selector Gates Plan, Elevation, and Sections
- 2-5.2 Selector Gate Position Overshot Operation at Pool El. 1600
- 2-5.3 Selector Gate Position Overshot Operation at Pool El. 1500
- 2-5.4 Selector Gate Position Undershot Operation at Pool El. 1445
- 2-6.1 90 MW Unit Discharge Rating Curves
- 2-6.2 220 MW Unit Discharge Rating Curves
- 2-6.3 Powerhouse Plans at Elevations 988 and 1005
- 2-6.4 Powerhouse Arrangement Transverse Section at Bays 1 and 2
- 2-6.5 Powerhouse Arrangement Transverse Section at Bays 3 to 6
- 2-7 Tailwater Rating Curves At River Mile 1.69
- 2-8 Tailwater Rating Curves At Powerhouse Units 3 and 6
- 2-9 Lake and Land Use Map (3 Sheets)
- 2-10 Regional Recreational Map
- 4-1 Basin Map
- 4-2 Summary Hydrographs North Fork Clearwater River near Canyon Ranger Station
- 4-3 Summary Hydrographs Dworshak Reservoir near Ahsahka, Idaho Unregulated Inflow
- 4-4 Annual Hydrographs Dworshak Reservoir near Ahsahka, Idaho Unregulated Inflow (4 Sheets)
- 4-5 Summary Hydrographs Clearwater River at Orofino Unregulated Discharge
- 4-6 Summary Hydrographs Clearwater River at Spalding Unregulated Discharge
- 4-7 Typical Reservoir Temperature Profiles
- 5-1 Automated Hydromet Network Location Map

- 7-1 Flood Regulation Examples
- 7-2 Regulation of the Probable Maximum Flood
- 8-1 Operating Curves For Flood Control
- 8-2 Variable Refill Curves
- 8-3.1 Annual Peak Discharge Frequencies North Fork Clearwater River near Ahsahka
- 8-3.2 Annual Peak Discharge Frequencies Clearwater River at Spalding
- 8-3.3 Summary Hydrographs Dworshak Reservoir near Ahsahka, Idaho Regulated Discharge
- 8-3.4 Summary Hydrographs Clearwater Reservoir at Spalding, Idaho Regulated Discharge
- 8-4 Annual Peak Discharge Frequencies Snake River at Lower Granite Dam
- 8-5 Annual Maximum Volume Frequencies

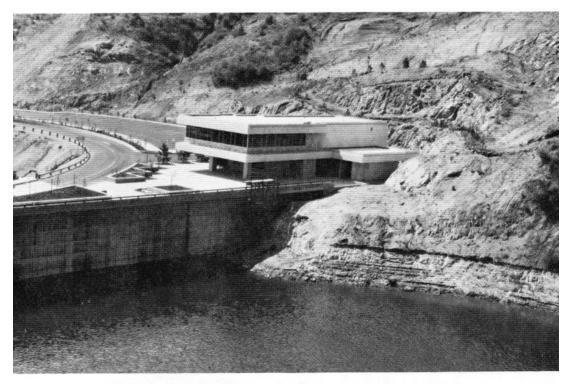
Figures


- 2-1 Boat Launch Ramps Usable Access
- 4-1 Regional Geology
- 5-1 CROHMS Network Diagram

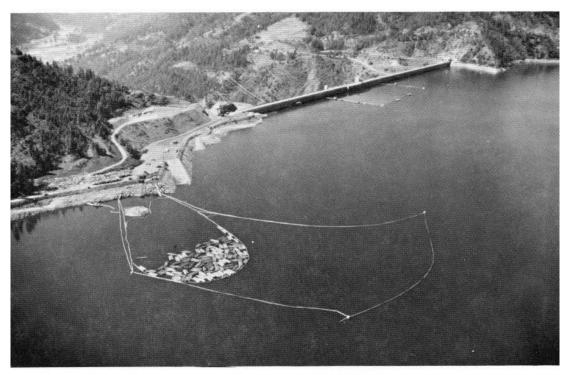
Exhibits

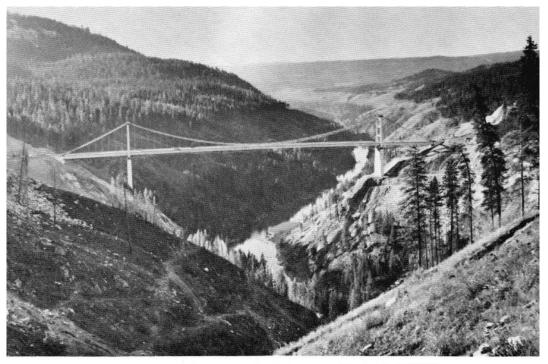
- 1 Flood Control
- 1-1 Design Memorandums
- 6-1 Dworshak Unregulated Inflow Volume Forecast Procedure
- 7-1 Dworshak Reservoir Variable Refill Curve May, Sample Computation through May 7
- 7-2 Historical Review of Dworshak Operation, January 1994

Add'I Memorandum of Understanding Between the Clearwater Fish Hatchery, Dworshak National Fish Hatchery and the US Army Corps of Engineers Dworshak Project For the Operation and Entrance Requirements for the Hatchery Water Supply System


PHOTOGRAPHS

DWORSHAK DAM AND RESERVOIR


Dworshak National Fish Hatchery


Visitors Facility

Resource Office And Heliport

Log Handling Facilities

Dent Bridge - Before Pool Filling

Dent Bridge - After Pool Filling

NOTICE TO USERS OF THIS MANUAL

Regulations specify that this Water Control Manual be published in loose leaf form, and only those sections, or parts thereof, requiring changes will be revised and printed. Therefore, this copy should be preserved in good condition so that inserts can be 2made to keep the manual current.

As a continuing program it will be necessary to revise portions of this manual annually in order to keep it up to date. Revisions to this manual will be made by the Walla Walla District's Planning Division (Hydrology Branch). Pertinent discharge rating tables must be revised when changes become evident in the stage-discharge relation; likewise, changes in the plan of operation will be made for the purpose of improving regulation technique, and project developments may occur which require revision of the information presented in the manual. Whenever revisions are necessary, new pages containing the revised material will be printed with the date of revision and issued to each person having a copy of the manual to that substitution may be made.

(3) Flooding and damage caused by earthquakes, sabotage, cracking equipment malfunction, leakage, and foundation failures.

Catastrophic floods should be coordinated according to existing criteria within the Flood Emergency Subplans – Dworshak Dam, North Fork Clearwater River, Idaho, U.S. Army Engineer District, Walla Walla August 1982.

Equipment failures that would prevent the controlled discharge of water passing through the project powerhouse or spillway would be an emergency and should be coordinated according to criteria within Operation and Maintenance (O&M) Manual - Dworshak Dam - North Fork Clearwater River, Idaho, U.S. Army Engineer District, Walla Walla, December 1977.

Project function emergencies affecting power generation are the responsibility of the Dworshak Project Engineer or his representative. If an emergency occurs or appears to be developing, the Project Engineer will contact the Walla Walla District, Chief, OCR Division, for instructions. If the nature of the emergency is such as to require immediate action, the Project Engineer may take necessary action and report to Chief, OCR Division as soon as possible. The Bonneville Power Administration (BPA) dispatcher will be notified of any emergency which may affect power production.

National type emergencies should be coordinated according to Annex K, Appendix 3, of the Walla Walla District Continuity of Operations Plan, which describes actions to be taken at Dworshak project under various types of national emergencies (terrorist attack, sabotage, nuclear war, etc.). The project can be used as a public fallout shelter during a nuclear attack situation.

PERTINENT DATA

Corps of Engineers North Pacific Division, Portland, Oregon

OENERVIE	
River Mile	1.9
Drainage area, square miles	2,440
Effective hydraulic height, feet	632
Maximum structural height, feet	717
Overall length at crest, feet	3,237
Stream flow, cfs: Minimum of record Mean annual Maximum of record	250 5,727 100,000
Stream flow, acre-feet: Minimum annual Mean annual Maximum of record	2,157,000 4,100,000 6,680,000
Standard project flood peaks, cfs: Winter Spring	160,000 120,000
Probable design discharges, cfs: At pool elevation 1445 At pool elevation 1600 Spillway Outlets Total at elevation 1600 Total at surcharge pool elevation 1604.7	32,290 150,000 40,000 190,000 220,000
Tailwater elevations: Minimum, discharge 1,000 cfs Maximum, at discharge 150,000 cfs	968 1,003.4
First power-on-line	1 March 1973

GENERAL

ESTIMATED COST As of 1 July 1973	\$302,000,000
RESERVOIR Elevation, feet: Maximum design pool Maximum operating pool Normal operation range	1,605 1,600 1,445-1,600
Storage capacity, acre-feet: Gross Usable, flood control and power	3,468,000 2,016,000
Length at elevation 1600, miles	53.6
Shoreline length, miles	175
Surface areas, acres: At elevation 1600 At elevation 1445	17,090 9,050
Recreation sites, number: Initial Ultimate	7 19
<u>DAM</u> Type	Concrete Gravity
Crest elevation	1613
Deck width, feet	44
Concrete volume, yards	6,500,000
Upstream slope	Vertical
Downstream slope	Vertical above elevation 1560, 1V on 0.8H below
Elevators, number	3
<u>SPILLWAY</u> Type	Gate controlled, with stilling basin
Gates: Type Size, width by height, feet Number	Tainter 50 x 56.4 2
Crest elevation	1545
Crane, one, capacity, tons	50

PERMANENT OUTLET

Water passages: Number Type Size, feet	3 Conduit 12 x 17
Valves, type and number: Tainter Tractor (emergency)	3 1
Intake centerline elevation	1362
<u>POWERPLANT</u> Initial installation: Number of units Nameplate rating, kilowatts: Two, each One Total	3 90,000 220,000 400,000
Ultimate installation: Number of units Nameplate rating, kilowatts: Two, each Four, each Total	6 90,000 220,000 1,060,000
Powerhouse, length, feet	428
Turbine type	Francis
Turbine ratings, horsepower: Small units Large units	142,000 346,000
Synchronous speed, revolutions per minute: Small units Large units	200 128.6
Distributor centerline elevations: Small units Large units	969 975
Spacing, feet: Small units Large units	47 65

Penstock diameters: Small units Large units	12 19
Penstock intake elevations, feet msl: Small units Large units	1,420.68 1,412.70
Gross head, feet	632
Rated head, feet	560
Minimum head, feet	477
Crane: Number Type Capacity, each, tons <u>RELOCATIONS</u> Roads, miles:	2 Bridge 350
Highway districts County	2.7 24.3
Bridges, number	2
FISH HATCHERY, STEELHEAD Attraction water pump capacity, cfs	255
Capacity, adult size	6,000
Yearly fingerling release: Estimated number Estimated total weight, pounds	3,360,000 420,000

1 INTRODUCTION

1-01 Authorization.

This Water Control Manual has been prepared according to authority contained in Section 7 of ER 1110-2-240, "Engineering and Design - Water Control Management," dated 8 October 1982. The format and content of this manual are in accordance with criteria set forth in EM 1110-2-3600, dated 25 May 1959, and ETL 1110-2-251, "Engineering and Design - Preparation of Water Control Manuals," dated 14 March 1980.

1-02 Purpose and Scope.

The purpose of this manual is to present information pertinent to the regulation of Dworshak Reservoir and to provide a reference source for higher authority and personnel responsible for the regulation of Dworshak for flood control, power production, recreation, and conservation uses. Criteria and information within this manual replace the contents of the "Preliminary Reservoir Regulation Manual" for Dworshak Dam and Reservoir, U.S. Army Engineer District, Walla Walla, October 1974. Items discussed within this manual are as follows:

- a. History of project.
- b. Description of project.
- c. Basin characteristics.
- d. Data collection and communication networks.
- e. Water control management.
- f. Hydrologic forecasts.
- g. Water control plan.
- h. Effect of water control plan.

1-03 Related Manuals and Reports.

A list of published design memoranda is provided in Exhibit 1-1 of this manual. The following list outlines manuals and reports which contain information and data pertinent to Dworshak Dam and Reservoir Water Control Manual.

a. Design Memorandum No. 1 - Hydrology, 15 December 1960.

b. General Design Memorandum (3 Volumes), 15 September 1961.

c. Preliminary Reservoir Regulation Manual - Dworshak Dam and Reservoir, Idaho; U.S. Army Engineer District, Walla Walla, October 1974.

d. Final Environmental Impact Statement - Dworshak Dam and Reservoir, Idaho; U.S. Army Engineer District, Walla Walla, September 1975.

e. Operation and Maintenance Manual - Dworshak Dam (3 Volumes); U.S. Army Engineer District, Walla Walla, December 1977.

f. Flood Emergency Subplans - Identification, Operation, Repair, Notification, and Inundation Maps - Dworshak Dam and Reservoir, Idaho; U.S. Army Engineer District, August 1982.

g. Hydraulic Model Investigation, Technical Report No. 116-1, Dworshak Dam - North Fork Clearwater River, Idaho, September 1984.

- h. Columbia River Basin Master Water Control Manual, December 1984.
- i. Design Memorandum No. 26 Dworshak Master Plan, Volume I, July 1985.

1-04 Project Owner and Operator.

The Federal Government owns the Dworshak Project. The Walla Walla District Corps of Engineers is responsible for the operation and maintenance of the Dworshak Project and its facilities.

1-05 Operating Agency.

See 1-04 Project Owner and Operator.

1-06 Regulating Agencies.

The regulation of Dworshak for maximum benefits related to flood control, power generation, and downstream fisheries requires close cooperation and coordination between the Corps of Engineers, Bonneville Power Administration, Fish and Game agencies, and others. The North Pacific Division Corps of Engineers is responsible for the daily water regulation of Dworshak. The Bonneville Power Administration is authorized to market electrical energy generated from Dworshak and other Federal agencies. Section 9 - WATER CONTROL MANAGEMENT outlines organization responsibilities of the key agencies connected with the management of Dworshak and other Corps of Engineers, North Pacific Division, projects.

2 DESCRIPTION OF PROJECT

2-01 Location.

The following data outlines the location of Dworshak Dam. Plate 2-1 shows the geographical location of the project.

Stream:	North Fork of the Clearwater River		
River Mile:	1.9 (North Fork)		
Drainage Basin:	Clearwater River		
Drainage Area:	2,440 Square Miles		
State:	Idaho		
County:	Clearwater		

Location from nearby communities (approximate road mileage):

2 miles north Ahsahka 4 miles west of Orofino 40 miles east of Lewiston

2-02 Purpose.

Dworshak Dam is a multipurpose project which controls water from the 2,440-squaremile drainage area above the dam. The project is operated for flood control protection, power generation, recreation, water quality, and fish and wildlife uses. Refer to Section 7 - WATER CONTROL PLAN for project use priorities and regulation plans.

2-03 Physical Components.

The following paragraphs discuss in general terms the physical components of Dworshak Dam and Reservoir. The Dworshak Dam Operation and Maintenance Manual (3 volumes), December 1977, provides detail on the operation and maintenance of the project's physical components. A general plan of the dam is shown on Plate 2-2.1. Dam elevations for upstream and downstream views are shown on Plate 2-2.2. Plan and sections of the spillway and outlets are shown on Plate 2-2.3, and an isometric view of the galleries, penstocks, and outlets is shown on Plate 2-2.4.

a. <u>Dam</u>.

Dworshak Dam is a straight concrete-gravity structure which has a maximum structural height of 717 feet, a hydraulic height of 632 feet, and a crest length of 3,287 feet. The crest width is 44 feet and provides a 28-foot roadway, curb to curb. The width of the structure under the roadway is 30 feet, and the maximum base width is 574 feet. The back slope of the dam, starting at elevation 1,560 is 1V on .8H and slopes to the

powerhouse deck at elevation 1,005. The structure contains approximately 6,500,000 cubic yards of concrete.

b. <u>Spillway</u>.

The spillway is located on the dam towards the left abutment, with the centerline on the construction base line. The spillway consists of a concrete chute extending down the back slope of the dam from ogee crest elevation 1,545 to the stilling basin floor at elevation 931. The spillway crest width is 122 feet, consisting of two 50-foot bays and one 22-foot center pier.

Discharge over the spillway is regulated by two 50-foot-wide x 56.4-foot-high tainter gates. Plate 2-3.1 shows the spillway gate elevation and arrangement. The tainter gate elements consist of the skin-plate assembly, horizontal girders, side frames, and trunnion anchorage. Low-alloy steel is used for the skin plate and ribs, and the balance of the gate is fabricated from steel. The two spillway gates are operated by individual hoists. Each drive-hoist unit is powered by a 10-Hp, 3-phase, 480-volt splashproof induction motor which is locally controlled at the hoists. Refer to Dworshak Dam Operation Manual, Volume 2, Part II - Operation and Maintenance, for details on operation of spillway gate machinery. The tops of the spillway gates in the closed position are at elevation 1,600.65. The design capacity of the two gates at full pool elevation 1,600 feet is 157,000 cfs at the full-open position (bottom of gates at 1,596). The combined spillway and outlet capacities at maximum design pool (1,605 feet) meet the requirement for passing the regulated probable maximum flood of 220,000 cfs. Outlet capacity at maximum design pool (1,605 feet) is 40,000 cfs. The spillway discharge ratings are shown in Table 2-1 and on Plate 2-3.2.

During freezing weather, the side seal plates and sill beams for the two spillway gates can be heated to protect the seals from ice damage. Heating is by electrically heated oil circulated through tubing embedded behind the seal plates and sill beams. Equipment and controls for heating gate seals are located in the 1,603.5 gallery directly above the spillway.

A spillway stilling basin is located directly below the spillway. The stilling basin is excavated in rock and is lined with reinforced concrete. The structure is 115.4 feet wide by 270 feet long. The concrete floor of the basin is at invert elevation 931, and the top of the end sill is at elevation 951. From the end sill downstream, the stilling basin is in rock that is cut on a slope of 1 foot vertical to 4 feet horizontal (1V on 4H). Stilling basin design capacity is 40,000 cfs. The regulated probable maximum flood is 220,000 cfs. Regulated releases into the stilling basin would be approximately 180,000 cfs from the spillway and 40,000 cfs from the three outlet conduits.

Tailwater curves, as determined by backwater and model studies, are shown on Plate 2-7 and Plate 2-8, respectively.

c. Outlet Works.

Three outlets are available for evacuation of reservoir storage below the spillway crest (elevation 1,545). The center outlet is located beneath the intermediate pier which separates the two spillway bays. The other two outlets are also located beneath the spillway, but these outlets flank the spillway gates. Discharge capacity of the three outlets varies from 23,100 cfs at minimum pool elevation 1,445 feet to 39,750 cfs at full pool elevation 1,600 feet. The outlets all seal at elevation 1,350 by hydraulically operated tainter valves. The tainter valves are 9 feet wide by 12.5 feet high. Plate 2-4.1 shows details of the tainter valve and gate slot arrangement for each of the outlet conduits. The discharge ratings of the valves are shown in Table 2-2 and graphically displayed on Plate 2-4.2.

(1). Aeration Deflectors.

In 1984, aeration deflectors were installed in the outlets to increase the amount of air entrained in the flow through the outlets. Air entrained flow will reduce the potential for cavitation damage along the walls and floor of the three outlet conduits.

(2). Emergency Gate.

Slots have been provided downstream from the intake bellmouth of each of the outlet conduits to accommodate a fixed wheel emergency gate. Only one emergency gate is provided which is lowered into the slots by use of a 50-ton gantry crane. Emergency gate slots can be used during spillway operation. Additional weight was added to the emergency gate in 1984 to insure closure capability of a regulating outlet during an emergency.

(3). Tainter Valves.

The tainter valves are an eccentric-trunnion type and are 9 feet wide by 12.5 feet high. The principal elements of a valve are the skin-plate assembly, vertical girders, struts, and trunnions. Modified low-alloy steel is used for the skin plate, and the balance of the gate is fabricated from steel. The valve struts are bolted to the trunnion arms with highstrength bolts for future removal of the valve, if necessary.

Valve operation consists of three phases: retraction, raising or lowering, and sealing. Rotation of the eccentric-trunnion shafts by a pivoted hydraulic cylinder and lever arm arrangement either advances or retracts the valve 3/4 inch. Each valve is raised or lowered by another pivot-mouthed hydraulic cylinder. Individual hydraulic systems are provided for each tainter valve and serve both the operating cylinder and the cylinder which operates the eccentric.

Approximate valve operating times, including retraction and sealing operations, are 2-1/4 minutes for raising completely and 3 minutes for lowering from the full raised position. A complete set of operating controls, position sensing devices, and indicators

are provided for each valve machinery room. Remote controls and indicators are provided in the powerhouse. A 100-kW emergency generator is located in the electrical room (elevation 1,580) in monolith 25 for supplying power for operation of spillway and outlet gates during an interruption in the regular power supply.

d. Multilevel Selector Gates.

The power intakes are equipped with adjustable gates for selective withdrawal of water from full pool elevation 1,600 to minimum pool elevation 1,445. The selector gate withdrawal system is used to discharge water at a temperature suitable for fish production at the downstream Dworshak National Fish Hatchery. Initial and future selector gate installations are located in monoliths 21 to 26, inclusive, and adjacent to the spillway and outlets. The plan, elevation, and section of the selector gate structure are shown on Plate 2-5.1. The as-built installation of selector gates is located in monoliths 24, 25, and 26 for the two 90-MW units and the single 220-MW unit, respectively. Future selector gates will be installed in the power intake structures of monoliths 21, 22, and 23. The penstock for the future units, nos. 4, 5, and 6, is closed on the upper end by a welded steel hemispherical bulkhead. The power intakes have a hydraulic capacity of 2,600 cfs each of the 90-MW units and 6,000 cfs for the 220-MW unit.

The 90-MW units are equipped with two selector gates - one master and one slave. The 220-MW unit is equipped with three selector gates - one master and two slaves. Each gate assembly (175-foot string) has been selected for fit and should not be considered to be interchangeable with any other 175-foot string. Nor is any segment of a gate assembly considered interchangeable with any other segment in the 175-foot string. Each gate assembly is 17 feet 3 inches wide by 175 feet long and is composed of eight segments with overall dimensions of 21 feet 1-1/2 inches long and a 6-foot top segment. The selector gates are a welded structural steel assembly and slide in stainless steel guides, which are embedded in concrete piers from elevations 1,290 to 1,613.5. Each selector gate assembly is equipped with an independent hoisting mechanism. The position of each gate is indicated on the gate hoist drum. The slave gate follows the movement of the master gate, and position of these gates is normally the same. A differential setting between the master and slave gates can be set manually, if necessary. The selector gate assembly for each power intake can either be operated manually from the top of the dam or remotely from the powerhouse control room. The amount of gate submergence (pool elevation minus top of gate elevation) is displayed in the control room. The design lifting speed of the selector gate varies from 2 to 4 feet per minute depending on the gate position.

The selector gate design is such that water either flows over the top of the gate (overshot) or under the bottom of the gate (undershot). The reservoir elevation range for an overshot operation is 1,500 to 1,600. During the overshot operation, the selector gate covers the intake opening completely, and a minimum design submergence restriction of 30 feet must not be violated. Gate submergence of less than 30 feet will starve the turbine and result in excessive differential head on the gate. Therefore, a

minimum operating submergence of 35 feet will be adhered to unless otherwise directed. There is no restriction on greater submergence except that the top of the gate should not be lowered past elevation 1,465 since this is the effective wire rope limit on the gate hoist. See Plate 2-5.2 and Plate 2-5.3 for examples of typical gate positions for overshot operation.

For the undershot operation, the reservoir elevation range can be 1,445 to 1,600. The gate position is constant with the gate top elevation at 1,610 and the bottom elevation at 1,435. This setting provides a 40-foot flow opening under the gate. During the undershot operation, the selector gate must not be lowered because any lowering of the gate reduces the required 40-foot flow opening, starves the turbine, and causes excess differential head on the gate. Plate 2-5.4 shows the selector gate position during undershot operation.

Twenty-one temperature sensors located along the upstream face of the dam determine the water column temperatures immediately upstream of the dam. T1 through T4 are floating sensors and follow reservoir fluctuations. T5 through T21 are located at fixed elevations. In addition, one temperature sensor, T-21, is located on the downstream side of the dam on the pier nose of powerhouse bay number 2. These temperature sensors are read at least once a day from Monday through Friday by the project personnel. The following tabulation lists the Dworshak temperature sensor locations:

Temperature Sensor	Measurement Elevation (ft. msl)
T1	1 ft. below pool elevation
T2	5 ft. below pool elevation
T3	10 ft. below pool elevation
T4	20 ft. below pool elevation
Т5	1,574
Т6	1,549
Τ7	1,524
T8	1,499
Т9	1,474
T10	1,449
T11	1,424
T12	1,399
T13	1,374
T14	1,349
T15	1,324
T16	1,299
T17	1,249
T18	1,199
T19	1,149
T20	1,099
T21	1,049
(PIER NOSE - POWERHOUSE BAY NO. 2)	950

e. Power Facilities.

An indoor-type powerhouse encloses the turbine-generator units, assembly area, control room, and maintenance facilities. Initial installation includes two 90-MW generating units and one 220-MW generating unit. Skeleton facilities are provided for future installation of three additional 220-MW units. The Francis-type turbines for the 90-MW units are set at centerline distributor set at 975. The synchronous speed of the small units is 200 rpm, and 128.6 rpm for the large unit. Penstocks for the small units are 12 feet in diameter and 19 feet for the large units. Also, two 350-ton capacity bridge-type cranes are provided to facilitate assembly and maintenance of the units. Turbine generator unit rating curves are shown on Table 2-3 and Table 2-4 and graphically on Plate 2-6.1 and Plate 2-6.2. Powerhouse plans at elevations 988 and 1,005 are shown on Plate 2-6.3. Transverse sections of the 90-MW units and the 220-MW units are shown on Plate 2-6.4 and Plate 2-6.5, respectively.

The control room structure houses equipment rooms, operating personnel, and visitor facilities. The powerhouse is protected against floodwater up to elevation 1,005, which corresponds to the powerhouse main floor elevation (see Plate 2-6.4 for details). The regulated winter standard project flood is 75,000 cfs, which corresponds to a computed tailwater elevation of 996.5 at a point 1,000 feet below the axis of the dam

with thalweg of 962 (see Plate 2-7, Tailwater Rating Curves at River Mile 1.69, and Plate 2-8, Tailwater Rating Curves at Powerhouse).

f. <u>Reservoir</u>.

Dworshak Reservoir lies within narrow, steep canyons of the North Fork Clearwater River. The reservoir extends 53.6 miles upstream of the North Fork at full pool elevation 1,600 feet msl. There are two major tributary arms on the right bank - Elk Creek, about 7 miles long, and Little North Fork, nearly 6 miles long. The reservoir's shoreline is 175 miles at full pool. The widest sections of the reservoir are in the lower one-third of its length, where the widths range generally from about ½ to 1 mile with the widest point at the mouth of Elk Creek being nearly 2 miles. The upper two thirds of the reservoir is much narrower, ranging mostly between 1,000 and 2,000 feet. The following tabulation outlines key reservoir elevations and capacity allocations.

DWORSHAK RESERVOIR

Reservoir Element	Elevation
Crest of Dam	1,613.0
Maximum Design Water Surface	1,604.9
Normal Full Pool	1,600.0
Top of Inactive Pool	1,445.0
Top of Dead Storage Pool	1,350.0
Streambed at Dam Axis	970.0

Storage Element	Allocation	Elevation Range
Freeboard	1,604.9 to 1,613.0	8.1 Feet
Surcharge	1,600.0 to 1,604.9	92,000 A.F
Total Active Capacity	1,445.0 to 1,600.0	2,016,000 A.F
Inactive	1,350.0 to 1,445.0	682,000 A.F
Dead	970.0 to 1,350.0	770,000 A.F
Total Capacity	970.0 to 1,600.0	3,468,000 A.F

Table 2-5 lists the elevation-capacity-surface area data. The reservoir configuration is shown on Plate 2-9.

g. Shoreline and Shoreline Access

. The region surrounding the reservoir, comprising much of the St. Joe and Clearwater National Forests, is a vast mountainous area without well-developed, allweather public roads. Most of the right bank of the reservoir has south-facing slopes with scattered outcroppings of timber, while the left bank with generally northerly slopes supports a moderately dense forest growth. There is a rather extensive network of private logging roads which are mostly unsurfaced, strictly dry-weather roads on which public traffic is permitted except during periods of high fire hazard. Its extreme inaccessibility is a dominant characteristic of the Dworshak Reservoir area. Public access to the reservoir shoreline by roadway is available at only six locations. Two bridges were constructed across the reservoir as part of the project development. They are Dent Bridge at river mile 16.8 and Grandad Bridge at river mile 40.5. There are no fixed-wing aircraft landing strips within the project boundary, but a marked heliport is located near the left abutment of the dam. Plate 2-9 shows land use classifications of project lands around the reservoir for specific uses.

h. Fish Hatchery.

Dworshak does not have fish passage facilities; consequently, migrations of anadromous fishes are blocked at that location. In order to mitigate these fish losses and resident fish losses, a steelhead fish hatchery has been constructed on the point of land between the North Fork and the main stem of the Clearwater. The Dworshak National Fish Hatchery is the world's largest steelhead trout hatchery and is completely automated. The multilevel selector gates at Dworshak are used to control project discharge temperatures that are suitable for hatchery use. In addition, the hatchery is equipped to warm or cool water as necessary to maintain desired water temperatures in the rearing ponds.

The hatchery's annual production goal is 520,000 pounds of fish; 420,000 pounds will be steelhead smolts which are necessary to ensure sufficient adult returns annually to the hatchery. The additional 100,000 pounds will be freshwater fish, rainbow and kokanee, for reservoir planting to mitigate resident fishery losses. Since the hatchery began operation in October 1968, annual production goals have not yet been fully achieved because of various factors such as fishery diseases, insufficient run size, and equipment malfunction. The following tabulation is a summary of the hatchery's total annual production from 1970 to 1984.

DWORSHAK NATIONAL FISH HATCHERY PRODUCTION RECORDS					
	Fall				
Year	Steelhead	Kokanee	Rainbow	Cutthroat	Chinook
	(lbs.)	(lbs.)	(lbs.)	(lbs.)	(lbs.)
1970	189,871	None	None	None	None
1971	415,046	None	None	None	None
1972	168,983	10,176	99,941	None	None
1973	306,833	393	132,416	None	None
1974	519,967	1,999	17,559	2,285	None
1975	291,676	2,368	None	80,090	None
1976	211,736	1,514	93,794	856	None
1977	236,728	1,113	24,167	None	None
1978	277,259	None	53,618	None	None
1979	153,770	985	92,746	None	371
1980	339,638	None	49,000	None	None
1981	279,189	None	56,791	None	None
1982	344,682	None	73,380	None	None
1983	317,685	None	60,136	None	None
1984	338,847	None	22,109	None	None

i. Log Handling Facilities.

Commercial navigation on Dworshak is an authorized project function for log handling operations. Four log dumping sites are available and are located as follows: Little Meadow Creek site (located on the left bank of the North Fork Clearwater River at river mile 37.3), Robinson Creek site (located on the right bank of the North Fork Clearwater River at river mile 39.3), Breakfast Creek site (located on both banks of the Little North Fork near the confluence of Breakfast Creek), and Benton Creek site (on the left bank of the North Fork Clearwater River at river mile 43.5). Logs can be floated from these sites to the log handling ramp at the dam for removal. No special operations of the dam or reservoir are anticipated for log handling operations. Operating pool levels for log dumping and log removal are shown in the following tabulation.

Site	Operational Pool Range
Little Meadow Creek (log dump)	1,570-1,600
Robinson Creek (log dump)	1,565-1,600
Breakfast Creek (log dump)	1,570-1,600
Benton Creek (log dump)	1,565-1,600
Dworshak Log Handling Facility	1,445-1,600

2-04 Related Control Facilities.

There are no control facilities associated with this project.

2-05 Real Estate Acquisition.

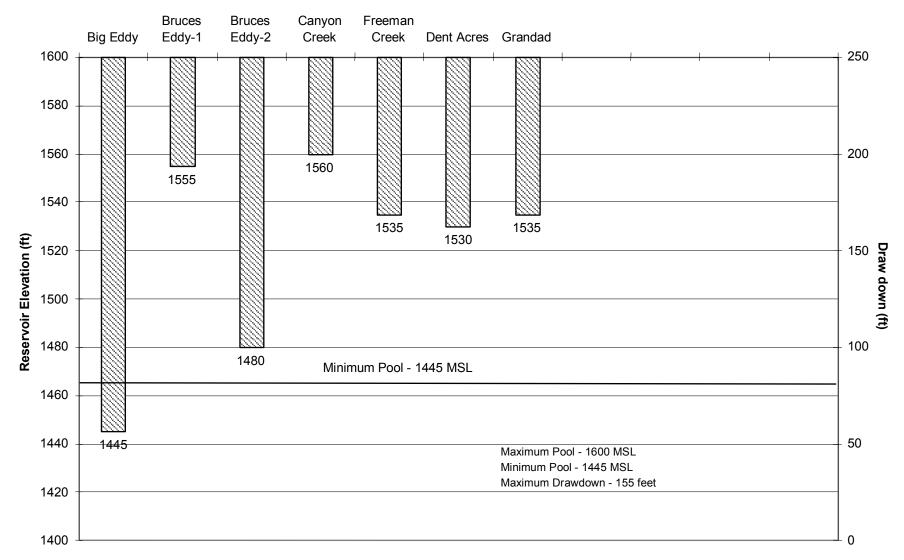
The Dworshak Dam and Reservoir project contains approximately 30,935 acres of public land. As part of the project, a land use plan has been developed for guiding the development and management of the lands surrounding the reservoir. The plan has project operation areas, recreation areas (which includes group camping areas), log handling areas, wildlife areas, natural areas, and National Forest land. Plate 2-9 shows the current land use plan. The following tabulation summarizes land use classifications for Dworshak project lands present and future developments.

Land Use Areas (acres)	Present and Future Allocations
Project Operation (including Dworshak Dam)	298.8
Recreation Intensive	1,245.7 + 1,120.8 future
Recreation Low Density	4,083.1
Log Handling	183.9 + 10.7 future
Wildlife Management Intensive	11,643.1
Wildlife Management Moderate	9,749.4
Natural Area	982.5
Natural Forest Land	1,617.4
Total	30,935.4

2-06 Public Facilities.

Plate 2-9 shows the general location of existing recreation sites on project lands. The existing recreation sites and associated facilities and activities are listed as follows.

Facilities														
Site	Fee Camp	Camping Unit	Picnic Units	Trailer Hookups	Boat Launch Ramps	Swim Area	Play Area	Hiking Trails	Toilets	Drinking Water	Showers	Handicapped	Amphitheater	Display
Big Eddy			4		٠	٠		•	•			٠		
Boehls		4							•					
Bruces Eddy					٠				•	•		•		
Canyon Creek		12	2		٠				•					
Cold Springs			4					•	•					
Dent Acres	•	50	6	•	٠	•		•	•	•	•	•		
Dent Orchard			24					٠	•			•		
Freeman Creek	•	100	25	٠	٠	•	٠	٠	•	٠	•	•	٠	•
Grandad Creek		6			٠				•					
Little N. Fork		4							•					
Magnus Bay		6							•					
Merrys Bay			3			•	٠	•	•					


Detailed information on existing recreation sites can be found in the "Walla Walla District Recreation Facilities Guide," dated March 1984 and the "Dworshak Master Plan - Volume 1," dated July 1985. General information and reservoir elevations required for public use of the existing recreation sites are summarized in Table 2-6.

Guided tours of the dam itself begin at the visitor center, and the displays at the visitor center include audiovisual formats. Boat moorage, boat fuel, and concessions are available at the Big Eddy site. Boat tie-up docks are available at the right abutment area for boater access to the visitor center and at all boat launching ramps except Grandad Creek. In addition, the Dworshak National Fish Hatchery, with visitor center and fish facilities, provides additional day-use only opportunities for visitors to the Dworshak Project.

The Three Meadows site is a group camp only. Facilities include two trailer pads with hookups, eight cabins, a lodge, restrooms, showers, and utilities. Occupancy at Three Meadows is by reservation through a lease holder. A group camp section with recreational vehicle pull-through pad sites (no hookups) is available at the Freeman Creek site in an area separate from the individual units. Occupancy at Freeman Creek is by reservation through the Corps of Engineers, telephone number (208) 476-5994 or Idaho's Dworshak State Park. Cold Springs is intended primarily to be used as a primitive group camp which is accessible either by trail or boat. Facilities include chemical toilets and sparsely developed group tent areas.

All initial development of Dworshak Project recreation facilities has been completed. Recreation development on project lands to date (1986) has been the responsibility of the Corps of Engineers. However, the Federal Water Project Recreation Act now requires cost-sharing on all future development of new recreation areas, such as those covered by the Dworshak Master Plan's land use classification, "Future Intensive Use Recreation Sites." An exception to the cost-sharing requirement is new development by the Forest Service on project lands within National Forest boundaries. In addition, non-Federal participation in future recreation development will be required if the Dworshak Project should be designated as a National Recreation Area.

There are many recreation sites in the region which offer recreational opportunities similar to those on Dworshak Project lands. Regional recreation sites as shown on Plate 2-10. Camping and water-oriented activities are the primary uses of Dworshak Project lands. Dworshak's recreation sites and other sites in the region receive high seasonal use..

Figure 2-1 Boat Launch Ramps - Usable Access

3 HISTORY OF PROJECT

3-01 <u>Authorization.</u>

3-02 Planning and Design.

Early planning of Dworshak Dam and Reservoir referred to the project as "Bruce's Eddy Project." The name was changed by Congressional action in August 1963 in honor of the late Senator Henry C. Dworshak of Idaho. The history of the project can become known in a comprehensive manner by review of the tabulation, "Dworshak Historical Data," which follows. If additional information is desired, obtain a copy of the "Historical Report on Construction, Dworshak Dam and Reservoir, North Fork Clearwater River, Idaho," from the Walla Walla District Library.

<u>Contributions from Dworshak</u>. Dworshak is a major storage project in the Columbia River system. It has sufficient storage to provide regulation in the interest of downstream flood control, system power generation, water quality, recreation, and other requirements. Dworshak's operation in conjunction with the total system of Columbia River reservoirs contributes to the reduction of floods on the lower Columbia River, maximizes power generation on a system basis, and provides significant recreation benefits to the local area and the region.

DWORSHAK HISTORICAL DATA				
Date	Item			
20 Mar 1950	House Document 531, 81st Congress, 2nd Session, titled "Columbia River and Its Tributaries, Northwestern United States," proposed a main control plan of reservoirs in the Columbia River system and discussed Bruce's Eddy Project on the North Fork Clearwater River as a potential project in addition to that plan.			
14 Jun 1955	Senate Document 51, 84th Congress, 1st Session, Review Report (Review of House Document 531) - Middle Snake River and Tributaries (Lewiston to Pittsburg Landing), Idaho, Oregon, and Washington, recommended adoption of Bruce's Eddy Project on the North Fork Clearwater River.			
3 Jul 1958	Public Law 85-500, 85th Congress, 2nd Session, provided authority and funds for detailed planning for the Bruce's Eddy Dam and Reservoir.			
Oct 1958	First planning money.			
4 Nov 1958	First exploratory drilling.			
10 Aug 1960	First contract with Idaho Fish and Game on elk browse.			
28 Mar 1969	First contract with Fish and Wildlife Service on fish and wildlife studies.			
7 Dec 1961	Tunnel drilling for exploration.			
8 Mar 1962	First contract with Idaho Fish and Game on steelhead.			
23 Oct 1962	Public Law 87-874, Section 201 of the Flood Control Act of 1962 in accordance with House Document 403, 87th Congress, 2nd Session, provided construction authorization.			

3-03 Construction.

23 Apr 1963	First access road contract to right abutment.
	Project name changed from Bruce's Eddy, Public Law 88-96.
Aug 1963	
6 Dec 1963	First project network analysis.
23 Mar 1964	First clearing contract.
15 May 1964	First fire protection agreement on project.
8 Jun 1964	First power line relocation, Clearwater Power Company.
4 Jan 1965	Diversion tunnel contract.
19 Jan 1965	First road relocation agreement, County on Detour Road.
30 Mar 1965	Access-detour roads contract.
13 Sep 1965	Resident office contract.
15 Mar 1966	Dam temporary fish facility contract.
20 May 1966	First explorations for Dent Bridge.
6 Jul 1966	Second clearing contract.
20 Jul 1966	Main dam contract.
7 Sep 1966	State highway to project improvement contract.
5 Apr 1967	First seeding of reservoir clearing area.
11 Jul 1967	Hatchery main pumps contract.
27 Jul 1967	Third reservoir clearing contract.
8 Sep 1967	Hatchery main contract.
15 Mar 1968	Powerhouse turbines contract.
25 Apr 1968	Permanent fire protection agreement for project.
6 May 1968	Right abutment road to Dent Bridge contract.
8 May 1968	Granddad Bridge design contract.
17 May 1968	Left abutment road to Dent Bridge contract.
22 Jun 1968	First bucket of concrete in dam.
25 Aug 1968	Bureau of Sport Fisheries assigned first hatchery personnel (two-man).
2 Oct 1968	Hatchery-held first steelhead (21).
15 Oct 1968	Hatchery housing contract.
29 Apr 1969	Hatchery spawned first eggs.
28 May 1969	1 million cubic yards concrete in dam.
16 Jun 1969	First school aid contracts (Lewiston, Orofino, and Kamiah).
24 Oct 1969	2 million cubic yards concrete in dam.
25 Nov 1969	Hatchery personnel agreed to operate permanent fish facilities.
3 Dec 1969	Powerhouse permanent fish pump contract.
4 Dec 1969	Dent Bridge contract.
31 Dec 1969	Powerhouse bridge cranes contract.
28 Jan 1970	Powerhouse generators contract.
31 Mar 1970	
	3 million cubic yards concrete in dam. Powerhouse contract.
7 Apr 1970	
19-20 Apr 1970	Hatchery released first smolts (1.4 million).
May 1970	Hatchery gave 1970 eggs = 2.5 million to state, 200,000 to Oregon,
9 May 1070	500,000 to Russia.
8 May 1970	4, 5, and 6 clearing contract, flotation method.
12 Jun 1970	Powerhouse transformers contract.
8 Jul 1970	First report of columnaris disease in hatchery.
16 Jul 1970	Granddad Bridge contract.
13 Aug 1970	4 million cubic yards concrete in dam.
21 Oct 1970	Powerhouse governors contract.
23 Feb 1971	5 million cubic yards concrete in dam.

45 40 47 14-	Listek en en elt nels es el 1 million
15, 16, 17 Mar	Hatchery smolt release, 3.1 million.
1971	
23 Apr 1971	Stockpiling sand and topsoil contract.
May 1971	Last PFI log drive.
21 Jun 1971	Second phase log handling contract.
27 Jul 1971	Upper reservoir roads contract.
13-17 Sep 1971	Placed diversion tunnel closure gate.
21 Sep 1971	Big Eddy launching ramp contract.
27 Sep 1971	Slide gates in closure gate closed.
2 Oct 1971	Last deck pour on Dent Bridge.
29 Oct 1971	Dent Bridge opened to one-way traffic.
8 Nov 1971	Water diversion changed from tunnel to temporary low-level outlet.
9 Nov 1971	6 million cubic yards concrete in dam.
18 Nov 1971	Steel closed on Granddad Bridge.
4 Jan 1972	Dam selector gates contract.
11 Feb 1972	Breached downstream cofferdam.
14 Feb 1972	Maindam gantry crane contract.
17 Feb 1972	Diversion tunnel plug completed.
12 Mar 1972	North Fork fish barrier removed.
12 Mar 1972	Regulating outlets opened and temporary low-level outlet closed.
	Released first of 100,000 pounds of rainbow and kokanee in reservoir.
18 Mar 1972	First fish collection in powerhouse trap (15 pounds).
14 Apr 1972	Hatchery Phase II contract.
17-20 Apr 1972	Hatchery released 1 million smolts of 1970 brood.
17 Oct 1972	Granddad Bridge and Upper Reservoir Roads opened to traffic.
26 Jan 1973	Dam concrete topped out - 6,626,245 cubic yards.
30 Jan to 1 Mar	Released 100,000 pounds of rainbow in reservoir.
1973	
1 Mar 1973	Unit 1 first placed on line.
6 Mar 1973	Hatchery sculpture contract awarded.
16 Mar 1973	First steelhead spawning, 1,156 fish processed (5 weeks early).
6 Apr 1973	Unit 2 placed on line.
20 Apr 1973	Unit 3 placed on line.
8 May 1973	Hatchery completed processing 6,997 adults (4,708 female) and took
	28,211,000 eggs.
31 Jul 1973	Unit 1 selector gate in operation.
3 Aug 1973	Unit 2 selector gate in operation.
18 Aug 73-Slot A)	
16 Oct 73-Slot B)	Unit 3 selector gate in operation.
15 Nov 73-Slot C)	Sere in operation
10 1101 / 0 0101 0)	

3-04 Related Projects.

3-05 Principal Regulation Problems.

Since the project began operation in March 1973, two major problems have occurred at Dworshak.

a. The first problem, discovered December 1975, concerns an extensive erosion in the stilling basin. Investigation of the erosion problem by the Walla Walla District revealed that damage had occurred in the stilling basin because of two factors:

(1). Large amounts of construction debris deposited in the stilling basin prior to and during initial operation.

(2). Unbalanced flow pattern into the stilling basin caused the debris in the basin to be churned about and eroded the concrete. Unbalanced flow can also draw material into the stilling basin from downstream. As a result, a uniform flow pattern is recommended at all times through the spillway stilling basin.

b. The second problem pertained to leakage from a crack which developed in monolith 35 during June 1980. No special regulation at Dworshak was required because the plan of action taken by the Walla Walla District resulted in a significant reduction in the volume of water that had been entering the crack. The corrective measures taken were as follows:

- (1). Drilling drain holes in order to relieve crack pressure and define crack limits.
- (2). Installing two vinyl curtains temporarily.
- (3). Filling crack with epoxy mixture.
- (4). Filling crack with cinders.

c. During the period 3 June 1980 to 11 March 1981, 33 flow measurements were made at the gallery 1160 measuring site. Flows decreased from a maximum of about 17.5 cfs on 8 June 1980 to 0.7 cfs on 11 March 1981. Conditions at the gallery 1160 site have remained stable since March 1981. During 18-25 March 1982, more extensive repair work was accomplished with an epoxy mixture. No further repair on the crack has been required.

4 WATERSHED CHARACTERISTICS

4-01 General Characteristics.

The Clearwater River at Spalding has a total drainage area of approximately 9,570 square miles. It is located in north central Idaho and is a major tributary of the Snake River, which is a principal branch of the Columbia River. The basin elevation ranges from about 750 to 9,000 feet msl and has a median elevation of 4,500 feet msl. Adjacent river basins are the St. Joe and St. Regis to the north, Bitterroot to the east, and Salmon to the south. Principal streams within the Clearwater River Basin generally flow in a westerly direction. The North Fork of the Clearwater River joins the main stem of the Clearwater downstream of Orofino and enters the Snake River at Lewiston, Idaho. Topography and runoff characteristics naturally divide the Clearwater River Basin into two principal drainage areas, which will be referred to as the Upper and Lower Clearwater River watersheds for purposes of this manual. Plate 4-1 shows a basin map for the North Fork Clearwater River above Dworshak Dam.

4-02 Topography.

a. <u>Upper Watershed</u>. The upper watershed consists of 8,040 square miles of drainage area above Peck, Idaho, and represents about 85 % of the total area above Spalding. Major subbasins within the upper watershed are: (1) North Fork - 2,440 square miles, (2) South Fork - 1,200 square miles, (3) Lochsa River - 1,180 square miles, and (4) Selway River - 1,910 square miles. These four basins contain approximately 70 % of the total area above Spalding. The upper watershed is topographically rugged with streams deeply entrenched below mountains, V-shaped valleys, steep-sloped mountains, and narrow, sharp ridges. Elevation within the upper watershed varies from about 950 to 9,000 feet msl, and the median elevation is 5,000 feet msl.

The general course of the North Fork is westerly from the Bitterroot Range in the eastern and northeastern areas of the basin. The North Fork flows into the Clearwater River about 40 miles east of Lewiston, Idaho, and drains a topographically rugged, densely timbered, sparsely populated, and largely undeveloped area of 2,440 square miles above the dam. The North Fork contains approximately 25 % of the 9,570 square miles of drainage area above Spalding, Idaho, and 2 % of the 103,500 square miles of drainage above Lower Granite Dam.

b. <u>Lower Watershed</u>. The lower watershed consists of approximately 1,530 square miles of drainage area between the Peck and Spalding gauging stations. The lower watershed contains about 16 % of the 9,570 square miles of drainage area above Spalding. Principal tributaries in the lower watershed are: (1) Lapwai Creek - 235 square miles, (2) Potlatch River - 425 square miles, and (3) Big Canyon Creek - 225 square miles. These three tributaries contain approximately 9 % of the total drainage area above Spalding. The lower watershed consists of generally steep, barren hills and

plateaus intersected by cultivated valleys. The plateaus are generally composed of rolling hills, and extensive areas are adapted to raising principal crops of wheat, peas, and lentils by dry-farming methods.

The Scenic Rivers Unit, Water Resources Research Institute, University of Idaho, published "An Environmental Survey of the Lower Clearwater River," dated 31 July 1970. This report gives a detailed description of the lower watershed from Ahsahka to Lewiston.

4-03 Geology and Soils.

The headwaters of the North Fork Clearwater River and its tributaries originate in a mountainous area underlain by metamorphic rocks of the Belt Series and igneous granitic rocks of the Idaho Batholith. Rock types underlying the drainage basin are of considerable variety. This is a result of mode of origin; for example, the Belt Series are metamorphic sediments and consist of guartzites, argillites, and impure limestones, while the Idaho Batholith is composed of igneous rocks of the granite series. Figure 4-1 shows the general distribution of these rock types. The lower course of the river valley walls is metamorphic rocks in the Orofino Series. Locally, there are igneous intrusions with guartz veins being guite numerous and basaltic dikes less common. In the eastern and northern parts of the basin, these metamorphics are typical of the Belt Series and still display many of the features of the original sediments from which they have been altered. In the western part of the North Fork Basin, the lavas of the Columbia Plateau occur at various locations. These are locally associated with shales between lavas and the older, underlying rocks. The Belt Series strata are of pre-Columbian age, and the Idaho Batholith granites of the Mesozoic era are intruded into them. The Orofino Series metamorphosed rock surround the intrusive granite. The older formations were uplifted and folded during the period of mountain formation, giving rise to the Bitterroot Range of the Rocky Mountains. Lava flows of the Miocene age locally blocked the drainage. Lakebed-type sediments, clay, and fine-grained materials were deposited and are found below and between the lava. These deposits are known as the Latah Formation. The lava flows changed the original drainage pattern of the basin, and the present course of the North Fork Clearwater River cuts across the pattern of old valleys and

4-04 Sediment.

Because of the character of geological formations in the drainage area, the relative scarcity of topsoil, and the nature of runoff, the suspended sediment in the Clearwater River is relatively low. Physical evidence indicates there is significant movement of coarser bed load material during high flows but, in general, the stream is one of the lesser sediment transporting streams in the region. Based on measurements of other streams in the region, it is estimated that the average annual sediment load of the North Fork at Dworshak will be on the order of 300 acre-feet per year. Because this is very low and no problems are expected to result from sediment accumulation, there is no program for sediment measurements.

4-05 <u>Climate.</u>

The climate of the Clearwater Basin is characterized by mild summers, long, cold winters, and an abundance of snowfall which accumulates in snow packs generally from November through April. The area is dominated by moist Pacific maritime air masses which are moved over the basin by prevailing westerly winds. Although these air masses have lost much of their precipitable water in passing over mountains further west, they still contain sufficient moisture that they experience the orographic effect within the basin and yield considerable precipitation. During the winter, polar air masses occasionally enter the basin from the north and displace maritime air masses, producing short periods of extremely low temperatures. Plate 4-1 shows the locations of stream flow, precipitation temperature, and snow stations within the basin.

The following paragraphs discuss and outline temperature, precipitation, snow, and evaporation data for stations within and adjacent to the Clearwater River Basin. These stations are the hydrologic stations which are used to estimate runoff volumes and supply real-time data necessary for the regulation of Dworshak Reservoir.

a. <u>Temperature</u>. Temperature records for: (1) Avery Ranger Station, (2) Elk River, (3) Headquarters, (4) Mullan, (5) North Star Ranch, (6) Orofino, (7) Pierce, and (8) Powell have been summarized. Table 4-1 lists extremes for average maximum daily temperatures by month for these stations, and Table 4-2 lists extremes for average minimum daily temperatures by month. Temperatures within the Clearwater Basin can vary with extreme fluctuations from month to month and year to year. Table 4-3 shows temperature extremes which have occurred at these key hydrologic stations.

b. <u>Precipitation</u>. Plate 4-1 defines the isohyetal pattern of mean annual precipitation over the drainage areas of the North Fork Clearwater River Basin. The mean annual precipitation values vary from 24 inches near the mouth of the North Fork to 70 inches near the summit of the Bitterroot Mountain Range. Monthly precipitation records for key hydrologic stations: (1) Avery Ranger Station, (2) Elk River, (3) Headquarters, (4) Mullan, (5) North Star Ranch, (6) Orofino, (7) Pierce, and (8) Powell are listed on Table 4-4. The precipitation amounts recorded at these key hydrologic stations have a seasonal distribution where, on the average, 60 to 70 % of the total October to September water year precipitation occurs during the months of October to March, 20 to 30 % during the months of April to July, and 5 to 15 % during the months of August to September. Large amounts of precipitation will have a significant effect on the regulation of Dworshak Reservoir. Table 4-5 shows maximum 24-hour precipitation accumulations which have occurred at these key hydrologic stations during the period of record.

TABLE 4-5 MAXIMUM 24-HOUR PRECIPITATION								
Month	Avery R.S. 2 ^{1/}	Elk River 1S ^{2/}	Headquarters 3/	Mullan ^{4/}	North Star Ranch ^{5/}	Orofino ^{6/}	Pierce ^{7/}	Powell ^{8/}
Jan	1.66	2.01	1.71	4.40	1.43	1.73	1.68	1.55
Feb	1.25	2.44	1.57	1.70	1.05	1.68	2.07	1.39
Mar	0.97	1.32	1.75	1.10	0.68	2.13	1.30	1.26
Apr	1.07	1.92	1.79	0.80	1.42	1.40	1.67	2.13
May	1.50	1.98	1.13	1.46	1.13	1.61	1.66	1.73
Jun	1.35	1.68	1.81	1.47	1.05	2.20	1.63	1.66
Jul	1.27	1.47	1.57	1.25	1.07	2.77	1.78	1.02
Aug	1.10	2.26	1.49	1.20	1.24	1.38	2.05	1.32
Sep	1.83	1.20	1.43	0.94	1.13	1.99	1.25	1.80
Oct	0.89	1.45	1.93	1.17	1.18	1.38	1.43	1.70
Nov	1.33	2.32	1.66	1.80	1.11	1.57	1.43	1.82
Dec	2.80	2.00	2.00	1.58	1.93	2.29	2.30	2.73

¹ Period of Record, 1968-1981, 14 years, station elevation 2,390 feet msl.

² Period of Record, 1952-1981, 30 years, station elevation 2,918 feet msl.

³ Period of Record, 1959-1981, 23 years, station elevation 3,138 feet msl.

⁴ Period of Record, 1972-1981, 10 years, station elevation 3,317 feet msl.

⁵ Period of Record, 1967-1981, 15 years, station elevation 2,800 feet msl.

⁶ Period of Record, 1903-1981, 79 years, station elevation 1,027 feet msl.

⁷ Period of Record, 1963-1981, 19 years, station elevation 3,185 feet msl.

⁸ Period of Record, 1962-1981, 20 years, station elevation 3,632 feet msl.

Source: Climatological Data for Idaho, Publication of the National Oceanic and Atmospheric Administration.

Most of the annual precipitation within the Clearwater River Basin occurs as rainstorms which move generally eastward across the basin. However, during the warmer months, precipitation can occasionally occur from thunderstorms. These thunderstorms are usually of short duration and not continuous over large areas of the basin, but precipitation intensities can be very high over small areas. The December 1933 rainstorm was the most severe general rainstorm that has occurred in the North Fork Clearwater River Basin since 1926 and produced the highest flow of record, 100,000 cfs on 23 December 1933, at the Ahsahka gage. During the period 17 to 25 December, a series of storms occurred and basin precipitation was estimated to have averaged nearly 8 inches, with some precipitation almost continuously in the period but with maximum intensities probably not exceeding two-tenths of an inch per hour. There have probably been more intense storms than that of December 1933, but no other has produced as high a runoff in the North Fork Clearwater at Dworshak and the main stem at Spalding since the beginning of stream flow records in 1926.

c. <u>Snow</u>. Snow accumulation in the Clearwater River Basin generally begins in late September or October and continues to increase in water content until April or May. The amount of water content accumulation varies from year to year and is influenced by

the amounts of precipitation, the sequence of temperatures, and soil moisture conditions during the accumulation period. Table 4-6 summarizes 1961 to 1980, 20-year average, snow water content data for 11 stations used in the Dworshak runoff volume forecast procedure. The accumulation of snow over the Clearwater River Basin affects the forecasted runoff volume, which dictates the degree of regulation necessary and the manner in which Dworshak Reservoir is regulated.

The following tabulation compares the measured 1 April snow water content at the 11 snow courses with both the minimum and the maximum April through July inflow runoff volumes of record in the North Fork Clearwater River at Dworshak Dam.

1 APRIL SNOW COURSE WATER CONTENT					
Snow Course	Elevation (ft. msl)	1977 (in.)	1972 (in.)		
Crater Meadows	5,960	25.5	71.7		
Crooked Fork	3,610	9.0	22.0		
Elk Butte	5,550	19.2	55.0		
Fish Lake Airstrip	5,650	18.9	62.0		
Hemlock Butte	5,810	26.8	77.2		
Hoodoo Basin	6,000	23.0	80.8		
Hoodoo Creek	5,900	22.4	78.3		
Lolo Pass	5,240	15.4	52.3		
Lost Lake	6,110	25.2	85.7		
Savage Pass	6,170	15.4	42.9		
Shanghai Summit	4,600	14.3	45.8		
North Fork Clearwater	River at Dworshak	1,238,900 A.F	4,671,800 A.F		
Dam April-July Runoff	Volume				

TABLE 4-6 CLEARWATER RIVER BASIN AVERAGE SNOW WATER CONTENT							
			verage - 19				
	Avera	age Snov	v Water Con	tent (inches)			
Station	Elevation	1 Jan	1 Feb	1 Mar	1 Apr	1 May	1 Jun
	(ft. msl)						
Crater Meadows	5,960	18	30.1	37.9	45.2	46.2	29.8
Crooked Fork	3,610	5.3	10.3	12.4	13.6	2.9	
Elk Butte	5,550		26.7	33.3	37.2	31.7	8.9
Fish Lake Airstrip	5,650	6.9	27.2	35.2	39.9	40	
Hemlock Butte	5,810	0.5	33.8	42	49.6	50.1	29
Hoodoo Basin	6,000	0.1	34.8	44.6	52.7	54.5	36.3
Hoodoo Creek	5,900	7.8	32.4	41.8	49.2	50.7	35.6
Lolo Pass	5,240	2.1	21.5	27.4	31.8	30	
Lost Lake	6,110	2.2	38	48.5	58.3	59.1	43.4
Savage Pass	6,170	0.7	18.9	24.3	28.4	28.5	
Shanghai Summit	4,570	9.8	17.3	23.7	26.1	21.2	

Source: Water Supply Outlook for Idaho, U.S. Department of Agriculture, Soil Conservation Service, Boise, Idaho, 1985 Publication.

d. <u>Evaporation</u>. Evaporation losses within the Clearwater River Basin will vary with temperatures. Evaporation data is not available for key stations within the basin. However, Table 4-7 lists and summarizes total monthly evaporation rates for the University of Idaho at Moscow.

4-06 Storms and Floods.

Floods in the Clearwater River Basin are generally of two types: (1) spring snowmelt with or without spring rainstorms, and (2) winter rainstorms accompanied by snowmelt. The following paragraphs discuss pertinent floods for the key gauging stations of: (1) North Fork Clearwater at Dworshak, (2) Clearwater at Orofino, and (3) Clearwater River at Spalding.

(1). <u>North Fork Clearwater at Dworshak</u>. Floods in the North Fork Clearwater River at the Dworshak dam site with unregulated annual maximum mean daily discharges in excess of 35,000 cfs and coincident with damage conditions (approximately 100,000 cfs) in the lower Clearwater River at Spalding have occurred on 17 occasions since October 1926. Fifteen of these events were spring floods and two were winter floods. Table 4-8 summarizes the 15 spring snowmelt floods, and Table 4-9 summarizes the two winter floods in the North Fork at Dworshak dam site.

TABLE 4-8 SPRING SNOWMELT FLOODS						
SUMMARY OF UNR Date	UMMARY OF UNREGULATED DISCHARGE AND RUNOFF AT DWORSHAK DAMSI Date Maximum Mean Daily April-July Runoff Percent of Avera Discharge (cfs) Volume (Million April-July Runo A.F.) ^{1//} Volume					
17-May-27	35,700	3.434	124			
10-May-28	39,600	3.329	120			
14-May-32	38,400	3.567	129			
10-Jun-33	44,000	3.430	124			
19-Apr-36	37,200	3.085	111			
18-Apr-38	53,200	2.698	97			
29-May-48	52,000	3.917	141			
15-May-49	41,300	3.491	126			
21-May-56	40,600	3.909	141			
21-May-57	36,000	3.166	114			
08-Jun-64	35,100	3.402	123			
30-May-71	43,000	4.046	146			
31-May-72	51,900	4.672 ²	168			
05-Jun-74	45,300	4.651	168			
06-May-79	40,200	2.691	97			

¹ Average April-July runoff volume 2,776 million acre-feet based on 1927-1985 period of record.

² Largest spring snowmelt runoff volume for 1927-1981 period of record.

TABLE 4-9					
WINTER RAINSTORM AND SNOWMELT FLOODS SUMMARY OF UNREGULATED DISCHARGE AND RUNOFF AT DWORSHAK					
	Maximum Mean Daily	Duration Above	Runoff Volume Above		
Date	Discharge (cfs)	35,000 cfs (Days)	35,000 cfs (A.F.)		
23 Dec 1933	90,000 <u>1/</u>	4	476,000		
23 Dec 1964	54,000	2	192,000		
30 Nov 1995	57,800				
9 Feb 1996	59,000				

¹Largest mean daily peak discharges for 1927 – 1996 water year period.

(2). <u>Clearwater River at Orofino</u>. Floods in the Clearwater River at Orofino occur as natural or unregulated flow. Dworshak cannot provide flood protection for Orofino, but existing local levees provide some flood protection for frequent high flows. These local levees are not adequate for large floods that have peak discharges equal to or greater than flow damage conditions of approximately 95,000 cfs at Orofino. Peak discharges in excess of 95,000 cfs have not occurred during the period of record since October 1950. However, two flood peak discharges exceeding 95,000 cfs have occurred outside of the period of record for the Clearwater River at the Orofino gage. The largest flood peak discharge is estimated to be approximately 106,000 cfs and occurred on 28 May 1948. The second largest flood peak discharge is estimated to be approximately 99,700 cfs and occurred on 8 June 1964.

(3). <u>Clearwater River at Spalding</u>. Floods in the Clearwater River at Spalding with unregulated maximum mean daily discharges in excess of damage conditions (approximately 100,000 cfs) have occurred on 19 occasions since October 1910. During the October 1910 through September 1913 and October 1925 through September 1985 periods (56 years), 17 events were spring floods and two events were winter floods. Table 4-10 summarizes the 17 spring snowmelt floods and Table 4-11 summarizes the two winter floods.

TABLE 4-10						
	SPRING SNOWMELT FLOODS SUMMARY OF UNREGULATED DISCHARGE AND RUNOFF AT SPALDING					
Date	Maximum Mean	April-July Runoff	Percent of Average			
		Volume (Million A.F.) ^{2/}	April-July Runoff			
			<u>Volume</u>			
09-Jun-27	106,000	9.539	123			
26-May-28	104,000	9.049	117			
14-May-32	114,000	9.544	123			
10-Jun-33	128,000	9.386	121			
15-May-36	101,000	8.473	109			
19-Apr-38	123,000	7.477	97			
09-May-47	108,000	8.105	105			
29-May-48	166,000 ¹	11.923	154			
16-May-49	117,000	9.488	122			
21-May-56	112,000	10.254	132			
20-May-57	123,000	8.937	115			
09-Jun-64	117,000	10.029	129			
21-Apr-65	109,000	9.371	121			
13-May-71	100,000	10.448	135			
02-Jun-72	123,700	11.795	152			
16-Jun-74	132,000	12.188 ³	157			
11-May-76	104,600	10.116	131			

¹ Maximum peak discharge 177,000 cfs, water years 1911-1913, 1926-1985.
 ² Average April-July runoff volume 7.814 million acre-feet based on water years 1911-1913, 1926-1985.
 ³ Largest spring snowmelt runoff volume, water years 1911-1913, 1926-1985.

TABLE 4-11					
WINTER RAINSTORM AND SNOWMELT FLOODS SUMMARY OF UNREGULATED DISCHARGE AND RUNOFF AT SPALDING					
Date	Maximum Mean Daily Discharge ¹ (cfs)	Duration Above 80,000 cfs (Days)	Runoff Volume Above 80,000 cfs (A.F.)		
23 Dec 1933 157,000 3 206,600					
23 Dec 1964 99,000 2 65,800					
¹ Period of re	ecord water vears 1911-19	13 1926-1985			

Period of record water years 1911-1913, 1926-1985.

4-07 Runoff Characteristics.

a. <u>General</u>. Most of the annual runoff for the Clearwater River Basin originates within the upper watershed from a combination of winter rains and spring snowmelt floods. Principal runoff areas within the upper watershed are characterized by high precipitation headwater areas (50 to 60 inches normal annual precipitation), dense timber, sparse population, and very limited development.

b. <u>Stream flow Records</u>. Stream flow data records have been maintained at key gauging stations on the Clearwater River and major tributaries by the U.S. Geological Survey and published in the "USGS Water Resources Data for Idaho." In addition, unregulated stream flows for the North Fork above Dworshak Dam (2,440 square miles) and the Clearwater River at Spalding (9,570 square miles) have been computed by the Corps of Engineers, Walla Walla District, since construction of the project. Table 4-12 outlines key gauging stations and records within the Clearwater River Basin plus pertinent storage records for Dworshak Reservoir.

c. <u>Upper Watershed Runoff</u>. Natural stream flow from the upper watershed's two subbasins: (1) North Fork Clearwater River above Dworshak Dam, 2,440 square miles, and (2) Clearwater River above Orofino, 5,580 square miles, will have a significant impact on the regulation of Dworshak Reservoir. The stream flow pattern is generally low flows from late July through February, increasing flows during March, high flows during April through June, and receding flows during late June and July. During winter months, this general pattern is occasionally interrupted by high peak flows which are caused by rain snowmelt runoff events. These winter events are generally short in duration and limited in volume.

The following tabulation compares the average annual October to September water year runoff volumes for the two upper watershed subbasins with the total average annual runoff for the Clearwater River at Spalding:

TABLE 4-12 KEY GAGING STATIONS - CLEARWATER RIVER BASIN							
						early Mean Daily Discha	rge - cfs
Station	Data	Period of Record (water years)	Drainage Area Above Station (sq. mi.)	Average Volume (a.f./water year)	Average	Maximum	Minimum
North Fork Clearwater River near Canyon R.S.	Natural Flow	1968 to 1985	1,360	2,636,400	3,600	30,800 (16 Jun 1974)	250 (5 Dec 1972)
Dworshak Dam	Unregulate d Inflow	1927 to 1985	2,440	4,194,600	5,800	90,000 (23 Dec 1993)	100 (20 Nov 1978)
Dworshak Dam	Regulated Outflow	1973 to 1985	2,440	4,041,300	5,600	35,900 (18 Jun 1974)	600 (15 Dec 1972)
Clearwater River at Orofino	Natural Flow	1931 to 1938 1965 to 1985	5,580	6,510,800	9,000	87,300 (2 Jun 1972)	250 (8 Jun 1937)
Clearwater River at Spalding	Unregulate d Flow	1911 to 1913 1926 to 1985	9,570	11,264,000	15,600	166,000 (29 May 1948)	170 (10 Jan 1977)
	Regulated Flow	1972 to 1985	9,570	11,441,800	15,800	124,000 (16 Jun 1974)	1,390 (31 Oct 1971)

Source: 1. USGS Water Resources Data - Idaho.

2. Corps of Engineers, Walla Walla District, Hydrology Branch

			Average Annual Oct-Sep Runoff Volume		
Station	Drainage Area (Sq. Mi.)	Period of Record (Water Yr.)	(A.F.)	(Basin- Inches)	
North Fork at Dworshak	2,440 (25%)	1927-1981 (37%)	4,199,000	32.27	
Clearwater at Orofino	5,580 (58%)	1965-1980 (62%)	6,970,000	23.42	
Clearwater at Spalding	9,570 (100%)	1926-1980 (100%)	11,228,000	22.00	

The preceding tabulation shows that about 99 % of the total runoff volume above Spalding originates from: (1) North Fork Clearwater River above Dworshak Dam and (2) Clearwater River above Orofino. The average annual runoff volume for the North Fork Clearwater above Dworshak represents about 11 % of the average annual runoff volume at Lower Granite, and the basin area above Dworshak represents about 2 % of the total drainage area above Lower Granite.

March to July spring runoff volumes also represent a significant portion of the annual October to September water year runoff volumes. The March to July runoff volume during the spring runoff season varies with seasonal snow accumulation, temperatures, and rainfall. The following tabulation shows the average percent contribution that the March to July runoff represents of the total October to September runoff volume for: (1) North Fork at Dworshak, (2) Clearwater at Orofino, and (3) Clearwater at Spalding:

Station	Water Year Period of Record	Mar-Jul Runoff (Average Percent of Oct-Sep Runoff)
North Fork at Dworshak	1927-1985	74
Clearwater at Orofino	1931-1938 1965-1985	80
Clearwater at Spalding	1911-1913 1926-1985	77

In addition, the March to July runoff volume from the North Fork on an average contributes about 35 % of the total March to July runoff volume for the Clearwater River at Spalding.

The North Fork Clearwater near Canyon Ranger Station is a key gauging station within the North Fork subbasin drainage area. This gauging station records stream flows for approximately 56 % of the 2,440 square miles of drainage area above Dworshak Dam. The station is located about 56 miles upstream of Dworshak Dam and is used to monitor a portion of the natural inflows into Dworshak Reservoir. Plate 4-2, Summary Hydrograph, summarizes natural stream flows since October 1967, and Table 4-13 lists monthly runoff volumes. Natural stream flows for the North Fork's total

drainage area of 2,440 square miles have been computed since the Clearwater River at Ahsahka gauging station was discontinued in February 1965 because of Dworshak Dam construction. Plate 4-3, Summary Hydrograph, summarizes mean daily unregulated inflow at Dworshak Dam since October 1926, and Table 4-14 lists monthly runoff volumes. Plate 4-4 shows yearly hydrographs of mean daily unregulated inflows of the North Fork at Dworshak Dam for the period of record.

Stream flows from the 5,580 square miles of drainage area above Orofino are recorded at the gauging station, Clearwater River at Orofino. This station is located on the Clearwater River at RM 44.6 about 4 miles upstream from the confluence of North Fork and main stem Clearwater River. The flows for the Clearwater River at Orofino will have a significant effect on the releases from Dworshak during periods of extremely high flows. Plate 4-5, Summary Hydrograph, summarizes natural stream flows, and Table 4-15 lists monthly runoff volumes since October 1930.

Stream flows for the 9,570 square miles of drainage area above Spalding are recorded at the gauging station, Clearwater River at Spalding. Plate 4-6, Summary Hydrograph, summarizes unregulated discharge, and Table 4-16 lists monthly runoff volumes for the Clearwater River at Spalding.

d. Lower Watershed Runoff. The lower watershed consists of approximately 1,530 square miles of drainage area or about 16 % of the total basin area above Spalding. The natural March to July stream flow within the lower watershed represents about 5 % of less of the total March to July runoff from the entire Clearwater River Basin above Spalding. Occasionally, thunderstorm or heavy rain and rapid snowmelt floods can produce high peak flows of short duration. Runoff from these floods causes some local flooding and drainage problems for some areas within the lower watershed. However, peak discharges and runoff volumes from the lower watershed are considered to have little or no impact on the regulation of Dworshak Reservoir.

e. Droughts.

(1). <u>North Fork at Dworshak</u>. Low runoff volume years for the North Fork Clearwater River Basin can critically affect Dworshak's long-term capabilities for: (1) power generation used in meeting the total energy loads within the Northwest power system, (2) augmentation of low stream flow for fisheries in the lower Clearwater River and the lower Snake River, and (3) maintaining near full reservoir levels for summer recreation. The 1977 drought year had lowest October to September annual runoff volume of record, 1.856 million acre-feet, which is 44 % of average. The average October to September runoff volume is 4.2 million acre-feet for the 1927-1985 period of record. Table 4-17, summarizes low runoff and discharge data for the North Fork at Dworshak. Twelve years have had October to September runoff volumes less than 3.2 million acre-feet (75 % of average) since water year 1927.

(2). <u>Clearwater River at Spalding</u>. Table 4-18, summarizes low runoff and discharge data for the Clearwater River at Spalding during the 1926-1980 period of

record. Twelve years have had October to September runoff volumes less than 8.4 million acre-feet (75 % of average) since 1926.

SUMMA	TABLE 4-17 SUMMARY OF UNREGULATED LOW RUNOFF AND DISCHARGE DATA NORTH FORK CLEARWATER RIVER AT DWORSHAK DAMSITE					
Water Year	October-September Annual Runoff Volume ¹ (Million A.F.)	Percent Average October-September Runoff Volume	Annual Maximum Mean Daily Peak Discharge (cfs)			
1977	2	44	14,900			
1944	2	51	13,600			
1973	2	58	14,500			
1941	2	58	11,200			
1937	3	60	19,000			
1929	3	62	22,100			
1931	3	62	22,300			
1930	3	65	19,600			
1939	3	73	27,000			
1940	3	73	16,400			
1942	3	74	16,800			
1966	3	75	22,800			

¹ Average October-September annual runoff volume is 4.2 million acre-feet for water years 1927-1985 (59 years). Drainage area is 2,440 square miles.

SUMMAR	TABLE 4-18 SUMMARY OF UNREGULATED LOW RUNOFF AND DISCHARGE DATA CLEARWATER RIVER AT SPALDING						
Year	October-September Annual Runoff Volume ¹ (Million A.F.)	Percent Average October- September Runoff Volume	Annual Maximum Mean Daily Peak Discharge (cfs)				
1977	5	47	42,100				
1973	6	54	47,700				
1944	6	55	48,400				
1937	7	58	50,900				
1941	7	58	37,400				
1931	7	61	66,100				
1930	7	66	51,000				
1929	7	66	73,300				
1926	8	68	59,700				
1940	8	72	53,500				
1966	8	72	63,600				
1939	8	73	73,400				

¹ Average October-September annual runoff volume is 11.290 million acre-feet for water years 1911-1913, 1926-1985 (63 years). Drainage area is 9,570 square miles.

4-08 <u>Water Quality.</u>

Post-impoundment conditions both within Dworshak Reservoir and downstream of Dworshak Dam in the main stem of the Clearwater River differ greatly from those in the free-flowing river, such as the Clearwater above Orofino. As a result of anticipated water quality changes, the U.S. Army Corps of Engineers contracted a reservoir limnological study to the University of Idaho in March 1972 (Contract DACW68-72-C-0142). The final report entitled, "Early Limnology of Dworshak Reservoir," was submitted to the Corps of Engineers in 1979 by the University of Idaho. In addition, water quality parameters are monitored at five reservoir stations and one station downstream of Dworshak Dam by District personnel. The chemical quality of Dworshak releases is also monitored by the Dworshak hatchery personnel. The Idaho Fish and Game Department takes periodic samples of the chemical quality in the lower Clearwater.

The following paragraphs discuss the water quality for Dworshak Reservoir and the lower Clearwater River.

a. <u>Dworshak Reservoir</u>. No permanent or serious water quality problems have been observed in Dworshak Reservoir since it was completely filled in 1973. With the low watershed nutrient contributions and lack of point sources, Dworshak Reservoir is approaching trophic equilibrium as a cold nutrient-poor lake with high aesthetic water quality. Profiles of water temperature, dissolved oxygen, specific conductance, turbidity, pH, and alkalinity, and samples for selected chemical, physical, and biological parameters are collected at the five reservoir stations and one station just downstream of Dworshak Dam. Inflow temperatures are recorded at North Fork Clearwater River near Canyon ranger station stream flow gage, and Dworshak release temperatures are recorded at the Dworshak National Fish Hatchery. Water temperatures from thermistors placed in the face of the dam are recorded at the dam.

The following paragraphs discuss in general terms pertinent water quality indicators for Dworshak Reservoir.

(1). <u>Water Temperature</u>. Thermally, the 53-mile reservoir may be considered two separate reservoirs. The deeper, lower 20 miles are monomictic, and the middle and upper reaches are dimictic. Thermal stratification, or temperature layering, of the reservoir generally begins in late April, and by mid-May a distinct thermocline has developed and remains into November. Depth to the thermocline increases as the summer progresses from about 15 feet in May to July, about 20 to 25 feet in August, and about 25 to 30 feet in September. During July and August, the average temperature of the spilimnion has ranged from 70 degrees to 75 degrees Fahrenheit. The reservoir's cooling trend, as noted in the post-impoundment study ("Early Limnology of Dworshak Reservoir," 1979) has apparently stabilized. The mean reservoir temperature during mid-August (the time of maximum heat content) varies from 45 degrees to 49 degrees Fahrenheit. Waters deeper than 100 feet generally remain below 45 degrees the year around. Plate 4-7 shows typical reservoir water temperature profiles versus depth and time of year.

b. Dissolved Oxygen. Depth, distance upstream, and season of the year are variables affecting dissolved oxygen levels in the reservoir. In the vicinity of the dam, spring deep water dissolved oxygen concentrations are dependent upon the amount of reservoir mixing that can occur before stratification. The longer the circulation interval, the greater the resupply of oxygen to deep waters. During April, surface water dissolved oxygen levels range from 100- to 110- % saturation at all stations. At the deepest station, River Mile (RM) 3, dissolved oxygen levels at 600 feet ranged from 65-to 70 % saturation. Late summer deep water dissolved oxygen levels varied from 35- to 45 % saturation.

(1). <u>Turbidity</u>. Four high turbidity patterns may be observed annually in Dworshak's epilimnial waters, but any 1 year might not have all four, which include:

- (a). A peak of inorganic solids attributed to high runoff in early spring.
- (b). The spring diatom bloom.
- (c). The midsummer phytoplankton bloom.
- (d). The fall phytoplankton bloom.

The trend through Dworshak Reservoir is generally high turbidity with minimum secchi disc readings occurring in the summer-fall period. Table 4-19 summarizes maximum and minimum secchi disc readings for five water quality stations: (1) North Fork Clearwater RM 3, (2) North Fork Clearwater RM 19, (3) North Fork Clearwater RM 35, (4) Elk Creek Mile 4, and (5) Little North Fork Clearwater RM 1.

(2). <u>Specific Conductance</u>. Conductivity, a measure of ions in solution, is a convenient index of gross water quality trends over a period of time. Deep water conductivity measurements have been relatively stable since 1976, and values range from 31 to 39 μ mhos/cm at RM 3. In April, surface values generally increase with distance downstream from 31 to 35 μ mhos/cm at RM 35 to 33 to 40 μ mhos/cm at RM 3. During summer stratification, little horizontal variation in conductivity is noted. The average epilimnion specific conductance in July-August ranged from 33 to 36 μ mhos/cm. These small fluctuations in conductivity serve to confirm the nutrient-poor status of Dworshak Reservoir.

c. Lower Clearwater River. Heating and cooling requirements of water used by the Dworshak National Fish Hatchery dictate Dworshak discharge temperatures. The selective withdrawal system for Dworshak is used to provide suitable water temperatures. The thermal structure existing in the reservoir during stratification has resulted in modification of water temperatures in the North Fork below the dam and the lower Clearwater River from the hatchery downstream to Lewiston. Table 4-20 shows average monthly river temperatures for: (1) Clearwater River near Orofino (RM 41.0), (2) North Fork Clearwater River at Dworshak Dam, and (3) Clearwater River near Peck (RM 37.4).

During the summer-fall reservoir stratification period from June-November, river temperatures vary from 40 degrees to 70 degrees Fahrenheit for the Clearwater River near Orofino, from 45 degrees to 55 degrees Fahrenheit for the North Fork Clearwater River at Dworshak Dam and from 45 degrees to 60 degrees Fahrenheit for the Clearwater River near Peck is a minus 5 degrees to 10 degrees Fahrenheit cooler from June-September and a plus 0 degrees to 5 degrees Fahrenheit warmer from October-November as a result of discharges from Dworshak Dam. December-May Dworshak discharge temperatures in the range of 40 degrees to 45 degrees Fahrenheit have eliminated the problem of ice jams in the lower Clearwater River.

The chemical quality of Dworshak releases is monitored at the hatchery. The Idaho Fish and Game Department takes periodic samples of chemical quality in the lower Clearwater River. There have been no significant adverse results reported to date.

During periods of spill from Dworshak Dam, the total concentration of dissolved gas downstream of Dworshak Dam has occurred at levels in excess of the State of Idaho's 110 % water quality standard for waters designated for salmonid spawning. From 1976 to 1985, the percent saturation range varied from a minimum of 96.8 % to a maximum of 127.6 %. However, periods of spills have been infrequent, and no adverse effects on the ecosystem have been observed. Table 4-21 shows 1976 to 1985 maximum and minimum dissolved gas readings collected from the North Fork Clearwater River at the Dworshak Hatchery. Table 4-22 summarizes Dworshak Dam daily spill for the period 1972 to 1985.

TABLE 4-21 SUMMARY OF NITROGEN GAS (N2) READINGS NORTH FORK CLEARWATER RIVER AT DWORSHAK FISH HATCHERY (1976-1985)				
Period	Maximum N ₂ (%)	Minimum	Average	
31 Mar-15 Sep 1977	124 (8 Apr)	101.1 (27 Jun)	109.4	
4 Apr-2 Nov 1977	123.5 (1 Aug)	99.9 (31 May)	108.5	
24 Feb-12 Jul 1978	110.3 (27 Apr)	100.0 (24 Feb)	105.1	
23 Feb-20 Jul 1979	112.3 (16 Jun)	101.7 (20 Jul)	106.1	
20 May-16 Dec 1980)	122.9 (21 Oct)	99.2 (25 Nov)	106.3	
2 Jan-8 Dec 1981	127.6 (19 Jan)	98.7 (16 Nov)	104.9	
3 Apr-20 Dec 1982	123.7 (19 Jul)	98.2 (22 Nov)	108.4	
10 Jan-13 Dec 1983	116.8 (8 Aug)	105.4 (18 Jan)	99.2	
3 Jan-5 Dec 1984	115.9 (13 Jun)	96.8 (5 Dec)	105.1	
22 Jan-7 Jul 1985	109.3 (22 Apr)	97.1 (22 Jan)	104.6	

A reconnaissance report completed in April 1978 indicated that the addition of a fourth unit is economically feasible. Studies assessing the fourth unit's impact on water quality indicate no adverse effects would develop.

During the low flow years, the potential exists to use Dworshak releases to improve potential water quality problems in the lower Snake River reservoirs. Consideration was given to such a plan in the 1977 low flow year, but the anticipated water quality problems did not develop.

4-09 Channel and Floodway Characteristics.

The regulation of flow at Dworshak Dam affects stream flow conditions in the lower Clearwater River. The following paragraphs discuss channel characteristics, key control points, and water travel times for the lower Clearwater River.

a. <u>Channel Characteristics</u>. The lower Clearwater River channel generally flows in a westerly direction from the North Fork and main stem confluence near Ahsahka downstream to the Clearwater and Snake River confluence at Lewiston. The channel has a well defined path that cuts deep below the area's plateau lands. The riverbanks slope at steep angles which are generally formed by adjoining bluffs and hills. Exceptions to this occur in areas where gently sloping lands lie adjacent to the river, mainly at the following locations:

- 1. South side, mile 8 to 9.
- 2. North side, mile 9.5 to 11.
- 3. South side, north Lapwai to mile 12.5.
- 4. South side at Myrtle.
- 5. South side, mile 20 to 22.
- 6. North side, mile 22 to 23.5.
- 7. South side, mile 27.5 to 28.5.
- 8. South side, mile 34 to 35.5.
- 9. South side, mile 39.5 to 40.5.

The lower Clearwater River is generally well served by railroads, highways, and secondary roads from Lewiston upstream to Orofino. Six roadway bridges and two railroad bridges cross this reach at the following localities:

- 1. Burlington Northern Railroad Bridge, RM 0.6.
- 2. Clearwater River Memorial Bridge, RM 2.0.
- 3. Interstate Highway 95 Bridge, RM 10.6.
- 4. Camas Prairie Railroad Bridge, RM 12.4.
- 5. Interstate Highway 12 Bridge, RM 14.9.
- 6. Cherry Lane Bridge, RM 21.1.
- 7. Lenore Bridge, RM 28.8.
- 8. Orofino Bridge, RM 44.6.

The lower Clearwater River between Orofino and Lewiston has an average width of about 600 feet, a minimum width of about 300 feet, and a maximum width of about 1,100 feet.

The average slope of the lower Clearwater River is approximately 6 to 7 feet per mile. The following tabulation summarizes estimated average velocities for significant flows at the Orofino and Spalding stream gages.

		Bankfull		Flood Stage	
Clearwater River Gage	Drainage Area (Sq. Mi.)	Discharge (cfs)	Average Velocity (fps)	Discharg e (cfs)	Average Velocity (fps)
At Orofino	5,580	67,000	10	75,000	11
At Spalding	9,570	115,000	11	115,000	11

NOTE: Data received from National Weather Service and U.S. Geological Survey, Boise, Idaho.

b. <u>Key Control Points</u>. Two principal control points restrict and govern the manner in which Dworshak Reservoir can be regulated for power and flood control requirements. The first control point downstream of Dworshak is the Clearwater near Peck gauging station, which is located about 5 miles downstream from Dworshak Dam (RM 37.4). The restriction at the Peck gauging station is that the maximum allowable rate of change in water surface elevation during normal project operations is 1 foot per hour in order to protect downstream activities. The second control point is the Clearwater River at Spalding gauging station, which is located at RM 11.6. This gauging station is the principal control point for flood control regulation of the Clearwater River by Dworshak Reservoir. Dworshak's regulation objective is to limit floodflows at the Spalding gage to 150,000 cfs or less in order to provide standard project flood protection for Lewiston, Idaho.

c. <u>Travel Times</u>. The following tabulation shows approximate travel times to key downstream locations when: (1) Dworshak Dam discharge is increased from 2,200 cfs (1 unit) to 10,000 cfs (full power plant capability), and (2) the flow in the Clearwater River at Orofino is in the range of 5,000 cfs to 5,500 cfs.

Location	Flow (cfs)	Approximate Travel Time from Dworshak (Hours)
Clearwater River near Peck (RM 37.4)	16,000	1
Clearwater River at Spalding (RM 11.6)	16,000	6
Clearwater River at East Lewiston Gage (RM 2.9)	16,000	8.5

NOTE: Travel times shown above are based on 19-21 December 1981 hourly data.

4-10 Upstream Structures.

There are no upstream structures.

4-11 Downstream Structures.

Downstream structures include the four Lower Snake River dams operated by the USACE.

4-12 Economic Data.

a. Population. The population data presented in the following tabulation shows a population growth within the five counties from 82,896 in 1970 to 91,090 in 1980, which is about a 10 % increase over the 10-year period. The two major cities within the region, Moscow and Lewiston, showed 16 % and 6 % increases, respectively, in population during the 1970 to 1980 period.

	POPULATION OF CLEARWATER REGION				
County Clearwater Idaho Latah Lewis Nez Perce					
1950	8,217	11,423	20,971	4,208	22,658
1960	8,548	13,542	21,170	4,423	27,066
1970	10,871	12,891	24,891	3,867	30,376
1980	10,390	14,769	28,749	4,118	33,220

Major City	Orofino	Grangeville	Moscow	Kamiah	Lewiston ¹
1950	1,656	2,544	10,593	812	16,928
1960	2,471	3,642	11,183	1,245	22,696
1970	3,883	3,636	14,146	1,307	26,068
1980	3,711	3,666	16,531	1,478	27,986

¹ Includes Lewiston and Lewiston Orchards

NOTE: Data obtained from Bureau of Census reports 1950-1980.

b. <u>Agriculture and Industry</u>. Timber and agriculture are the major economic resources within the five counties around the Dworshak Project. These counties are Clearwater, Idaho, Latah, Lewis, and Nez Perce, and they have a total area of 8.6 million acres. The following tabulation outlines the land use distribution within these five counties.

LAND USE IN CLEARWATER REGION				
Land Use	Area (Million Acres)	Total Area (Percent)		
Forest	4.90	57		
Agriculture	2.06	24		
Baren	1.55	18		
Urban and Industrial	<u>0.09</u>	<u>1</u>		
Totals	8.60	100		

c. <u>Flood Damages</u>. The lower Clearwater River reach from the former Washington Water Power damsite to the mouth, including the Potlatch Forests, Inc., paper and plywood mill and the city of Lewiston, Idaho, is considered to be fully protected from flooding to the extent which is economically feasible by a combination of Dworshak regulation and levees. The Lewiston levees are designed to protect the area from

flooding with flows up to 150,000 cfs. The winter standard project flood at Spalding has a natural peak of 280,000 cfs and can be regulated to 150,000 cfs by Dworshak. Flood damage in the reach from Dworshak to Lewiston consists of erosion of highways, railroads, levees, and bridge abutments, with some flooding of low-lying rural residential and agricultural properties in the lower Clearwater River. At frequent high flows, less than 100,000 cfs at Spalding, U.S. Highway 12, and the Camas Prairie generally receive no damage at areas exposed to erosion by the Clearwater River because large amounts of riprap have been placed in these areas. Flood damages above the Lower Granite levees on the lower Clearwater River begin at about 90,000 cfs and increase significantly for flows at Spalding in excess of 105,000 cfs. Bankfull capacity is 115,000 cfs for the Clearwater River at Spalding. The tabulation on the following page summarizes flood damages in the lower Clearwater River based on October 1981 price and development level.

Information on areas subject to flooding in the lower Clearwater River from Orofino to Lewiston can be found in existing floodplain information reports. The following list summarizes some reports which are available.

(1). Floodplain Information, Orofino and Riverside, Idaho, Clearwater River, U.S. Army Corps of Engineers, Walla Walla, Washington, May 1968.

(2). Floodplain Information, Orofino-Whiskey Creek, Orofino, Idaho, and Vicinity, U.S. Army Corps of Engineers, Walla Walla, Washington, October 1972.

(3). Flood Insurance Study, City of Lewiston, Idaho, Clearwater River and Snake River, Federal Emergency Management Agency, Federal Insurance Agency, Community Number 160104, January 1981 (Preliminary).

CLEARWATER RIVER, IDAHO Flow Versus Damage Relationship Mouth of North Fork, Including Town of Ahsahka to Confluence with Snake River at Lewiston, Idaho 1 October 1981 Price Level and Development					
Flood flow	Mouth of North Fork to Lower Granite Levee	Lower Granite Levee	Total North Fork to		
Spalding Gage	Reach – Flood Damage (\$)	Reach (Lewiston, ID) Flood Damage (\$)	Confluence - Flood Damage ¹ (\$)		
80,000	0	0	0		
100,000	9,300	0	9,300		
105,000	27,800	0	27,800		
125,000	222,600	0	222,600		
150,000	1,159,000	0	1,159,300		
165000	2,086,700	4,783,900	6,870,600		
177,000 (1948)	2,782,200	7,889,100	10,671,300		
190,000	3,616,900	22,614,800	26,231,700		
200,000	4,303,100	33,922,200	38,225,300		
210,000	4,970,800	45,664,500	50,635,300		
220,000	5,657,100	57,406,800	63,063,900		
230,000	6,399,100	69,149,100	75,548,000		
240,000	7,141,000	80,891,400	85,032,400		
250,000	7,901,400	93,068,600	100,970,000		
260,000 (SPF)	8,717,600	115,683,400	124,401,000		

¹ Lower Granite levees effective to 150,000-cfs flow.

5 DATA COLLECTION AND COMMUNICATION NETWORKS

5-01 Hydrometeorological Stations.

a. Facilities

(1). Automated Hydromet Systems.

(a). <u>Bureau Hydromet System</u>. The Pacific Northwest Regional Office of the Bureau of Reclamation has an extensive automated hydrometeorological data collection system throughout the upper, middle, and lower Snake River basins. This system is composed of (1) a Direct Readout Ground Station (DRGS) located in Boise for the Geostationary Operational Environmental Satellite (GOES), (2) a computerized network controller, referred to as the Central Computer Facility (CCF), and (3) remote stations.

The system is unique in that the Data Collection Platform (DCP) at each remote site is microprocessor-controlled and has the capability to transmit through two channels on the GOES system. One channel handles only self-timed transmissions, whereas the second channel is dedicated to only adaptive random transmissions. Operation in the self-timed mode is as follows. The DCP interrogates all sensor outputs at 15-minute intervals and stores the values in its memory. At a preassigned time interval, every 4 hours, the DCP transmits all stored values from each sensor to the Central Computer Facility through the Direct Readout Ground Station in Boise. This produces a very complete detailed data base.

Transmissions in the adaptive random reporting (R/R) mode are completely unscheduled with the decision to transmit being made by the DCP. This is accomplished by programming threshold values in the microprocessor which the DCP uses to compare with sensor output. If the threshold values are exceeded, the DCP computes a random transmission rate and begins to transmit randomly. The microprocessor also computes rates of change between sensor readings; if the rate of change exceeds the preprogrammed threshold values, this also causes the DCP to compute a random transmission rate and begin transmitting. Each time a DCP transmits randomly, it only sends three values - the most current value and the two preceding values. Also, once the DCP goes into random mode, it will send at least three transmissions randomly before shutting down. However, if the threshold values are continually exceeded and/or the rates of change increase, the DCP will continue in the random mode until the situation returns to normal. It is important to note that as the rate of change of the sensor value increases, the random transmission interval is shortened, thereby transmitting more frequently as the event becomes more serious.

All data received by the Central Computer Facility (CCF) are immediately processed and stored in the Dayfiles. At 5:00 a.m. each morning, the CCF compiles data from the previous day's Dayfiles database file readings to be put into the Archives database. The Archives database is composed of such things as midnight reservoir elevation and contents, maximum and minimum temperatures, and mean daily flows, etc. Both Dayfiles and Archives databases are available to users through terminals.

- (b). CROHMS (Corps of Engineers).
 - General. The Columbia River Operational Hydromet and Management System (CROHMS) is a real-time water resources data management system. A computer system is used for data reduction, system modeling, forecasting, and data base support functions. The data acquisition for these functions is supported through the CROHMS Automated Front End (CAFE). Figure 5-2 on page 5-8 shows the CROHMS network diagram. Details on the CROHMS data collection system are contained in the Columbia River Basin, Master Water Control Manual, December 1984.

In addition, the Columbia Basin Telecommunications (CBT) network, operated by the Corps of Engineers, is now merged with CROHMS. The CROHMS CAFE computer performs the polling functions for the CBT circuit.

2. <u>Use of CROHMS Data</u>. The real-time data are used for the operational management and forecasting of the Columbia River system. The output system is designed to be flexible and easy to use in carrying out the water management responsibilities on a day-to-day basis or for special operating conditions, for maintaining surveillance of the river and reservoir system, and for developing forecasts or operating plans for future regulation.

(2). <u>Streamflow and Reservoir Data</u>. Daily streamflow and reservoir data is essential for optimum regulation of the Dworshak Project. All major rivers and reservoirs are gauged, and daily reports are usually available when required through the U.S. Bureau of Reclamation's VAX system and the Corps of Engineers-CROHMS system.

The following tabulation summarizes real-time data which are available from the Bureau's hydromet system:

	Parameters	
Station Archives	Dayfiles	Stream Gages
1. North Fork Clearwater River at Canyon Ranger	GD,HJ,QD	GH,HJ,Q
Station (CRSI)		
Dam and Reservoir		
1. Dworshak Dam (DWR)	AF,FB,ID,QD ²	
Stream Gages		
1. Lochsa River near Lowell (LOCI)	GD,HJ,QD	GH,HJ,Q
2. Selway River near Lowell (SELI)	GD,HJ,QD	GH,HJ,Q
3. South Fork Clearwater River at Stites (STII)	GD,HJ,QD	GH,HJ,Q
4. Clearwater River at Orofino (ORFI)	GD,HJ,QD	GH,HJ,Q
5. Clearwater River at Peck (PEKI)	GD,HJ,QD	GH,HJ,Q
6. Clearwater River at Spalding (SPDI)	GD,HJ,QD	GH,HJ,Q

² Not real time data. Transferred from CROHMS.

AF - Midnight Content (KAF) HJ - Gage height rating shift

FB - Midnight Forebay Elevation ID - Computed Mean Daily Inflow

GD - Mean daily gage height QD - Mean Daily Discharge

GH - Observed gage height

The following data is available from the Corps of Engineers CROHMS database:

Station	Parameters
1. North Fork Clearwater River at Canyon	HGIRGZZA, QRIRGZZA, QRDPAZZ
Ranger Station (CRSI)	
2. Dworshak Dam (DWR)	HFDRXZZA, HFIRXZZA, LSIRXZZA,
	QIDRXZZA, QRHRXZZA, QRDPAZZ
3. Lochsa River near Lowell (LOCI)	HGIRGZZA, QRIRGZZA, QRDPAZZ
4. Selway River near Lowell (SELI)	HGIRGZZA, QRIRGZZA, QRDPAZZ
5. South Fork Clearwater River at Stites (STII)	HGIRGZZA, QRIRGZZA, QRDPAZZ
6. Clearwater River at Orofino (ORFI)	HGIRGZZA, QRIRGZZA, GRDPAZZ
7. Clearwater River at Peck (PEKI)	HGIRPZZA, QRIRPZZA, QDRPAZZ
8. Clearwater River at Spalding (SPDI)	HGIRGZZA, QRIRGZZA, QRDPAZZ

HFDRXZZA - Daily Mean Forebay Elevation

HFIRXZZA - Hourly Forebay Elevation

HGIRGZZA - Gage Height via GOES Satellite

HGIRPZZA - Gage Height via Phone or Radio

HGIRXZZA - Gage Height via Phone or Radio

LSIRXZZA - Reservoir Content (acre-feet)

QIDRXZZA - Computed Inflow Sent from Project

QRDPAZZ - Computed Mean Daily Release

QIDRXZZA - Computed Mean Daily Flow

QRIRGZZA - Hourly Flow from Satellite Stage

(3). <u>SCS Snotel System</u>. The Soil Conservation Service owns and operates a hydromet system for the Snake River Basin as part of its western states Snow Telemetry (SNOTEL) program. This system uses (1) two master polling stations located at Boise, Idaho, and Ogden, Utah, (2) meteor burst radio communications, and (3) remote stations. The system collects remote data once per day during a nominal polling period (5:00 a.m. to 8:00 a.m. Pacific time) and has capability of additional interrogations (ad hoc polls) as needed. A total of up to six parameters may be retrieved from each remote data site, with ultimate plans for retrieving a total of 16 parameters. The six parameters include:

- 1. Snow water content as measured by snow pillow (SP)
- 2. Cumulative precipitation (PC)
- 3. Air temperature (OB)
- 4. Maximum air temperature (TMAX)
- 5. Minimum air temperature (TMIN)
- 6. Average air temperature (TAVG)

Real-time SNOTEL data is retrieved automatically from the SCS-Data General computer system's data base in Portland, Oregon, into the Corps CROHMS system on a daily basis. Users also have direct access to SNOTEL data through the SCS Data General system.

b. Reporting

(1). <u>Purpose</u>. To fully regulate winter and spring floods and assure sufficient storage of water for power and recreation, a timely exchange of basic data between Dworshak Project, Walla Walla District, and North Pacific Division is required. A list of key officials and telephone numbers is included on page vii (pink sheets) of this Manual for both normal regulation and abnormal events. During abnormal events, the exchange of data will be expedited by telephone to these officials during non-duty hours. On occasions of an emergency nature, the normal communication channels may be out of service, and emergency action may have to be used. Emergency actions to be taken are summarized on page viii (pink sheets) of this Manual.

(2). <u>Frequency of Exchange</u>. The frequency of exchange of basic data pertinent to efficient operation of the dam and regulation of floods will be on a daily basis during the work week except during unusual or rare conditions of weather or reservoir inflow when the frequency will be as requested or needed. Data is automatically sent to the Corps of Engineers CROHMS system on an hourly basis 7 days per week from the Bureau of Reclamation Hydromet System located in Boise.

(3). <u>Use of Real-Time Data</u>. Real-time data are used for volume forecasting and in the Streamflow Synthesis and Reservoir Regulation (SSARR) Model. Volume forecast and SSARR Model results from the basis for reservoir regulation decisions and resultant reservoir regulation. Also, the output from CROHMS and SNOTEL systems is designed to be flexible and easy to use in carrying out the water management

responsibilities on a day-to-day basis or for special operating conditions, for maintaining surveillance of the river and reservoir system, and for developing forecasts or operating plans for future regulation.

c. Maintenance

5-02 Water Quality Stations.

a. Facilities

Profiles of water temperature, turbidity, pH, and alkalinity and samples for selected chemical, physical, and biological parameters are collected at five points on Dworshak Reservoir and one point just downstream of Dworshak Dam. The following tabulation lists these sample sites in downstream order:

- a. Little North at river mile 1
- b. North Fork Clearwater at river mile 35
- c. North Fork Clearwater at river mile 19
- d. Elk Creek at river mile 4
- e. North Fork Clearwater at river mile 3
- f. North Fork Clearwater at river mile 0.5 (downstream of dam)

Data from these five reservoir stations are collected by the Walla Walla District Environmental Resources Branch. Twenty-one forebay thermohms located along the upstream face of Dworshak Dam provide water temperature profile data needed for adjusting project discharge temperature. Also, one telephone accessible thermohm, located on Unit 1's nose pier in the powerhouse tailrace, provides turbine discharge temperature data. Project personnel record thermohm data daily. River temperature data are readily available from the following automated stations:

- a. North Fork Clearwater River near Canyon Ranger Station, river mile 58.0
- b. North Fork Clearwater River at Dworshak Fish Hatchery, river mile 0.3
- c. Clearwater River at Orofino, river mile 44.6
- d. Clearwater River at Peck, river mile 37.4

These four stations transmit data to the Walla Walla District Corps of Engineers base station and North Pacific Division Corps of Engineers CROHMS data base computer.

b. Reporting.

The Walla Walla District Environmental Resources Branch is responsible for the collection of water quality data and publishes reports on water quality activities and problems.

Results of post-impoundment studies for water quality conditions both within Dworshak Reservoir and the lower Clearwater River channel have been discussed previously in paragraph 4-08 Water Quality.. Plate 4-1 also shows the locations of key water quality stations.

c. Maintenance.

5-03 Sediment Stations.

- a. Facilities There are no sediment stations.
- b. Reporting
- c. Maintenance

5-04 Recording Hydrologic Data.

The Geological Survey collects streamflow data and annually publishes recorded data in their publication, "Water Resources Data for Idaho." The Soil Conservation Service collects manual snow course measurement data and publishes the data in their monthly publication, "Water Supply Outlook for Idaho." In addition, SNOTEL stations provide real-time snow water content data on a daily basis via the SCS's Data General System. The National Weather Service collects climatic data and publishes it annually in their Climatological Data for Idaho publication.

For real-time reservoir regulation, data are readily available, once collected, from the Bureau of Reclamation VAX Computer and the Corps of Engineers CROHMS system which provide real-time data as listed in paragraph 5-01a(1)(b). Figure 5-1 shows a schematic for the Clearwater Basin hydromet system.

5-05 Communication Network.

5-06 Communication with Project.

a. <u>Between North Pacific Division (NPD) and Dworshak</u>. The North Pacific Division Reservoir Control Center (RCC) is responsible for the daily reservoir regulation of the Dworshak Project. The Columbia Basin Telecommunications network (CBT) is the primary communication tool used by RCC to issue normal day-to-day instructions and schedules to the project. In addition, RCC can also telephone the project via the Federal telecommunications system (FTS) or the commercial telephone system.

A large amount of river, reservoir, weather, and related operating data is transmitted via the Columbia Basin Teletype Circuit. The circuit connects the North Pacific Division and the Walla Walla, Portland, and Seattle District Offices with all major projects on the main stem Columbia River. The circuit also includes Bonneville Power Administration,

Portland, Oregon; British Columbia Hydro Office, Vancouver, British Columbia; Bureau of Reclamation and Weather Bureau Offices, Boise, Idaho; and the Geological Survey Northwest Regional Water Data Center in Portland, Oregon.

For emergency situations, refer to the pink sheets, pages vi-vii, in front of this Manual. Also, in the event of normal telephone and CBT systems outage, communication between the project will be established via the Walla Walla District radio system.

b. <u>Between Walla Walla District (NPW) and Others</u>. Direct communication between the District and Dworshak Dam is normally by telephone via a Bonneville Power Administration (BPA) microwave link through McNary Dam. The Federal Telecommunications System (FTS) is used between NPW and NPD, and via this system, most other long-distance calling can be handled.

A microwave radio and microwave telephone system connects all District projects except Lucky Peak. McNary Dam is the control center for this system. Radio communication to commercial floating craft and the U.S. Coast Guard utilizes assigned marine frequencies 156.7 megacycles for contacting and emergencies, and 156.80 megacycles for working traffic. Radio communication between mobile and portable units and the District Office or a project control room is on the Corps' operating frequency 163.4125 megacycles. Relay stations at various locations increase mobile radio coverage. Microwave radio channels link the project control rooms and the District office.

When the operator at Dworshak leaves the control room, McNary can switch the microwave radio system and rebroadcast over the mobile or portable frequency, 163.4125 MC, and reach the operator anywhere on the project.

A microwave telephone system provides an additional link between the District Office and the projects. With the microwave radio and telephone system available, it is possible to communicate between a mobile radio and any project or District telephone extension via McNary control room.

- 5-07 Project Reporting Instructions.
- 5-08 Warnings.

6 HYDROLOGIC FORECASTS

6-01 General.

The development of reservoir regulation plans for the Dworshak Project during flood control and refill operation is based primarily on seasonal runoff volume forecasts and daily stream flow forecasts.

a. Role of the Corps. The NPD Corps of Engineers RCC is directly responsible for coordination of operational planning and regulation of Corps of Engineers reservoirs. The Hydrology Branch is responsible for preparing seasonal runoff forecasts for the North Fork Clearwater River Basin above Dworshak Dam.

b. The Portland River Forecast Center of the NWS is responsible for issuing coordinated water supply forecasts for the Columbia River Basin system based on forecasts from B.C. Hydro, BPA, Bureau of Reclamation, Corps of Engineers, SCS, and the RFC. RFC also makes peak discharge estimates for key gauging stations in the Columbia River Basin based on 1 April runoff volume forecasts. These peak flow forecasts are based on statistical relationships between peak flow and runoff volume.

For real-time, short-range daily regulation, the RCC uses the SSARR computer program. This program is a mathematical hydrologic model incorporating routing procedures, snowmelt, and precipitation data to simulate stream flows. The storage effects of natural lakes and regulated reservoirs can also be evaluated with stream flow conditions and specified reservoir regulation conditions. The SSARR model is very valuable during the April-July spring refill season for planning and evaluating reservoir regulation plans for Dworshak. RFC and RCC develop SSARR forecasts cooperatively and use results to carry out their public service and operational responsibilities. Refer to the Master Water Control Manual dated December 1984 for more information on use of the SSARR model on day-to-day flood control analysis and power scheduling analysis.

- 6-02 Flood Condition Forecasts.
- 6-03 Conservation Purpose Forecasts.

See Section 06-05.

- 6-04 Long Range Forecasts.
- 6-05 Drought Forecasts.

During drought years, the SSARR model has provided data necessary for regulation. Volume forecast procedures based on regression analysis for low flow or drought years

will be developed by the Walla Walla District as sufficient data and time become available.

6-06 Seasonal Runoff Volume Forecasts.

a. The NPW Hydrology Branch is responsible for developing the seasonal runoff volume forecast procedures for Dworshak unregulated inflows. The NPD RCC normally uses NPW's forecast for Dworshak's long-range operational forecast. However, the NPD RCC reviews all water supply forecasts received by the Portland RFC before finalizing the operational forecast for Dworshak. These operational forecasts are essential for developing and adjusting Dworshak's seasonal reservoir regulation plans. Runoff volume forecasts are normally made about 1 January and revised on a bimonthly basis through 1 June as hydrometeorological data becomes available (near the beginning and middle of each month).

b. NPW's runoff volume forecast procedure was developed by regression and correlation techniques, which use snow water content data and precipitation data as the primary independent variables. The District's forecast procedure is presented in Exhibit 6-1 of this manual.

c. <u>SSARR Forecasts</u>. Operational forecasts for short-term daily regulation are made cooperatively by the NPD RCC and the Portland RFC. The SSARR model is comprised of three basic components:

(1). A generalized watershed model for synthesizing runoff from snowmelt, rainfall, or a combination of the two as drainage basin outflows.

(2). A river system model for routing stream flows from upstream points to downstream points through channel and lake storage. Stream flows may be routed as a function of multivariable relationships involving backwater effects from tides or reservoirs.

(3). A reservoir regulation model whereby reservoir outflow and contents may be analyzed in accordance with predetermined or synthesized inflow and free flow or any of several modes of operation.

SSARR forecasts normally begin about 1 April and continue until the flood potential becomes minimal, which is usually sometime in July. During the early part of the spring flood season, the frequency of these forecasts is 3 days per week on Monday, Wednesday, and Friday. The Monday and Friday forecasts are short-range forecasts for 10 days in advance. The Wednesday forecast is a long-range forecast which covers the period from the initial forecast date through July.

During the peak flow and recession flow period, long-term extended forecasts are made every day. These extended forecasts continue until the danger of flooding is past and the reservoirs are filled. Since weather forecasts are usually reliable only for 3 to 5 days

in advance, the hydrometeorological factors affecting runoff must be extended during the forecast period on the basis of average and extreme snowmelt conditions in order to compare probable flows with the most severe flows likely to occur.

7 WATER CONTROL PLAN

7-01 General Objectives.

The general purpose of this Water Control Plan is to define reservoir regulation procedures and practices which provide maximum benefits from authorized uses when the project is regulated as a part of the Columbia Basin system. To accomplish this objective, reservoir uses for flood control, power generation, recreation, fish and wildlife, and water quality are considered. It must be realized that these uses may sometimes conflict and choices must be made for the greatest overall benefit. The degrees of constraint listed in paragraph 7-02 give a means of resolving conflicting interests.

7-02 Constraints.

The major constraints on operation of Dworshak project are:

- Spillway and outlet operation.
- Minimum flow releases.
- Maximum stage rate of change downstream.
- Control of downstream temperature.
- Lower Snake flow augmentation releases (fish flows).

a. Spillway and Outlet Operation. Three regulating outlets and two spillway bays provide a means of releasing water in excess of power requirements. The desired release may be obtained using either the outlets, the spillway, or a combination of both provided, of course, the reservoir level is above the spillway crest elevation 1545. The following criteria should be followed when making releases:

(1). Balance Releases. Releases will be balanced as much as possible in order to establish and maintain uniform flow patterns through the spillway-stilling basin. This type of operation reduces adverse hydraulic conditions, which cause structural damage by erosion of the concrete.

- (2). Operational Limitations.
 - (a). Spillway (Gate Opening):
 - 1. For opening requirement of 1 foot or one increment, use one gate only. Either gate may be used.
 - 2. For opening requirement greater than 1 foot, use both gates opened equally when possible.

CAUTION: In no instance should a difference of more than 1 foot of gate opening between the two gates be permitted during normal operation for spillway releases.

- (b). Outlets (Valve Opening):
 - 1. For opening of 1 foot or two increments, use outlet number 2 only.
 - 2. For opening requirement greater than 1 foot, use balanced outlets 1 and 3 or three outlets equally balanced within one increment of each other.

CAUTION: In no instance should a difference of more than one increment (6 inches) of valve opening between three valves by permitted during normal operation for outlet works releases. Valves No. 1 or No. 3 should not be operated singly under any circumstances.

If an emergency prevents meeting the above criteria, a report should be made to NPW Engineering Division detailing the circumstances so that the possibility of stilling basin damage can be evaluated.

Model studies indicate the sidewalls of the spillway may be overtopped by flows in excess of 100,000 cfs, flooding the power house. Table 2-1 gives the discharge rating for a single spillway bay. Table 2-2 gives the discharge rating for a single outlet.

b. Minimum Release. The minimum instantaneous project release will be 1,000 cfs. This minimum flow has been established as necessary for fish collection at the dam and as a water supply for the hatchery. Although the hatchery is operated as essentially a closed, recirculating water system, about 10 % makeup water is required. North Fork water is required for this purpose because fry reared in North Fork water are more likely to return to North Fork and the hatchery when seeking spawning areas as returning adults. Trapping facilities to supply the hatchery are located on the North Fork and hatchery stocking depends upon adult steelhead returning to North Fork.

c. Maximum Rate of Change. A 1-foot-per-hour (1 foot in any 60-minute period) rate of stage change in the Clearwater River at the Peck gauging station due to releases from Dworshak is the maximum rate of river fluctuation allowed. This 1-foot-per-hour maximum limit is set to protect downstream river user activities and facilities. The allowable hourly rate of change of project discharges for this stage rate of change at Peck is determined by the initial riverflow at Peck at the time of the change. Table 7-1 gives the maximum allowable 1-hour change in discharge at Dworshak for a range of observed flows at Peck. It should be noted that the 1-foot change at Peck can generate a change of up to 5 feet on the North Fork between the dam and the main stem Clearwater. If at all possible, flows should be stepped up gradually, especially during the fishing or recreation season, when heavy public use occurs downstream on the North Fork. The NPD RCC is responsible for determining ramp rates when changes in project discharge are required.

d. Temperature Control of Release. The multi-level outlet facility is provided to select the temperature of water discharging through the turbines. The initial operating objectives were to match the temperature of the water in the Clearwater River just above the North Fork and maintain acceptable levels of dissolved oxygen. However, during the initial operation of the project this type of regulation released water that was too warm for the Federally operated fish hatchery downstream of the dam and too warm to efficiently cool the powerhouse generators.

An interim plan was developed in 1974 to provide cooler water for the generators and hatchery. Under this plan, 53° F releases are maintained whenever possible, with discussions between project and hatchery personnel being held weekly to discuss temperature conditions. This plan remains in effect to the present time.

The selector gates are set for use in May, but the 53° F temperature desired usually cannot be achieved until early July. The reservoir usually becomes too cool to maintain this temperature in November, at which time the gates are used to provide as warm a temperature as possible.

To prevent kokanee loss through the turbines, it is desirable to draw water only from the top 50 feet of the reservoir from January to April. Withdrawal of reservoir water from over the top of the selector gates is possible with reservoir fluctuations between elevations 1600 and 1500. Between elevation 1500 and minimum elevation 1445, water must be drawn from beneath the gates.

e. Lower Snake Flow Augmentation. PL 96-501, Pacific Northwest Electric Power Planning and Conservation Act (December 1980) contains provisions to protect, mitigate, and enhance conditions for fish and wildlife on the Columbia River and tributaries. To accomplish this, the Northwest Power Planning Council was established and in 1982 developed a comprehensive Columbia River Basin fish and wildlife program. The most significant part of the program establishes a "Water Budget" approach, which allocates a total Water Budget of 20 kcfs-months (1.19 MAF) at Lower Granite Dam for flows in excess of firm power flows from 15 April to 15 June. The participation of Dworshak in the fish flow augmentation program at Lower Granite is summarized as follows:

(1). Water Budget Regulation. During a water budget year (Lower Granite runoff volume inflow forecast for April through July is 23.0 MAF or less), the regulation of Dworshak for coordination of the Water Budget will be based on the "Annual Coordinated Plan of Operation" developed by the Corps of Engineers for the period 15 April through 15 June. The RCC will be responsible for coordinating Dworshak releases to the extent that water is available for fish flows at Lower Granite. Requests for release of additional flow will originate with the Water Budget Center.

(2). Non-Water Budget Regulation. During a non-water budget year (Lower Granite runoff volume inflow forecast for April through July is greater than 23.0 MAF),

the RCC will also coordinate the regulation of Dworshak releases to the extent that water is available for flow augmentation at Lower Granite.

7-03 Overall Plan for Water Control.

a. Annual Operating Plans. In accordance with the Pacific Northwest Coordination Agreement, each year prior to 1 February the Division office will submit to the Pacific Northwest Power Pool Coordinating Group required operating rule curves and any operational constraints for Dworshak for the next succeeding operating year. The rule curves and constraints will reflect to the extent possible the constraints and considerations contained in this manual. The District and Division offices will coordinate fully in preparing this submittal.

The Coordinating Group will then prepare system regulation plans for the next operating year (1 July – 30 June) which will be reviewed by the Division and District offices to insure that the regulation plan for Dworshak project has been made in accordance with the operating objectives stated in this manual. The operating plan developed in the project, based on the 1 February data submission, will be in effect only for the next operating year, for the period of 1 July to the following 30 June. Refer to the Columbia River Basin Master Water Control Manual dated December 1984 for details on annual planning and analysis for system operations.

b. Seasonal Operation. Seasonal operation of the project will be governed by the principles of the Pacific Northwest Coordination Agreement, the appropriate operating plan, and special rules established specifically for Dworshak project for nonpower purposes.

Generally, seasonal storage use will comply with established storage levels indicated by the Operating Rule Curve which is developed from the Coordinating Group simulated system regulations for each reservoir in the coordinated hydroelectric system. The main purpose of the Operating Rule Curve (ORC) is to insure the system's FLCC, with the recurrence of the most adverse historical water supply. The ORC insures reservoir storage refill in all but the years of low runoff. Through the data submittal process as stated in paragraph a. above, it also recognizes nonpower constraints and in certain periods of the year, may be a direct function of such constraints, for example mandatory draft for winter flood control space.

The overall seasonal storage plan of Dworshak is summarized as follows:

(1). <u>September-December</u>. Draw down reservoir to elevation 1558 by 15 December to provide 700,000 acre-feet of flood control space. This should be accomplished by using normal power load discharges.

(2). <u>January-March</u>. Maintain 700,000 acre-feet of storage plus any additional required based on volume forecasts of available runoff.

(3). <u>April-July</u>. Refill at a rate that will provide safe flood control based on runoff volume forecasts, yet will allow a 95 % probability of refill.

(4). <u>July-August</u>. Attempt to hold full pool or maximum elevation achieved during refill.

In actual operation the storage levels attained at Dworshak Project will be near those levels indicated by the ORC most of the time. On some occasions the levels may be higher or lower than those indicated by the curve. Examples of these occasions are as follows:

- Water is surplus to power needs.
- Water is stored for flood control.
- Water is being stored for another utility by energy exchange agreement.
- The system FLCC cannot be maintained without additional drafts.

If the reservoir must be drafted below its ORC, then it will be operating in the same proportion between its ORC and appropriate Critical Rule Curve as other reservoirs in the Coordinated System.

7-04 Standing Instructions to Dam Tenders.

The following is a list of standing instructions for reservoir regulation under normal conditions, emergency conditions, communication outage, and system power outage.

a. <u>Normal Conditions</u>. Dworshak Reservoir will be regulated according to criteria and procedures in this Water Control Manual. Appendix A of this manual (separate publication) contains pertinent project rating tables and curves. The following tabulation lists locations of normal operating criteria within this manual.

Paragra	<u>iph</u>	Page
7-02.	CONSTRAINTS	
a. b. c. d. e.	Spillway and Outlet Operation Minimum Release Maximum Rate of Change Temperature Control of Release Lower Snake Flow Augmentation	7-1 7-2 7-2 7-3 7-3
7-05.	FLOOD CONTROL PLAN	
a. b. c. d.	Winter Flood Control (September-December) Spring Evacuation (January-March) Reservoir Refill (April-July) Summer Recreation (June – August)	7-5 7-9 7-9 7-10

Tables

7-2	Summary of Fall Drawdown Requirements	7-8
7-3	Dworshak Operational Constraints	7-17

b. <u>Emergency Conditions</u>. Emergency conditions are unforeseen and cannot be provided for in this Water Control Manual. Reference should be made to the Flood Emergency Subplans for Dworshak for emergency procedures associated with dam safety.

Should an emergency occur or appear to be developing, the Project Engineer or his representative should contact his immediate supervisor. If the nature of the emergency requires immediate action to prevent loss of life and property, the Project Engineer will take the necessary action and report all circumstances to the NPW Chief of Operations, Construction, and Readiness Division as soon as possible. If the emergency affects power or downstream water conditions, the RCC will be notified immediately.

NOTE: Refer to the Emergency Regulation Assistance Procedures in the front of the manual for telephone numbers and guidelines on emergency conditions.

c. <u>Communications Outage</u>. In the event of normal telephone and CBTT systems outage, communication between the Dworshak project and the RCC will be established via the NPW radio system.

d. <u>System Power Outage</u>. In the event of a transmission system breakup, which would leave Dworshak project the only major generating facility on an isolated segment of the BPA system, a maximum effort will be made to carry the load. Under such conditions, it may be justified on a short-time basis to load the generators above the normal 15 % overload, which may draw down the reservoir below the level allowed by the ORC. If at all possible, at least one generator will be kept in operation throughout an emergency, which has isolated or threatens to isolate the project from other power sources. If no other power is available, the spillway gates may be operated with emergency power supplied by a diesel-generator set.

7-05 Flood Control.

The flood control plan involves three periods seasonally for reservoir regulation. These are: (1) reservoir evacuation period (normally the drawdown period from September through March); (2) reservoir refill period (normally the high flow period from April through July); and (3) storage holding period (normally coincident with the summer recreation period (July and August). Plate 7-1 shows operating curves for flood control and Plate 7-2 shows variable refill curves.

a. <u>Winter Food Control (September-December)</u>. The reservoir level is scheduled to be lowered to a maximum elevation of 1558 by 15 December each year. This will

provide the 700,000 acre-feet of reservoir space needed for winter flood control in the event that a winter flood freshet should occur. Normally, system power loads will be scheduled to provide the space required. Necessary drawdown will be accomplished using the following schedules:

(1). From 1 September to 1 October, the pool will be regulated to achieve an elevation between 1586 and 1560 by 1 October. Pool elevation 1586 provides about 250,000 acre-feet of flood storage space. Releases during this period should average about 4,200 cfs above inflow if the reservoir was full on 1 September.

(2). From 1 October to 15 November, the pool will be regulated to achieve an elevation between 1579 and 1560 by 15 November. An additional 120,000 acre-feet of flood storage space is available between elevations 1586 and 1579. During this period, the 7-day average release cannot exceed inflow by more than 1,300 cfs, except during freshets or emergency power operations. Maximum change in any day shall not exceed 40 % of the previous 7-day average release. This restriction is imposed to provide favorable "catch" conditions during the prime steelhead fishing seasons and will be continued unless it is demonstrated and agreed to by State of Idaho and Federal fisheries agencies that high flows and fluctuation pose no serious reduction in fish harvest. It is also an operational objective to maintain elevation 1560 until 1 November to allow boat access and campsite use during the fall hunting season. However, the reservoir may be evacuated below this level during October if critical power situations justify the action.

(3). During the period from 16 November to 15 December, the pool will be regulated to achieve elevation 1558 or lower to provide the remaining space needed for 700,000 acre-feet of total flood storage space. This amount of storage space, as a minimum, will be maintained until after 1 April. Additional space may be required for power or flood control based on volume forecasts made after 1 January.

In some years, winter flood freshets are expected to occur which will require storage in the upper elevations of the reservoir. The rates and amounts of storage will be determined on a real-time basis for control of floods in the lower Columbia River as gauged in the Portland-Vancouver area and on the lower Clearwater River as gauged at Spalding, Idaho. In the absence of advance instruction covering a significant rise in the Clearwater River, releases from Dworshak should not exceed 20,000 cfs and flows at Spalding should not exceed 115,000 cfs until regulation instruction are received.

Whenever it is necessary to store in the winter flood control space, the full space requirement should be regained as soon as possible by maintaining approximately the maximum flows observed at Spalding during the freshet, but not to exceed flood stages downstream. For this purpose, downstream flood stages will be considered as 115,000 cfs at Spalding and 16 feet at Vancouver, Washington. The following Table 7-2 summarizes the fall drawdown requirements as discussed in the preceding paragraphs.

TABLE 7-2

	Pool	Elev.			Total	
		Max	Release Over	Fluctuations	Space	
Period	Min.		Inflow – cfs	Permitted	(a.f.)	Notes
-1 Sep	1570	1600	4200		250,000	Release does not have
1 Sep-1 Oct	1560	1586				to be uniform.
1 Nov	1560					A constraint. Certain procedures of notification and justification will be required prior to violation.
1 Oct-15 Nov		1579	Max 1300	Max. change in any day not to exceed 40% previous 7-day average outflow.	370,000	Prime steelhead fishing season. Fluctuations are critical.
16 Nov-15 Dec		1558	5500		700,000	Spill required 25% of all years with 3 units available.

SUMMARY OF FALL DRAWDOWN REQUIREMENTS

b. <u>Spring Evacuation (January-March)</u>. Spring evacuation operations are guided by runoff volume forecasts made during the period 1 January to 1 April. The operational objective during this period is to obtain, by 1 April, the amount of storage space that is required for flood control and can be safely refilled before 31 July (based on runoff forecasts and Plate 7-1 and Plate 7-2. A seasonal forecast procedure, Exhibit 7-1, utilizes available precipitation and snowpack data to forecast runoff volumes. Forecasts of runoff volume for the period 1 April to 31 July are made approximately every 2 weeks (near the beginning and middle of the month) beginning on 1 January and continuing until the flood season is over.

Normally, the evacuation discharge rate for spring flood control will be determined as the average discharge required from the current date to 1 April to provide the desired evacuation space. Evacuation for spring flood control should be accomplished, if possible, prior to 1 April to avoid increasing the spill and nitrogen supersaturation at downstream projects. Project releases will be selected as inflow plus the evacuation discharge rate. Adjustments will be made periodically as the season develops and runoff forecasts are updated.

c. <u>Reservoir Refill (April-July)</u>. The space evacuated for flood control will be maintained until refill operations are required. The refill parameter curves, Plate 7-2, show the maximum space from 1 January to 31 July that has a 95 % chance of being refilled with a given runoff forecast and a minimum power discharge requirement of 2,000 cfs. The parameter curves conform to the "Variable Refill Curve" criteria described in paragraph 7-10.b.(5) and shown computed on Exhibit 7-1. Variations in average power releases could result in more space available than indicated by the refill parameters, in which case the parameter curves will allow for estimating the amount of risk to refilling that may be involved. Considerations will also be given to reducing daily fluctuations form 25 April to 30 June for spring chinook fishing.

One strict limit to the final refill operation is imposed to assure capability to pass the spillway design flood in the event of a severe rainstorm during the spring snowmelt season. This limit is the retention of inviolate flood control space according to the following table:

Percent of Area Covered By Accumulated Winter Snowpack	Inviolate Space Reservation 1,000 A.F.
100	700
80	540
60	383
40	230
20	80
10	0

Snow covered area is considered to include only accumulated winter snowpack and should not be used for late spring snowstorms which will cover a large area without producing substantial runoff. This snow covered area is determined by use of the SSARR model, by aerial snow reconnaissance of the Clearwater River Basin by NPW Hydrology Branch personnel, and by satellite imagery. The two latter sources are considered the most reliable and will govern over the SSARR model data when in disagreement.

d. <u>Summer Recreation (June – August</u>). The period following the spring refill is an annual period of highest reservoir elevation and corresponds to the period of greatest recreation use of the reservoir. During the summer recreation period, the reservoir level should fluctuate as little as possible until the autumn drawdown period. The reservoir should normally be held full during this period unless critical conditions develop such as power shortages. If the reservoir does not fill to that level, it will be held at or near the maximum level reached. Maximum drawdown elevation prior to 1 September will be 1,570 feet msl. The normal operating practice is to wait until after Labor Day weekend to begin drawdown.

7-06 Recreation.

Because of its desirable location in a mountainous forested region, Dworshak Reservoir is unique among reservoirs in the region and is quite popular for boating, fishing, water skiing, hunting, camping, and many other recreational uses. Because of this great demand, recreation use of the reservoir is an important element of the water control plan. Plate 2-9 shows the reservoir map and Plate 2-10 shows regional recreation facilities.

An operational objective of the Dworshak project will be to fill to normal pool elevation 1600 each year and to maintain the reservoir at normal pool during the summer months to facilitate boating, camping, and other recreational activities. Pool levels less than full leave beaches separated from the water by a strip of mud, lengthen boat launching ramps beyond convenient lengths or make them entirely unusable, isolate camping sites from the shoreline, and generally deteriorate recreation quality. Reservoir drafts greater than 5 feet below full pool (1,600 feet msl) affect swimming, campsite access, and shoreline fishing; and drafts greater than 10 feet below full pool makes boat launching more difficult as well as affecting recreation activities. Table 2-6 shows reservoir levels at which specific recreation sites are operational.

Special consideration will be given to avoid evacuating the reservoir during winter or spring months below the level that will assure at least a 95 % chance of refilling to elevation 1570 by 1 July. Evacuation below this level will seriously restrict or eliminate use of the summer recreational facilities. The decision to evacuate below this level will be made only after evaluating: (1) availability of power from other sources, (2) current recreational demand at Dworshak and the related impact of lowering the pool, (3) availability of water from other projects in the system where evacuation would not have a similar impact on recreation, and (4) availability of water at other projects where

similar recreational impacts will occur but the recreational use is significantly less than at Dworshak. This decision should include consideration of availability of other similar recreational facilities in the area to which the recreation activities could logically be transferred.

During the fall hunting season, many hunters use boats to gain access to the regions of the upper reservoir. Because of this, it is desirable to maintain pool levels that will keep boat launching ramps operational until November, i.e., above elevation 1560.

7-07 Water Quality.

7-08 Fish and Wildlife.

Reservoir discharge operations and especially fluctuations in discharge can have a great effect on fish and wildlife downstream of the dam. The following constraints should be followed when making changes:

a. During the 1 October to 15 November prime steelhead season, maximum change of project discharge shall not exceed 40 % of the previous 7-day average release.

b. Consideration should be given to reducing daily fluctuations from 15 February to 15 April for spring steelhead runs. A reduction in fluctuations may also be requested after the 1 October to 15 November special regulation period by the Idaho Department of Fish and Game.

c. From 15 February to 15 April, geese will be nesting along the lower river. When feasible, reservoir evacuation during this period should be made at a uniform or a decreasing rate to avoid flooding goose nests after they are established.

d. Bass spawn in the lower Clearwater River below the North Fork each year. The time of spawning varies from year to year, it may be as early as mid-June or as late as mid-July. To avoid dehydration of the spawn, it is desirable to minimize streamflow recession on lower Clearwater River for about a 2-week period. Operations for this purpose will be coordinated with the Idaho Fish and Game Department.

e. To provide the proper temperature for the Federal fish hatchery downstream, water is withdrawn from a layer that provides 53° F temperature water whenever possible.

f. Dworshak Reservoir may also be used to augment flows on the lower snake from 15 April to 15 July to aid in the outmigration of salmon and steelhead past the dams. The NPD RCC will issue instructions for adjusting the flows from Dworshak if necessary to meet the needed flows in the lower Snake. Flow requirements will be based on the annual water budget plan developed by the Corps and the Water Budget Center.

7-09 Water Supply.

a. Dworshak National Fish Hatchery

See the Memorandum of Understanding Between the Clearwater Fish Hatchery, Dworshak National Fish Hatchery and the US Army Corps of Engineers Dworshak Project For the Operation and Entrance Requirements for the Hatchery Water Supply System.

7-10 Hydroelectric Power.

A power regulation plan for Dworshak, insofar as it affects nonpower functions, will be submitted to the Coordinating Group, the Northwest power Planning council, annually. This plan should be submitted by 1 February each year. The District and Division offices should coordinate in preparing this regulation plan and the submitted plan shall have received full concurrence by the District.

a. <u>Scheduling Power Operations</u>. Power operations are scheduled through the NPD RCC and the Power Scheduling Section of BPA. The action is initiated when the RCC determines how much water can be released from the reservoir during a certain period of time without violating constraints or procedures outlined in paragraph 7-15, Deviation from Normal Operations. This is submitted to the Power Scheduling Section which review it and requests the releases to follow a certain schedule. This schedule could call for a peaking operation, block loading, or base loading. The load schedule is relayed to the project by the CBT under normal conditions. When the CBT is not operational, communication is accomplished via radio or telephone (microwave, FTS, or commercial). For more information on power scheduling, refer to the Columbia River Basin Master Water Control manual dated December 1984, Section 9 – Power Scheduling.

b. <u>Power Generation</u>. Annual and seasonal power operating limits are defined by provisions of the Pacific Northwest Coordination Agreement (Contract No. 14-02-4822) described in the Columbia River Basin master Water control manual dated December 1984. Reservoir regulation for power generation is governed by several rule curves, which are a graphical representation of the maximum and minimum elevations the reservoir may be at any given time of year. Details on the computation of rule curves for power operation are described in Section 7, Methods For Developing the annual Operation program, of the Columbia River Basin master Water Control Manual. Explanations of these rule curves are as follows:

(1). The Upper Rule Curve (URC) defines the maximum elevations allowed by flood control requirements. Each year the URC will vary as a function of the August-December historical flows, January-July runoff volume forecast. This constraint is not expected to change significantly during the project life (although the rule curve may) and

represents a minimum reservoir draft to provide space for flood control. The minimum level allowed will usually not be below the Variable Refill Curve.

(2). The Critical Rule Curve (CRC) is determined annually by the Northwest power Pool coordinating Group on the basis of annual estimates of system loads and resources. The CRC is the schedule of reservoir levels necessary for the reservoir to meet its share of the system firm load during the critical period. The critical water period is the period in which the Coordinated System might be expected to encounter the most difficulty in serving its firm load requirements. One critical water period for the Coordinated System is the 42-month period between 1 September 1928 and 29 February 1932. Another historical period, the 20-1/2-month period between 15 August 1943 and 30 April 1945, produces an almost equally low energy capability.

(3). The Assured Refill Curve (ARC) defines the reservoir elevations necessary to refill the reservoir by 31 July based on conservative estimates of the amount of inflow available. The amount of natural flow available for refill is the second lowest volume inflow from natural flow which has occurred in any comparable period in the historical period of record beginning July 1928. Such available natural flow will be reduced by deducting all discharge requirements, including minimum release requirements and all nonpower discharges.

(4). The Base Energy Content Curve is the higher of the CRC from the first of the year of the critical period and the ARC.

(5). The Variable Refill Curve (VRC) also called the Variable Energy Curve (VECC), indicates reservoir levels to which drafts can be made to serve nonfirm loads and assure a 95 % chance of refill while serving firm loads during the 1 January-31 July period. The VRC provides for drafts below the Base Energy Content Curve by the amount the forecasted volume inflow is in excess of total requirements for refill of the reservoir, power discharge requirements, and nonpower requirements for water. The VRC shall be such that the reservoir returns to normal top elevation by the end of July. A sample computation of a VRC for a power discharge requirement of 2,000 cfs is shown on Exhibit 7-1.

(6). The ORC is defined as follows: from 1 August to 31 December, the ORC is the higher of the CRC and ARC. Between 31 December and 31 July, the ORC is the higher of the CRC or ARC unless the VRC is lower. In either case, the ORC may not be higher than the URC, as this would not provide adequate flood control space. NPD RCC is responsible for determining the ORC for Dworshak Reservoir. The ORC defines what levels a reservoir may not be drafted below to service nonfirm loads. During some years of low runoff, power drafts to serve firm loads will cause the reservoir to be drafted below a level indicated by the ORC.

c. Provisional Storage Draft.

(1). <u>Background</u>. On 30 June 1982, the Corps of Engineers (NPD), the Pacific Northwest Region Bureau of Reclamation, and the BPA entered into a Provisional Draft Agreement (BPA Contract No. DE-MS79-82BP90930) pertaining to the operation of Dworshak, Libby, Hungry Horse, and Grand Coulee. The agreement:

(a). Permits provisional energy production as defined in the Pacific Northwest Coordination Agreement (BPA contract No. 14-03-48221).

(b). Prescribes the maximum permissible storage drafts for the production of advance energy.

(c). Provides for the return of provisional draft.

The following paragraphs summarize procedures contained in the agreement relating tot he operation of Dworshak for the delivery of advance energy and return of provisional storage drafts.

(2). <u>Provisional Storage Draft for Advance Energy</u>. Under the agreement, provisional draft of Dworshak, Libby, Hungry Horse, and Grand Coulee reservoirs can only occur between 1 August and 10 January. Provisional draft occurs when reservoirs are drawn down below the level that is required to serve firm power. Regulation for provisional draft produces additional energy called advanced energy that BPA may use to make additional sales or serve interruptible industrial loads. Allowable amounts of provisional storage draft for the delivery of advance energy, as shown in the following tabulation, have been established for each reservoir such that the resulting reservoir elevation will not have a major adverse impact nonpower uses.

	Allowable Initi Storage Draft Energy Produc	for Advance	Allowable Total Provisional Storage Draft Below the Lower of the ECC or				
	through 1 st		Proportional Draft Level for				
	Septer			Advance Energy Production ²			
	Storage	e Draft ³	Storage Draft ³				
Reservoir	Limit KSFD	Approx.Feet	Limit KSFD	Approx.Feet			
Grand Coulee ⁴	111	2.8					
Libby	64	2.8	193	8.5			
Hungry Horse	31	2.8	95	8.5			
Dworshak	Dworshak 27		82	8.5			
Total	233		370				

¹Initial delivery of advance energy would occur only if the coordinated system's total storage energy had reached 98 % of full by 31 July and the listed reservoirs had filled to within 5 feet of full prior to the first Monday of September (Labor Day).

²if the conditions shown above in footnote 1 are not met, there will be no provisional storage draft for advance energy until the coordinated system and the listed reservoirs fill above their ECC.

³Storage draft is based on the average amount of water per foot of elevation in the top 10 feet.

⁴Draft to be refilled as soon as possible after the first Monday in September.

At Dworshak, the allowable initial provisional storage draft (2.8 feet) from 1 August through the first Monday of September (Labor Day) plus other draft indicated by the first-year CRC for firm energy production cannot exceed 5 feet from full pool (elevation 1595). From 1 August through 10 January, the allowable total provisional storage draft is limited to an accumulated 162,600 acre-feet (approximately 8.5 feet) below the storage content which the reservoir would have attained to meet system loads.

(3). <u>Return of Provisional Storage Draft</u>. After 10 January, BPA has an obligation to return all the provisional storage draft between 1 February and 31 July for refill of water up to the equivalent of the amount of advance energy that has been delivered from the reservoirs when the following conditions are met:

(a). The first of month January to July forecast volume runoff for the Columbia River at the Dalles, Oregon, is greater than 70 million acre-feet.

(b). The actual elevation of the reservoir is below or is projected to be below a 75 % probability of refill level.

The water is returned by reducing BPA's firm load and the reservoir's outflow (as limited by nonpower requirements). This allows the reservoir to return to a level it would have reached without provisional storage draft for advance energy. NPD and/or the Bureau of Reclamation may waive requirements for the return of the provisional storage drafts for their respective reservoirs and allow provisional storage drafts to be carried over to the next operating year.

7-11 Navigation.

Navigation is one of the important water uses in the development of the Columbia and Snake Rivers. Normally, navigation requirements are met with regulation of stream flows and pool levels for other project purposes. Occasionally, however, special requirements are met by special regulation of pool levels, but these do not significantly alter the Columbia River regulation as a whole.

The locks at the dam may be closed for brief periods every year for maintenance. Closures are scheduled far enough in advance and given sufficient publicity to provide minimum interference with navigation.

7-12 Drought Contingency Plans

The following factors affect the operation of the Dworshak project during the drought. First, Dworshak is operated as part of the Columbia River reservoir system under all conditions including droughts. A drought in a region of the Columbia River basin may affect the operation of projects not directly affected by or in the drought region. Therefore, since Dworshak is regulated as part of the Columbia River reservoir system, the DCP contained in Section XII of the Columbia River Basin Master Water Control Manual dated December 1984 will serve as a general and system plan. Second, the release of water from Dworshak storage for (1) Water Budget (15 April - 15 June), (2) Summer flow augmentation (16 June – 31 August), and (3) fall flow augmentation (1-30 September) has become a major function of the project as a result of the following factors:

- 1. PL 96-501, Pacific Northwest Electric Power Planning and Conservation Act (December 1980);
- 2. Endangered Species Act of 1973, PL 93-205, which lead to the National Marine Fisheries Services listing the Snake River sockeye salmon, spring/summer Chinook, and fall Chinook salmon as endangered.

As a result other authorized project functions (power, recreation, and lake navigation) have become subordinate to the need to provide augmented and increased flows from Dworshak for anadromous fish.

7-13 Flood Emergency Action Plans

7-14 Other

Experience in the operation of Columbia River reservoirs indicates that requests form public and private organizations and individuals for special operations affecting the downstream river can be expected. Such requests usually cover a wide range of activities and may include fish migrations, recreation water levels and temperatures, hydroplane races, group float trips, industrial activities, search and rescue activities, and perhaps others. It can be expected that such requests will conflict with one or more other operating functions. Such requests for special downstream operations will be evaluated and approved or denied by RCC in consideration of current conditions.

7-15 Deviation from Normal Regulation

a. Emergencies

Normally, operational objectives can be accomplished within the constraints described. When reservoir operational conflicts do occur and it is deemed necessary to violate one or more operational constraints, careful consideration must be given to the probable consequences. Constraint violations should produce minimal negative public benefits, for both Dworshak and the other Columbia system projects, as compared to

other possible alternatives. As an aid for solving operational conflicts which may arise, constraints are grouped into three levels or degrees of constraint. These three levels of constraint are as follows:

(1). <u>Level 1</u>. This is the highest degree of constraint and will not be violated except during unforeseen emergencies. Concurrence of Division and District engineers will be obtained prior to violation if possible. When immediate action is required, the Division and District engineers will be notified as soon as is feasible following the action.

(2). <u>Level 2</u>. Level 2 constraints are those constraints which can be violated with requirements: (1) consideration of all other alternatives to avoid violation, (2) consultation with the District Engineer to explain necessity and alternatives, and (3) notification of other interested agencies, organization, and officials or individuals as soon as possible.

(3). <u>Level 3</u>. Level 3 is the lowest degree of constraint and can be violated at the discretion of the NPD.

The operational constraint items are listed in the following Table 7-3 with the appropriate level of constraint.

TABLE 7-3

Degree of Constraint Not to be violated except during extreme emergencies.	 Operational Items a. 1,000-cfs minimum flow. b. 700,000 acre-feet minimum winter flood control (15 December-1 April). c. Snow-covered area versus flood control space.
 Can be violated with requirements of: a. Consideration of all other alternatives to avoid violation. b. Consultation with District Engineer to explain necessity and alternatives. c. Notification of other interested agencies, organizations, and officials or individuals as soon as possible. 	 a. Rate of change of release. b. Schedule of winter flood control evacuation. c. Spring evacuation based on runoff volume forecast. d. Limitations of fluctuations during fall steelhead season. e. Evacuation below ability to refill to elevation 1570 by 1 July with 95 percent certainty. f. Evacuation below elevation 1570 from 1 June to 1 September. g. Evacuation below 1560 from 1 September to 1 November.

DWORSHAK OPERATIONAL CONSTRAINTS

3	Can be violated at discretion of NPD.	b. c. d.	River fluctuation during spring steelhead season. Evacuation below ability to refill to 1600. Evacuation below 1600 from 1 June to 1 September. River fluctuation during goose nesting. Streamflow recession during bass spawning.
b. l	Jnplanned Minor Deviations		

- c. Planned Deviations
- 7-16 Rate of Release Change

8 EFFECT OF WATER CONTROL PLAN

8-01 General.

The various water control plans are intended as a means of outlining project regulation and/or management practices that maximize benefits derived from the project. These water control plans provide for flood control, power generation, water quality, recreation, fish and wildlife, and log handling. The overall benefits and effects of the project are summarized as follows:

- Flood Control. Regulation of the project is effective in controlling floods on the lower Clearwater River and the lower Snake River.
- Power. Another benefit credited to the project is the optimum generation of electric power both from onsite generators and downstream powerplants which produce energy from Dworshak releases.
- Water Quality. Dworshak provides water suitable for use by the fish hatchery. In addition, project releases provide cooler summer flows which enhance downstream fishery and warmer winter flows which have eliminated ice jams in the lower Clearwater downstream from the confluence of the North Fork and the main stem. Periods of spill from the project occur infrequently, and the adverse effects of gas supersaturation have not had a permanent effect on the downstream ecosystem.
- Recreation. The Dworshak Project makes a significant contribution to recreation activities in the Clearwater area. Visitation information indicates that about 75 % of the use of Dworshak Project facilities originates from areas less than 50 miles away. Regulation of the project provides a high, stable pool which is excellent for wateroriented recreation activities during the summer months of each year.
- Fish and Wildlife. The regulation of the project maintains a high, stable pool which also provides benefits for both sport fishing on the lake and wildlife within the reservoir area. Water temperature regulation helps meet needs of the downstream hatchery and enhances the trout fishery on the lower Clearwater River. The regulation objective limiting changes in project releases in order to minimize fluctuations in the lower Clearwater River during the prime steelhead fishing season from 1 October to 15 November helps to enhance downstream sport fishing. Regulation during spring months assists the downstream migration of anadromous fish.

The various water control plans are intended as a means of outlining project regulation and/or management practices that maximize benefits derived from the project. These water control plans provide for flood control, power generation, water quality, recreation, fish and wildlife, and log handling. The overall benefits and effects of the project are summarized as follows:

8-02 Flood Control.

Flood control is an important function of the Dworshak Project. Dworshak provides flood protection for the lower Clearwater area from Ahsahka to Lewiston and aids in the control of lower Snake River floods. Development of flood control criteria is based on the regulation of historic natural floods, standard project floods, and the probable maximum flood. Flood control releases at Dworshak are limited by downstream channel capacities, and out-of-bank discharges start at about 115,000 cfs at Spalding. The lower reach of the main stem Clearwater River from the former Washington Water Power damsite to the mouth, including the Potlatch Forest, Inc., paper and plywood mill and city of Lewiston, Idaho, are considered to be protected by the Lewiston levees for flows up to 150,000 cfs. Regulation by Dworshak is essential to limit the standard project flood and lesser floods to 150,000 cfs or less at Spalding for the protection of Lewiston by the levees.

a. Historic Natural Floods Regulation.

(1). Winter. During the 43-year record period from October 1926 to September 1969, five notable winter freshets occurred. They were in November-December 1927, December 1933-January 1934, December 1946, December 1944, and December 1964. In all five occurrences, the discharges of lower Clearwater River at Spalding, Idaho, would be controlled to nondamaging rates by controlling Dworshak releases to 20,000 cfs or less on a forecast basis. The highest recorded discharge at Dworshak was 100,000 cfs on 23 December 1933 with a concurrent discharge of 172,000 cfs at Spalding. This flood at Spalding would have been regulated to 90,000 cfs by use of Dworshak. Graphic illustrations of winter freshet control are shown on Plate 8-1.

(2). Spring. Simulated regulation of some of the major spring floods of record that would have occurred with Dworshak operating in the Columbia River system are also shown on Plate 8-1. The examples are for floods of 1943, 1948, 1950, 1956, and 1957. In this simulation, substantial storage was begun in mid-April of the 1943 and 1956 floods to adjust for reduced forecasts of volume runoff made at the time. During the 1948 flood simulation, it was necessary to increase Dworshak outflow from 4,000 cfs to 10,000 cfs on 1 June to accommodate substantially increased forecasts of runoff made at that time. The flood control storage season from about 1 May to about mid-June at Dworshak is adjusted as necessary on real-time basis to coincide with high rates of flood runoff on lower Clearwater and Columbia Rivers.

b. Winter Standard Project Flood. The winter standard project flood inflow for Dworshak was determined during early 1973 using a unit hydrograph study on the Clearwater River Basin and is subject to revision. The winter standard project flood has an 11-day winter rainstorm of 8.7 inches of precipitation as compared to 5.8 inches in 8 days during the December 1933 flood. During the 11-day storm of 8.7 inches, 5.5 inches of precipitation occurred in a 3-day period and was accompanied by warm winter temperatures. The resultant 11-day runoff volume is 1,300,000 acre-feet or 9.9 inches, including snowmelt.

The winter standard project flood was regulated using 700,000 acre-feet of storage space and the following criteria:

(1). Maintain flood control space by adjusting releases based on the previous day's inflow until flow at Spalding exceeds 100,000 cfs (20-22 December).

(2). Control to 150,000 cfs at Spalding insofar as possible without exceeding 30,000-cfs discharge until recession begins (22-24 December). After recession becomes evident, adjust discharge to maintain approximately 150,000 cfs at Spalding to evacuate the reservoir.

(3). Recover original 700,000 acre-feet of space as soon as possible using 75,000-cfs release when possible (24-31 December). With this operation, 700,000 acre-feet of flood storage space was regained by 1 January. The standard project flood peak can be reduced at Spalding from 280,000 cfs to 150,000 cfs by this regulation, which is shown on Plate 8-1.

c. <u>Spring Standard Project Flood</u>. The spring standard project flood inflow for Dworshak was determined in 1943 in connection with the Review Report on Columbia River Tributaries, Middle Snake River Basin. The derivation is described in Section 4 of Design Memorandum No. 1, Bruces Eddy (Dworshak) Dam and Reservoir. The standard project flood has a snowpack water equivalent at the beginning of the flood season of 42 inches. The resultant 1 May through 31 July runoff volume is 4,400,000 acre-feet, or 33.8 inches, including runoff season rainfall contribution.

The standard project flood was regulated using the following criteria and is shown on Plate 8-1:

(1). Evacuate reservoir to minimum pool elevation based on rule curves shown on Plate 8-1.

(2). Pass inflow until reduction is required to prevent Spalding flows from exceeding 105,000 cfs (1 April- May).

(3). Control to 105,000 cfs at Spalding insofar as possible without going below 4,000-cfs discharge until reservoir fills to within 140,000 acre-feet of full (5 May-24 May).

(4). Maintain 140,000 acre-feet of space until inflows recede below 30,000 cfs (24 May-31 May) to protect against late runoff.

(5). Fill the remaining space as soon as possible using 4,000-cfs release after inflows recede below 30,000 cfs (31 May-4 June). The standard project flood at Spalding was reduced from a peak of 260,000 cfs to 150,000 cfs by this regulation.

d. Probable Maximum Flood. The probable maximum flood inflow was approved by the Office, Chief of Engineers, on 18 December 1968. For reference, see the 6th endorsement of that date to a letter from NPW to NPD, dated 4 June 1968, subject: Review of the Probable Maximum Flood, Dworshak Project, Idaho. The probable maximum flood was based on an extremely critical sequence of flood-producing conditions. At the beginning of the high runoff season, the assumed water content of the basin snowpack was 63.3 inches as compared to less than 30 inches maximum for past years of knowledge. For +63.3 inches depth of water in snow, forecast studies indicate that the 1 May to 31 July runoff would be at least 56 inches depth of water for the drainage area, or 7.3 million acre-feet. Volumes of other flood seasons for comparison are 4.4 million acre-feet for the spring standard project flood, 3.2 and 3.1 million acre-feet for the two largest flood seasons of record, and 2 million acre-feet for the average of 42 seasons of record.

The factors used for development of the probable maximum flood, together with space requirements for flood control versus forecasted runoff volumes, would both require and permit full evacuation of the reservoir storage prior to the flood season. Flood season runoff over about 3 million acre-feet indicate 2 million acre-feet of reservoir capacity for their regulation. For these reasons, Dworshak Reservoir would be at minimum pool at the beginning of the probable maximum flood.

In the definite project studies for Dworshak Project, the amount of flood control space needed in the reservoir was based on the effective control of floods up to magnitude of standard project flood. However, in those studies it was apparent that with this storage space, considerable regulation of rain flood peaks could be accomplished for floods in excess of the standard project flood. This is so because rain flood volumes are relatively small in contrast to the large volume from snowmelt runoff which persists for extended periods. For floods in excess of standard project flood magnitude, the criterion adopted for flood regulation is reservation of the maximum practicable amount of space in Dworshak Reservoir for reduction of rain flood peaks whenever the 1 May to 31 July forecasted runoff exceeds 125 % of the standard project flood, or 5.5 million acre-feet.

Regulation of the probable maximum flood requires making maximum capacity releases throughout the flood until rule curves for snow covered area, shown in step 4 below, indicate that storage space may be filled. Plate 8-2 illustrates the resulting regulation of the probable maximum flood. Description of procedures follows:

(1). On 1 May, the reservoir is at minimum pool with 2 million acre-feet of space available. Forecasted runoff is 7.3 million acre-feet. Rule curves require maximum capacity releases.

(2). From 1 May to 24 May, capacity releases made include full use of the outlet works plus three-fourths of turbine capacity.

(3). From 24 May through the probable maximum rainstorm runoff, capacity releases made include full use of the spillway, the outlet, and three-fourths of turbine capacity until total discharges equal 100,000 cfs. For discharges greater than 100,000 cfs, capacities of the spillway and outlets only are used since the powerhouse may be subject to flooding from flows overtopping the spillway chute.

Model studies indicate that overtopping of the tailrace deck (elevation 1,005) should not occur for total discharges up to 135,000 cfs and with six powerhouse units in operation. Average tailwater elevations at the powerhouse are shown on Plate 2-8 for 0, 5,000, 11,000, and 29,000 cfs through the powerhouse and for total discharges of 0 to 220,000 cfs. These studies verified that the stilling basin was adequate for spillway discharges up to 45,000 cfs and a powerhouse discharge of 5,000 cfs. Under existing conditions, a maximum average tailwater elevation of 997 occurred with a powerhouse discharge of 11,000 cfs (Units 1 to 3) and a total discharge of 80,000 cfs. Fluctuations in tailwater levels increase with spillway flows above 45,000 cfs due to instabilities in flow patterns and resultant wave action. For details on model studies, refer to Hydraulic Model Investigation, Technical Report No. 116-1, Dworshak Dam - North Fork Clearwater River, Idaho, dated September 1984.

(4). As inflow recedes, regulate releases to store water in accordance with the rule curve shown below:

Percent of Area Covered by Accumulated Winter Snowpack	Space Reservation 1,000 A.F.
100	700
80	540
60	385
40	230
20	80
10	0

The probable maximum flood regulation results in a maximum release of 220,000 cfs, maximum storage of 3,556,000 acre-feet, and a maximum pool elevation of 1,604.7 feet. Outlet capacity for this condition is 40,000 cfs, leaving 180,000 cfs to be passed through the spillway.

e. Flood Frequency

(1). Clearwater River. Frequency data was computed for the following key gauging stations:

(a). North Fork Clearwater River at Dworshak Dam, Idaho.

(b). Clearwater River at Spalding, Idaho.

Unregulated and regulated frequency curves are shown on Plate 8-3.1 for the North Fork Clearwater near Ahsahka, Idaho, and on Plate 8-3.2 for the Clearwater River at Spalding, Idaho. Frequency curve data from Plate 8-3.1 and Plate 8-3.2 are summarized in the following tabulation:

ANNUAL MAXIMUM MEAN DAILY PEAK DISCHARGE FREQUENCIES										
			Fork Clearwater at Clearwater R Dworshak Spalding							
Exceedence Probability (Percent)	Average Recurrence Interval (Years)	Unregulated Discharge (cfs)	Regulated Discharge (cfs)	Unregulated Discharge (cfs)	Regulated Discharge (cfs)					
Standard Proje	ct Flood	160,000	75,000	280,000	150,000					
1	100	73,000	40,000	198,000	130,000					
2	50	65,500	36,200	180,000	125,000					
5	20	55,500	31,800	157,000	117,000					
10	10	48,000	28,900	139,000	112,000					
20	5	40,700	26,100	119,500	105,000					
50	2	29,600	19,300	89,500	89,500					

Plate 8-3.3 and Plate 8-3.4 show regulated summary hydrographs, and Table 8-1 and Table 8-2 list regulated monthly runoff volumes for the North Fork Clearwater River at Dworshak Dam and the Clearwater River at Spalding.

(2). Snake River at Lower Granite. Plate 8-4 shows frequency curves for natural peak discharges and regulated peak discharges for the Snake River at Lower Granite Dam. These frequencies were computed by NPDEN-WM-HES in May 1978. The frequency curve for natural discharges is based on the station record from 1894 to 1975 (81 years) which is adjusted for irrigation depletion and storage and extended by correlation with 1858 to 1975 (117 years) Columbia River at The Dalles station record. The frequency curve for regulated discharge is based on 1975 level of storage development and 1985 level of irrigation depletions. Regulated discharges are from regulation studies for 1894, 1929 through 1958, and in addition are high runoff years of 1972 and 1974. Data from Plate 8-4, Snake River at Lower Granite Frequency Curves, are summarized in the following tabulation:

ANNUAL MAXIMUM MEAN DAILY PEAK DISCHARGE FREQUENCIES										
Average Exceedence Probability (Percent)	Recurrence Interval (Years)	Unregulated Discharge (cfs)	Regulated Discharge (cfs)							
Standard Project Flood		575,000	420,000							
1	100	426,000	319,000							
2	50	403,000	300,000							
5	20	367,000	270,000							
10	10	334,000	244,000							
20	5	298,000	214,000							
50	2	231,000	163,000							

f. <u>Power</u>. Another benefit credited to the project is effective in controlling floods on the lower Clearwater River and the lower Snake River.

8-03 <u>Recreation.</u>

Recreation opportunities in the region of Dworshak Reservoir have been greatly improved since the dam was built. The reservoir provides a large lake suitable for boating, water skiing, and swimming. Several boat launching sites and beaches have made this a popular recreation area. Travel by boat to the upper levels of the reservoir has allowed access to areas that were formerly not served by even primitive roads. Because the rugged wilderness terrain is desirable for hunting, camping, and picnicking, this access has generated a great increase in public use of the area.

The following tabulation summarizes the effects of drawdown, below full pool (elevation 1,600), on reservoir use, recreation, and wildlife. In addition, Table 2-6 lists Dworshak's public recreation sites and corresponding operational elevations.

Drawdown	Effects
5-10 feet (El. 1,590-1,595)	Bass catch reduced. Swimming adversely affected.
	Shoreline to water distance increased; steep slopes cause ten
	mini-camp sites to be unusable. Increase in turbidity due to
	waves. 10-20 % reduction in visitation.
10-15 feet (El. 1,585-	Heavy turbidity due to wave action. Troublesome backing
1,590)	distance for boat launching. 40 mini-camp sites unusable. 30
	% reduction in visitation. Bass spawning seriously affected;
	overall productivity seriously reduced. Trout and kokanee
	spawning affected.
15-25 feet (El. 1,575-1,585)	Fishing access impaired. Animals traveling to water more
	visible and vulnerable to hunters. 50 % reduction in visitation.
	Reservoir production for kokanee seriously reduced. Log
	dumps become unusable.
25-50 feet (El. 1,550-1,575)	75 % reduction in visitation. Boat ramps extremely difficult to
	use or unusable. Water temperature greatly reduced.
	Severely reduced fisherman access. All mini-camps without
	road access unusable. Hunter access by boat restricted.
	Reservoir trout productivity seriously reduced.

NOTE: Drawdowns below elevation 1,550 make all boat launching sites unusable (except Bruces Eddy) and eliminates almost all other recreation uses.

Source: Draft, Position Paper on Reservoir Refill-Advance Energy, USCE-NPD, dated 11 May 1978.

8-04 Water Quality.

Because of selector gates in the dam which allow discharge of water from selective levels of the reservoir, it is possible to regulate the temperature of water discharged from the North Fork Clearwater. This is ideal for the Federal fish hatchery located just below the dam, which requires 53-degree water. The selector gates are used to supply this water temperature when possible.

It is also possible to regulate water temperature and quality to affect the water quality of rivers and reservoirs downstream, especially during low water years. Special operation for this has not been done to date.

8-05 Fish and Wildlife.

Dworshak Reservoir has been stocked with both trout and salmon and has become a major sport fishery. There is also a large bass population which has produced a state record smallmouth bass.

Releasing water from the dam in summer months that is cooler than natural stream flow has changed the main stem Clearwater River into a prime cold water trout fishery. This has been at the expense of the bass population, which has decreased.

Increased releases from Dworshak may be required during the juvenile outmigration period to augment the flows in Snake River. These increased flows, along with better passage facilities at downstream dams, will result in greater survival of outmigrating fish. Juvenile mortality is increased during the low flow periods due to longer travel times through the reservoirs. Mortalities result from predators and failure to reach the ocean while they can still adapt to salt water. However, these augmented flows may require Dworshak to release water in amounts greater than can be used for power generation, either at site or downstream projects. It is impossible at this time to determine what the exact effect on Dworshak FELCC will be, but studies indicate the loss to the entire Columbia River Basin generation system to meet combined fish flow requirements at Lower Granite Dam on the Snake River and Priest Rapids Dam on the Columbia will be about 550 MW in firm energy load carrying capability.

9 WATER CONTROL MANAGEMENT

9-01 Responsibilities and Organization.

The complex system of reservoirs in the Columbia River Basin and their diverse ownership requires a high degree of cooperation and coordination between Federal, state, municipal, and other public and private organizations which have interests in the reservoir regulation activities of the Columbia River system. Dworshak is a part of this system.

a. <u>Corps of Engineers</u>. In general, the North Pacific Division (NPD) Reservoir Control Center (RCC) plans and directs the regulation of NPD reservoirs and certain non-Corps reservoirs that have space allocated for flood control. The RCC coordinates the regulation of NPD, non-Corps, and Canadian reservoirs in the Columbia River Basin in order to increase the effectiveness of the system operation under routine and critical conditions.

The real-time daily regulation of Dworshak Reservoir is the direct responsibility of the NPD RCC. For special reservoir operations, the RCC collaborates with the Hydrology Branch of the Walla Walla District. The Hydrology Branch provides assistance and support to the RCC by participating in reservoir regulation studies, computing long-range runoff volume forecasts, supplying hydrometeorological data, and providing reservoir regulation manuals for District projects. Final regulation plans are approved and administered by the RCC. Physical operation and maintenance of the Dworshak Project is the responsibility of the project manager.

Emergency_Procedures, in the front of the manual, shows organizational charts and corresponding personnel names and telephone numbers pertinent to the operation of Dworshak for the North Pacific Division and Walla Walla District, Corps of Engineers.

b. Other Federal Agencies

(1). <u>The National Weather Service</u>. Northwest River Forecast Center (RFD) is authorized to issue coordinated runoff volume forecasts, peak flow forecasts, and flood stage forecasts for key gauging stations within the Columbia River Basin. See Section VII of this Manual for details on hydrologic forecasts. A formal agreement in 1963 between the Corps of Engineers and NWS formed the Cooperative Columbia River Forecasting Service. In 1971, this agreement was amended to include Bonneville Power Administration. A three-member technical committee provides technical advice and guidance to the Columbia River Forecasting Service. The three committee members are as follows:

Chief, Hydrologic Engineering Section, NPD Chief, National Weather Service, Portland RFC Chief, Hydrometeorology Branch, Bonneville Power Administration (2). <u>Bonneville Power Administration (BPA)</u>. The BPA is the marketing agency for electric power produced at existing and future Federal hydroelectric projects throughout the Columbia River Basin system. This group of Federal hydroelectric plants, along with BPA's transmission facilities, is known as the Federal Columbia River Power System. Dworshak is a unit of this system. The Chief of the Corps of Engineers North Pacific Division, Reservoir Control Center (RCC) coordinates with BPA's Chief of Division of Power Supply and Chief of Power Scheduling Branch on significant regulation decisions that affect power generation. Routine power Scheduling Branch. BPA dispatchers coordinate power production from the Federal projects on a real-time basis.

A Memorandum of Understanding, entered into on 8 October 1956 and revised on 16 November 1970, between the NPD and the BPA documents the policies and procedures to be followed in the operation of the Corps of Engineers projects. The objective of this Memorandum of Understanding is to maximize power generation by coordinated operations within the normal and special operating limits of NPD projects.

(3). <u>Other Agencies</u>. Other agencies with which the RCC coordinates and exchanges information in the process of carrying out reservoir regulation activities include the Bureau of Reclamation, USGS, SCS, Federal Energy Regulatory Commission, Federal and state fish and wildlife agencies, Federal and state water quality agencies, non-Federal public utilities, private power utilities, and navigation interests.

Details on coordination of reservoir regulation activities with other agencies on a system basis are provided in the RCC Guidance Memorandum dated January 1972 and the Master Regulation Manual for the Columbia River Basin to be prepared in the near future.

- c. State and County Agencies
- d. Private Organization.

9-02 Interagency Coordination.

The principal organizations which have been formed to coordinate the planning and operation of the Columbia River system projects are the Northwest Power Pool, the Pacific Northwest Coordination Contract Committee, the Columbia River Treaty Operating Committee, and the Columbia River Water Management Group.

a. <u>Northwest Power Pool</u>. The Northwest Power Pool is a voluntary organization whose primary function is to coordinate the operation and maintenance of the power systems of the Pacific Northwest. It also serves as a coordinating group for the solution of a variety of system operating problems. The membership of the Northwest Power Pool includes 20 utilities and agencies as follows:

- 1. Bonneville Power Administration
- 2. Bureau of Reclamation
- 3. British Columbia Hydro and Power Authority
- 4. Chelan County PUD
- 5. Corps of Engineers
- 6. Douglas County PUD
- 7. Eugene Water and Electric Board
- 8. Grant County PUD
- 9. Idaho Power Company
- 10. Montana Power Company
- 11. Pacific Power and Light Company
- 12. Portland General Electric Company
- 13. Puget Sound Power and Light Company
- 14. Seattle City Light
- 15. Sierra Pacific Company
- 16. Tacoma City Light
- 17. Transalta Utilities Corporation
- 18. Utah Power and Light Company
- 19. Washington Water Power
- 20. West Kootenay Power and Light Company

The functions of the pool are carried out by means of an Operating Committee and a Coordinating Group.

(1). <u>Operating Committee</u>. The Operating Committee consists of one member from each participating system through whom all pool matters are handled. Implementation of any pool action requires unanimous approval by the Operating Committee. The Operating Committee has three continuous subcommittees: Relaying, Communications, and Maintenance.

Coordinating Group. The Coordinating Group, headquartered in Portland, (2). Oregon, consists of four full-time engineers and their necessary clerical help. It acts as a staff for the Operating Committee and the Coordination Contract Committee of the Pacific Northwest Coordination Agreement and provides a clearinghouse for all pool utilities. The group initiates telephone conference calls, chairs Operating Committee meetings, prepares numerous load-resource analyses, takes a lead in coordinating operating with the pool and with adjacent areas, and makes other operating studies and reports. A considerable amount of time is spent on making load-resource analyses for both the Coordinated System of the Pacific Northwest Coordination Agreement and the Northwest Power Pool. Utilizing digital computers, these analyses are made from load and resource data supplied by the utilities. The Northwest Power Pool does not maintain a centralized group to schedule and dispatch the combined resources of the members of the pool. Rather, each member system remains autonomous, scheduling and dispatching its own resources to serve its own load. The Northwest Power Pool is a member of the North American Power Systems Interconnection Committee (NAPSIC) which coordinates energy interchange between ten regional systems.

b. <u>Pacific Northwest Coordination Agreement</u>. The utilities of the Pacific Northwest have long recognized the need for coordinated operation. Through the years, the Northwest Power Pool and other inter-utilities arrangements have accomplished much toward this end. These efforts culminated in the Pacific Northwest Coordination Agreement, a formal contract for coordinating the seasonal operation of the generating resources of the member systems for the best utilization of their collective reservoir storage. Finalized in mid-August 1964, the agreement (Contract No. 14-02-4822) became effective on 4 January 1965 and terminates on 30 June 2003. The following 18 agencies and utilities have ratified the agreement:

- 1. Bonneville Power Administration
- 2. Bureau of Reclamation
- 3. Corps of Engineers
- 4. Chelan County PUD
- 5. Colockum Transmission Company
- 6. Cowlitz County PUD
- 7. Douglas County PUD
- 8. Eugene Water and Electric Board
- 9. Grant County PUD
- 10. Montana Power Company
- 11. Pacific Power and Light Company
- 12. Pend Oreille PUD
- 13. Portland General Electric Company
- 14. Puget Sound Power and Light Company
- 15. Seattle City Light
- 16. Snohomish County PUD
- 17. Tacoma City Light
- 18. Washington Water Power Company

A fundamental concept of the Coordination Agreement is "Firm Load Carrying Capability," commonly abbreviated as FLCC. For the coordinated system of all 18 parties, the FLCC is the aggregate firm load that the system could carry under coordinated operation with critical period stream flow conditions and with the use of all reservoir storage.

In order to accomplish such coordinated operation, the combined power facilities of the parties are operated to produce optimum firm load-carrying ability.

Each party is entitled to a Firm Energy Load Carrying Capability (FELCC) equal to its capability in the critical stream flow period with full upstream storage release, except for reimbursement of Canadian treaty benefits and restoration of capability to parties which suffer loss in critical period energy capability as a result of the Canadian treaty storage. FELCC's are sustained by exchange of energy between parties.

Prior to the start of a contract year, a reservoir operating and storage schedule is developed to provide the optimum FELCC of the coordinated system. This schedule is

melded with a schedule that provides adequate assurance of reservoir refill. The resulting schedule, called an Energy Content Curve (ECC), is used in the operation of the system to determine system generation. Generation in excess of FELCC resulting from draft to ECC is used to serve secondary load. If draft below ECC is required to carry FELCC, then secondary load is not served.

The above discussion refers primarily to the procedures followed to insure meeting FELCC during periods of critical stream flow. However, the same basic procedures are used to insure optimum utilization of reservoir storage during years of plentiful stream flow as well.

Representatives of the participants in the agreement are members of the Coordination Contract Committee. This committee makes studies and analyses and rules on any actions concerning the agreement. Most of its work is delegated to the Northwest Power Pool Coordinating Group. However, some of the work is delegated to one or more of the participants. If as may frequently happen, the best operation for the coordinated system requires a utility to cut back on releases and to hold storage for later use, thereby reducing its present generation below its FELCC and perhaps below its load requirements, it has the right to call for and receive interchange energy from a party with excess capability. Later, when the first party's storage is scheduled for release, it will be able to return the energy. Provision is made to pay for any imbalances in such interchange energy exchange accounts that may remain at the end of a contract year.

The agreement provides that, upon request, a utility is entitled to the energy that it could generate at its plants if upstream reservoirs released all water above their ECU's. The upstream party can either release the water or, if it has surplus energy and wishes to conserve its storage for later use, it may deliver energy "in lieu" of the water. The upstream party is not required to spill water to satisfy demands of a downstream utility.

Other provisions of the agreement include the following: (1) each party shall accept for storage in available reservoir space energy surplus to other parties' needs; (2) equitable compensation shall be made for the benefits from reservoir storage; (3) the obligation to reimburse treaty power to Canada shall be shared by the projects which benefit from treaty storage in proportion to their benefits; (4) interconnecting transmission facilities shall be made available for coordination use subject to the owners' prior requirements; and (5) equitable charges shall be made for capacity, energy, transmission, storage, and other services. Nothing in the agreement is intended to conflict with project constraints for other functions such as flood control, recreation, fish, irrigation, etc.

c. <u>Columbia River Treaty</u>. In 1964, the Columbia River Treaty for the international development of the Columbia River was ratified by the governments of Canada and the United States. The treaty provided for Canada to build and operate three reservoirs presently known as Duncan Lake, Arrow Lake, and Kinbasket Lake. These three reservoirs have a combined usable storage of 20.5 million acre-feet. Under the treaty, Canada operates these reservoirs in a manner which increases downstream power

generation and reduces flood damage in the United States. In return for the benefits received, the United States gives Canada half of the dependable capacity and half the energy gain in the United States as a result of Canadian storage and pays Canada an amount equal to half the value of flood damages prevented.

In carrying out the functions required under the Columbia River Treaty, each country has set up a working organization. The treating working organization is comprised of a permanent engineering board, U.S. and Canadian entities, U.S. coordinators, Manager - Canadian Entity Service, and two international committees. The RCC Guidance Memorandum dated January 1972 provides details on functions and responsibilities of these working organizations.

d. <u>Columbia River Water Management Group</u>. The Columbia River Water Management Group acts as a committee to consider problems relating to operation and management of water control facilities in the Columbia River Basin. Upon review and discussion of the problems, the group makes tentative recommendations for consideration of the individual agencies having primary responsibilities in these areas. The basic function of the group is coordination of river systems operations, including the efficient operation of the hydrometeorological system required for each operation. The Water Management Group prepares an annual report which summarizes hydrometeorological and reservoir regulation activities and activities and accomplishments of member agencies as related to the Columbia River and tributaries. The membership of the Columbia River Management Group is composed of representatives from the following state and Federal agencies:

- 1. Bureau of Reclamation
- 2. Bonneville Power Administration
- 3. Corps of Engineers
- 4. National Weather Service
- 5. United States Geological Survey
- 6. Environmental Protection Agency Water Quality Office
- 7. U.S. Forest Service
- 8. Soil Conservation Service
- 9. Bureau of Land Management
- 10. Federal Energy Regulatory Commission
- 11. Fish and Wildlife Service
- 12. National Marine Fisheries Service
- 13. Oregon Water Resources Department
- 14. Washington Department of Ecology
- 15. Idaho Department of Ecology
- 16. Nevada State Engineer
- 17. Department of Natural Resources and Conservation (Montana)
- 18. Wyoming State Engineer

9-03 Interagency Agreements.

9-04 Commissions, River Authorities, Compacts and Committees.

9-05 Non-Federal Hydropower.

9-06 Reports.

<u>Public Notices</u>. Special reservoir regulation activities, which may not be considered normal reservoir regulation activities, will be required from time to time. Reservoir regulation plans for special activities would still be developed within the normal operating limits and constraints of the Dworshak Project. Public notices will be issued only when the special reservoir operations that are scheduled or anticipated will be of concern to public activities. Public notices pertaining to Dworshak Project will be issued by the Operations Division of the Walla Walla District.

The list of agencies and individuals to notify should include, but not necessarily be limited to: Dworshak Fish Hatchery, Idaho Fish and Game Department, Idaho Department of Water Resources, Potlatch Forest Industries, City of Orofino, City of Lewiston, City of Clarkston, newspapers, and television and radio stations for Orofino, Lewiston, and Clarkston.

Reservoir regulation news releases to newspapers, radio stations, and television stations will be coordinated by the Walla Walla District's Hydrology Branch with the North Pacific Division's Reservoir Control Center and issued by the Public Affairs Officer of the Walla Walla District.

Regulation Decisions and Records. The North Pacific Division's Reservoir Control Center is responsible for making regulation decisions which affect project discharge rates and storage for flood control, power generation, and special operations. The goal of the RCC is to effectively and efficiently schedule Dworshak Project operations in order to maximize benefits for project purposes. A daily log noting pertinent conversations and discussions leading to regulation decisions will be kept current both at the project and the RCC. Details and completeness of the daily log will be as necessary for after-the-fact review and analysis of regulation plans. Regulation decisions and instructions are discussed with appropriate project personnel and confirmed on the Columbia Basin Teletype system (CBT).

TABLES

<u>No.</u>

- 2-1 Dworshak Dam Spillway Rating
- 2-2 Single Outlet Discharge in 1,000 CFS
- 2-3 Power Unit Discharge Rating Table: 90 MW Unit
- 2-4 Power Unit Discharge Rating Table: 220 MW Unit
- 2-5 Storage Capacity in 1,000 acre-feet (13340950)
- 2-6 Public Recreation Facilities
- 4-1 Extremes for Average Maximum Monthly Temperatures
- 4-2 Extremes for Average Minimum Monthly Temperatures
- 4-3 Monthly Extreme Maximum and Minimum Temperatures
- 4-4 Total Monthly Precipitation
- 4-7 Total Evaporation in Inches. Station # 10-6152, University of Idaho
- 4-13 Monthly Discharge Volume in 1,000 acre-feet: (13340600)
- 4-14 Unregulated Monthly Inflow Volume in 1,000 acre-feet: (13340950)
- 4-15 Monthly Discharge Volume in 1,000 acre-feet: (13340000)
- 4-16 Unregulated Monthly Discharge Volume in 1,000 acre-feet: (13342500)
- 4-19 Maximum and Minimum SECCHI DICS Readings in Feet
- 4-20 Average Monthly Water Temperatures
- 4-22 Summary for Dworshak Daily Spill in CFS
- 6-1 Reservoir Project Data for Columbia River Basin Flood Control System
- 7-1 Project Release Limitations
- 8-1 Regulated Monthly Discharge Volume in 1,000 acre-feet: Dworshak Dam
- 8-2 Regulated Monthly Discharge Volume in 1,000 acre-feet: (13342500)

TABLE 2-1

Water Surface Elevation	Nominal G	iate Openi	ing In Fee	et			7	2	0	10	11	12	13
(FMSL)	1	2	3	4	5	6	7 	8	9				
1605	2180	4140	6100	8075	10050	12075	14100	15767	17433	19100	21160	23220	25280
1600	2000	3890	5781	7684	9587	11460	13333	15079	16825	18571	20408	22244	24080
1595	1850	3678	5507	7243	897 9	10773	12567	14231	15896	17561	19253	20945	22637
1590	1700	3470	5241	6843	8455	10127	11800	13383	14967	16550	18107	19664	21221
1585	1600	3264	4928	6448	7969	9472	10975	12470	13964	15549	16883	18308	19732
1580	1500	3046	4591	5989	7387	8768	10150	11493	12836	14179	15486	16793	18100
1575	1400	2823	4246	5485	6724	7968	9213	10434	11655	12877	14020	15162	16305
1570	1300	2593	3886	4973	6061	7168	8275	9331	10387	11443	12420	13397	14374
1565	1190	2345	3500	4449	5398	6 36 8	7338	8175	9012	9849	10741	11632	12524
1560	1080	2016	2953	3728	4502	5382	6261	6944	*	*	*	*	*
1555	1000	1681	2362	2969	3576	*	*	*					
1550 1549 1548 1547 1546 1545	600 566 531 * 0	1151 1117 *	*	*	*								

DWORSHAK DAM SPILLWAY RATING SINGLE BAY DISCHARGE IN CFS (Based on 2 Bay Operation)

1. Data Source: Reservoir Regulation Manual - Project Rating Tables, U.S. Army Corps of Engineers, Walla Walla District, May 1973.

2. Top spillway crest elevation 1545.

3. * - Refer to Plate 3-3.2, Spillway Rating Curves.

TABLE 2-1 Page 1 of 2

TABLE 2-1 continued

DWORSHAK DAM SPILLWAY RATING SINGLE BAY DISCHARGE IN CFS (Based on Two Bay Operation)

Water Surface Elevation	Nominal	Gate Oper	i na In Fe	et									
(FMSL)	21	22	23	24	25	26	27	28	29	30	31	32	33
1605	40780	42560	44340	46120	47900	49570	51240	52910	54580	56250	58000	59750	61500
1600	38286	3 99 23	41560	43198	44835	46452	48069	49686	51303	52919	54521	56123	57725
1595	35845	37370	38895	404 20	4 1945	43442	44939	46 436	47933	49430	50989	52548	54107
1590	33202	34607	36012	37 4 17	38822	40280	41737	43 195	44652	46110	47706	49303	*
1585	30558	31867	33176	34485	35794	37232	38670	40109	*	*	*	*	
1580	27895	29144	30393	31642	*	*	*	*					
1575	*	*	*	*									
1570	*												
1565	*												
1560	*												
1555	*												
1550	*												
1549	*												
1548	*												
1547	*												
1547 1545	*												
1545	0												

NOTES:

1. Data Source, Reservoir Regulation Manual - Project Rating Tables, U.S. Army Corps of Engineers. Walla Walla District, May 1973.
2. Top spillway crest elevation 1545.
3. * - Refer to Plate 3-3.2, Spillway Rating Curves.

TABLE 2-1 Page 2 of 2

TABLE 2	2-2
---------	-----

DWORSHAK DAM - SINGLE OUTLET DISCHARGE IN 1000 CFS

GATE OPENING IN FEET	0,5	1.0	1.5	2.0	2,5	3.0	3.5	4.0	4.5	5.0	5.5	6.0	6.5	7.0	7.5	8.0	8.5	9.0	9.5	10.0	10,5	11.0	11.5	12.0	12.5
REVOLUTION COUNTER READING	314	468	623	769	909	1059	1200	1335	1470	1686	1740	1870	2002	2125	2252	2377	2499	2621	2740	2861	2976	3093	3208	3323	3432
SET POINT	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	- 24	25	26
POOL ELEV. 1605 1600 1595 1590 1585 1580 1575 1570 1565 1560 1555 1550 1545 1540 1535 1540 1535 1530 1525 1520 1515 1510 1505 1500 1495 1490 1485 1480 1475 1470 1465 1460 1455																									

Source: Project Rating Tables - Appendix A, TABLE A-3 (DWORSHAK - SINGLE OUTLET DISCHARGE), U.S. Army Corps of Engineers, Walla Walla District, May 1973, Revised April 1986 by NPW Hydrology Branch.

.

.

TABLE 2-2 Sheet 1 of 1

TABLE 2-3

Dworshak Dam and Reservoir POWER UNIT DISCHARGE RATING TABLE DISCHARGE IN CFS 90 MW UNIT

Gross												
Head				Gen	erator	Outpu	t MW					
Ft.	30	35	40	45	50	55	60	65	70	75	80	85
									0.000	0.0.1.0		
455	995	1120	1240	1370	1490	1645	1775	1925	2080	2310		
460	980	1105	1225	1350	1470	1615	1750	1895	2045	2245	2460	
465	965	1090	1210	1335	1455	1595	1725	1865	2015	2190	2375	2695
470	955	1075	1190	1320	1440	1575	1705	1835	1980	2140	2310	2590
475	940	1060	1175	1305	1425	1555	1685	1810	1955	2100	2255	2490
480	935	1045	1160	1290	1410	1535	1665	1785	1930	2060	2210	2415
485	920	1035	1150	1280	1400	1520	1650	1765	1910	2030	2170	2355
490	915	1025	1135	1265	1385	1505	1630	1745	1885	2000	2130	2300
495	905	1015	1125	1255	1370	1490	1615	17 30	1860	1980	2105	2255
500	900	1005	1115	1245	1360	1480	1600	1710	1840	1955	2075	2210
505	890	995	1105	1235	1350	1465	1590	1695	1820	1935	2050	2175
510	885	990	1095	1225	1340	1450	1570	1680	1805	1915	2030	2145
515	875	980	1090	1215	1330	1440	1560	1665	1790	1900	2010	2120
520	870	970	1080	1205	1320	1430	1545	1650	1770	1880	1990	2095
525	865	965	1075	1200	1310	1420	1540	1635	1750	1865	1975	2070
530	860	960	1065	1190	1300	1410	1525	1620	1735	1845	1955	2050
535	855	950	1060	1180	1295	1400	1515	1610	1725	1830	1940	2035
540	850	945	1055	1175	1285	1390	1505	1600	1710	1820	1930	2015
545	845	940	1050	1165	1280	1380	1490	1590	1695	1800	1915	2000
550	840	935	1040	1160	1270	1370	1480	1575	1685	1790	1900	1980
555	835	930	1040	1150	1260	1360	1470	1565	1670	1775	1885	1965
560	830	925	1035	1140	1250	1350	1460	1555	1660	1760	1870	1955
565	825	920	1030	1135	1245	1340	1450	1545	1650	1750	1860	1940
570	820	915	1025	1130	1240	1330	1440	1535	1635	1735	1845	1925
575	820	910	1020	1120	1230	1320	1425	1525	1625	1720	1830	1915
580	810	910	1015	1115	1220	1315	1415	1515	1610	1710	1815	1900
585	810	900	1010	1110	1210	1305	1405	1505	1600	1700	1800	1890
590	805	900	1005	1100	1205	1295	1395	1495	1590	1685	1790	1875
595	800	895	1000	1095	1200	1290	1385	1485	1580	1675	1770	1860
600	795	890	990	1090	1190	1280	1375	1475	1570	1665	1760	1850
605	790	885	990	1080	1 1 80	1270	1365	1465	1555	1655	1745	1840
610	790	880	980	1075	1170	1260	1355	1455	1545	1645	1730	1825
615	780	880	980	1070	1165	1250	1345	1445	1540	1635	1725	1815
620	780	875	970	1060	1155	1240	1335	1435	1530	1625	1715	1805
625	775	870	965	1055	1150	1235	1330	1425	1520	1615	1710	1795
630	770	870	960	1050	1140	1230	1320	1415	1515	1605	1700	1780
0.00		0,0		×	~~							

~

TABLE 2-3

TABLE 2-3 TABLE 2-3 (Continued)

Dworshak Dam and Reservoir POWER UNIT DISCHARGE RATING TABLE DISCHARGE IN CFS 90 MW UNIT

Gro ss <u>Head</u>				Ger	nerator	: Outpu	it MW	•				
<u>Ft</u> .	90	95	100	105	110	115	120	125	130	135	140	145
175												
465												
470												
475												
480	2680	0.00										
485	2575	2905										
490	2490	2780										
495	2420	2670										
500	2365	2595	2890									
505	2320	2525	2770									
510	2280	2470	2680	3020								
515	2250	2420	2600	2910								
520	2220	2380	2540	2800	2005							
525	2200	2340	2490	2720	2995							
530	2175	2310	2450	2655	2880							
535	2160	2280	2415	2595	2795	20/5						
540	2140	2255	2380	2550	2720	3045						
545	2120	2235	2355	2510	2665	2955						
550	2105	2215	2330	2475	2620	2880	2000					
555	2085	2190	2305	2445	2580	2810	3080					
560 565	2065	2170	2280	2415	2550	2755	3000					
565	2050	2150	2260	2390	2520	2705	2930	2115				
570	2030	2135	2240	2365	2490	2655	2865	3115				
575	2015 2000	2115	2220 2200	2340 2320	2460 2440	2620 2585	2810 2755	3035 2965	2210			
580 585	1980	2100 2085	2200	2320	2440	2560	2710	2905	3210 3125			
590	1965	2085	2160	2280	2395	2530	2670	2900	3045	3255		
	1955	2070	2105	2260	2375	2505	2635	2800	2980	3165		
595 600	1955	2055	2130	2260	2360	2485	2635	2750	2980	3090	3245	
600 605					2360			2750				
605	1930	2030 2020	2125 2115	2230 2220	2340	2460	2575 25 5 0	2680	2870 2820	3020 2965	3165	2225
610	1920	2020	2110	2220	2305	2440	2530	2650	2780	2905	3095	3325
615	1905	2010		2205	2290	2420	2530	2620	2780	2920	3040	3235 3170
620 625	1895		2090			2405					2995	
625	1890	1990	2085	2180	2280 2270	2385	2490	2595	2720	2840	2955	3115
630	1880	1980	2080	2165	2270	2370	2470	2570	2690	2810	2920	3070

:

TABLE 2-3

Sheet 2 of 2

TABLE 2-4

Dworshak Dam and Reservoir POWER UNIT DISCHARGE RATING TABLE DISCHARGE IN CFS 220 MW UNIT

Gross				Cor								
<u>Head</u> Ft.	5 0	55	60	65	70	<u>- Outpu</u> 75	80	85	90	95	100	105
457	1760	1885	2020	2125	2250	2388	2505	2640	2765	2900	3030	- 3155
460	1750	1875	2000	2120	2240	2370	2495	2615	2750	2880	3005	3130
465	1735	1855	1980	2100	2215	2350	2470	2590	2725	2850	2970	3100
470	1720	1835	1960	2080	2195	2330	2440	2560	2685	2815	2935	3060
475	1700	1820	1940	2060	2170	2300	2415	2535	2665	2785	2900	3030
480	1675	1800	1920	2030	2150	2280	2400	2520	2640	2760	2870	3000
485	1665	1790	1900	2020	2135	2260	2370	2495	2615	2735	2845	2970
490	1660	1780	1885	2000	2115	2250	2350	2470	2590	2715	2820	2945
495	1650	1765	1870	1980	2100	2230	2330	2450	2570	2685	2790	2920
500	1640	1755	1855	1970	2085	2210	2315	2430	2550	2665	2770	2905
505	1625	1735	1840	1950	2070	2200	2300	2415	2530	2645	2750	2875
510	1615	1730	1830	1935	2055	2180	2280	2400	2515	2620	2725	2850
515	1605	1715	1825	1925	2045	2165	2265	2380	2500	2600	2700	2830
520	1600	1710	1820	1915	2030	2150	2250	2375	2480	2590	2690	2815
525	1590	1700	1800	1895	2020	2135	2240	2350	2465	2570	2670	2790
530	1585	1680	1790	1880	2005	2120	2225	2335	2445	2555	2650	2770
535	1570	1675	1780	1870	1995	2110	2210	2325	2430	2540	2635	2755
540	1560	1670	1770	1860	1980	2090	2195	2310	2420	2525	2620	2735
545	1555	1655	1760	1850	1970	2080	2185	2295	2400	2510	2600	2715
550	1550	1650	1755	1840	1960	2070	2170	2275	2380	2490	2580	2700
555	1540	1635	1750	1830	1950	2055	2160	2270	2370	2480	2570	2680
560	1530	1630	1735	1820	1940	2045	2150	2255	2355	2460	2560	2665
565	1525	1615	1730	1810	1925	2045	2145	2240	2340	2450	2540	2650
570	1515	1610	1720	1800	1915	2020	2125	2230	2330	2435	2525	2630
575	15 10	1600	1710	1795	1905	2010	2110	2215	2310	2420	2510	2610
580	1500	1595	1695	1 790	1895	2000	2095	2200	2295	2410	2490	2600
58 5	1490	1590	1695	1780	1890	1995	2090	2195	2275	2395	2480	2580
590	1480	1580	1685	1775	1880	1980	2075	2180	2260	2380	2465	2560
595	1470	1565	1675	1765	1870	1970	2060	2160	2245	2365	2450	2550
600	1465	1560	1665	1760	1855	1960	2050	2150	2235	2350	2430	2520
605	1455	1555	1660	1750	1850	1950	2040	2140	2215	2340	2425	2515
610	1450	1550	1650	1745	1845	1945	2030	2130	2205	2325	2410	2500
615	1445	1545	1640	1740	1835	1930	2020	2115	2195	2315	2400	2485
620	1440	1540	1640	1730	1825	1920	2010	2100	2185	2300	2385	2475
625	1435	1535	1635	1725	1820	1915	2000	2095	2180	2290	2375	2,46,5
630	1425	1530	1625	1720	1810	19 1 0	1995	2085	2175	2280	2 37 0	2455

TABLE 2-4

Dworshak Dam and Reservoir POWER UNIT DISCHARGE RATING TABLE DISCHARGE IN CFS 220 MW UNIT

Gross												
Head				Ger	nerator	Outpu	it MW					
<u>Ft.</u>	110	115	120	125	130	135	140	145	150	155	160	165
457	3270	3390	3515	3640	3775	3900	4020	4145	4275	4420	4550	4690
460	3245	3370	3495	3615	3750	3870	4000	4125	4250	4385	4520	4670
46 5	3210	3335	3460	3580	3705	3830	3955	4080	4200	4335	4465	46 10
470	3170	3300	3425	3545	3665	3785	3915	4035	4155	4290	4420	456 0
475	3135	3275	3395	3510	36 30	3750	3875	3990	4115	42.45	4375	451 0
480	3100	3240	3365	3475	3600	3720	3830	3950	4070	4200	4340	4465
485	3070	3215	3335	3450	3560	3685	3800	3910	4035	4160	4285	4415
490	3050	3180	3305	3420	3530	365 5	3770	3875	4000	4120	4245	4370
495	3020	3155	3280	3385	3500	3620	37 3 5	3840	3965	4085	4200	4330
500	3000	3130	3250	3360	3475	3595	37 00	3810	3940	4050	4170	4280
505	2970	3110	3230	3335	3445	3565	3675	3775	3900	4015	4135	4250
510	2950	3080	3200	3305	3415	3535	3650	3750	3870	3980	4100	4215
515	2930	30 60	3175	3280	3390	3510	3625	3725	3840	3950	4065	4170
520	2910	3040	3150	3255	336 5	3490	3600	3695	3815	3915	4040	4130
525	2885	3015	3125	3235	3340	3460	3570	3670	3780	3890	4000	4105
530	2865	3000	3100	3210	3320	3435	3550	3645	3 7 50	3860	3970	4070
535	2850	2975	3075	3185	3300	3410	3520	3620	3725	3835	3940	4035
540	2825	2950	3045	3160	3275	3385	3500	3590	37 00	3800	3910	4000
545	2810	2930	3035	3140	3250	3365	3470	3570	3670	3775	3880	3975
550	2790	2910	3010	3120	3230	3340	3440	3540	36 4 5	3750	3850	3950
555	2770	2890	2995	3090	3210	3315	3420	3520	3620	3720	3825	3920
560	2760	2870	2975	3075	3185	3300	3400	3495	3600	3695	3800	3900
565	2745	2850	2955	3050	3170	3275	3365	3465	3570	3660	3770	3870
570	2720	2835	2940	3035	3150	3250	3345	3440	3550	3640	3745	3835
57.5	2700	2810	2915	3010	3125	3220	3315	3415	3520	3615	3720	3805
580	2690	2790	2900	3000	3105	3200	3300	3395	3500	3585	3682	3780
585	2670	2770	2880	2975	3085	3175	3270	3365	3475	3565	3665	37 55
590	2650	2750	2860	2960	306 0	3155	3245	3340	3450	3540	3645	37 30
595	2635	2730	2845	2940	3040	3135	3225	3320	3430	3515	3620	37 0 5
600	2620	2720	2820	2920	3015	3110	3200	3300	3405	3500	3600	3685
605	2600	2700	2810	2905	3000	3100	3180	3280	3380	3475	3580	3665
610	2585	2685	2795	2890	2980	3075	3165	3260	3360	3450	3555	36 30
615	2575	2670	2775	2870	2965	3055	3150	3245	3345	3430	3535	3615
620	2565	2660	2760	2860	2950	3040	3130	32,30	3330	3410	3515	3595
	2550	2650	2750	2845	2930	3025	3120	3210	3310	3400	3495	3575
630	2550	2630	2740	2825	2915	3005	3115	3190	3300	3380	3470	3560

•

Dworshak Dam and Reservoir POWER UNIT DISCHARGE RATING TABLE DISCHARGE IN CFS 220 MW UNIT

Gross							_					
Head			120		erator			04.5	010	015		
<u> </u>	170	175	180	185	190	195	200	205	210	215	220	225
457	4825	5000	5180	5400	5660							
460	4795	4955	5130	5330	5555	5850						
465	47 30	4885	5 060	5220	5410	5640	5925					
470	4675	4820	4980	5130	5290	5490	5710	5980				
475	4620	4750	4910	5050	5190	5365	5570	5770	6080			
480	4570	4700	4840	497 5	5100	5270	5450	5625	5850	6150		
485	4525	4650	4790	4920	5040	5185	5335	5510	5700	5925	6200	
490	4475	4600	4730	4860	4970	5115	5255	5410	5575	5 765	5980	6250
495	4435	4540	4680	4805	4910	5050	5180	5330	5480	5645	5835	6035
500	4400	4505	4630	4750	4860	4985	5120	5260	5400	5 5 40	5710	5875
505	4360	4470	4580	4710	4815	4935	5055	5190	5320	5460	5610	5760
510	4430	4430	4535	4665	4765	4885	5000	5125	5250	5380	5530	5665
515	4280	4400	4495	4620	4725	4840	4955	5075	5195	5315	5460	5580
520	4250	4360	4455	4580	4680	4800	4900	5020	5130	5250	5390	5500
525	4220	4320	4415	4 5 50	4650	4755	4860	4980	5080	5190	5325	5440
530	4185	4290	4380	4515	4615	4720	4820	4935	5035	5140	5270	5380
535	4150	4255	4350	4475	4575	4680	4785	4895	4995	5095	5220	53 30
540	4115	4225	4320	4440	4550	4655	4750	4855	4960	5050	5175	5275
545	4090	4195	4280	4405	4505	4605	4715	4815	4905	5005	5130	52 30
550	4060	4165	4255	4375	4475	4575	4680	4780	4870	4970	5080	5185
555	4025	4130	4225	4340	4440	4550	4650	4745	4835	4935	5050	5145
560	4000	4100	4200	4320	4420	4520	4620	4720	4800	4900	5010	5100
565	3970	4080	4170	4280	4380	4485	4580	4680	4765	486 0	4975	5070
570	3940	4050	4145	4255	4350	4455	4550	4650	4730	4830	4940	5030
575	3915	4020	4120	4230	4315	4425	4520	4620	4700	4800	4905	5000
580	3890	4000	4080	4200	4290	4400	4490	4595	4680	4770	4880	4970
585	3865	3970	4065	4170	4260	4365	4460	4560	4645	4740	4845	4930
590	3840	3945	4040	4150	4235	4 3 40	4430	4530	4620	4710	4815	4900
595	3810	3915	4015	4120	4200	4310	4400	4500	4585	4680	4785	4880
600	3790	3880	3990	4080	4180	4270	4375	4460	4560	4660	4750	4850
605	3765	3860	3960	4060	4150	4255	4345	4440	4530	4625	4725	4820
610	3740	3840	3940	4040	4125	4225	4320	4410	4500	46 00	4700	4790
615	3720	3815	3915	4015	4100	4200	4290	4385	4480	4575	4675	4760
620	3700	3795	3895	3985	4075	4175	4265	4360	4450	4550	4650	4735
625	3670	3765	3865	3960	4040	4150	4240	4335	4430	4525	4620	4710
630	3650	3740	3830	3940	4020	4120	4210	4300	4400	4500	4600	46 80

2

Dworshak Dam and Reservoir POWER UNIT DISCHARGE RATING TABLE DISCHARGE IN CFS 220 MW UNIT

	230	235	240	245	250	r <u>Outpu</u> 255	260	265	270	275	280	285
•	2.30		2.40		250		200	205	270	275	200	
	6250											
	6100	6320										
	5940	6150	6400									
	5830	6015	6230	6200								
	5735 5650	5905	6095	6300	()75							
	5580	5810 5730	5980 5900	6150 6040	6375 6230	6450						
	5520	5750 5660	5825	5950	6120	6450 6310	6525					
	5455	5600	5750	5875	6025	6190	6375	6600				
	5425	5530	5670	5800	5930	6100	6250	6430	6630			
	5350	5480	5620	5750	5870	6010	6155	6330	6515	6725		
	5305	5435	5570	5690	5805	5940	6075	6240	6420	6595	6800	
	5260	5385	5515	5635	5745	5875	6000	6150	6320	6480	6670	6830
	5240	5350	5470	5595	5700	5840	5975	6100	6250	6400	6560	6720
4	5180	5295	5420	5535	5640	5760	5870	6010	6160	6300	6465	6600
5	5140	5255	5375	5490	5595	5710	581 5	5950	6090	6225	6375	6510
	5110	5220	5330	5445	5550	5660	5760	5890	6020	6150	6290	6425
	5090	5180	5290	5400	55 00	5620	5725	5840	5960	6080	6230	6350
	5035	5150	5250	536 0	5460	5570	5670	5785	5900	6020	6145	6280
	5005	5115	5220	5325	5425	5530	5625	5735	5840	5960	6070	6215
	+975	5080	5180	5285	5390	5495	5580	5690	5 785	5900	6020	6160
	4940	5040	5130	5230	5330	5435	5530	5630	5740	58 5 0	5960	6080
	+915	5020	5113	5210	5310	5420	5500	5600	5700	5805	5910	6055
	885	4995	5080	5180	5275	5385	5465	5570	5660	5770	5865	6005
	855	4960	5050	5140	5245	5350	5430	5530	5630	5730	5830	5960
	830 800	4930 4900	5020 4980	5110	5210	5320	5400	5500	5590	5700	5795	5915
-4	000	4700	4900	5080	5180	5290	5360	5470	5560	5660	5755	5870

Dworshak Dam and Reservoir POWER UNIT DISCHARGE RATING TABLE DISCHARGE IN CFS 220 MW UNIT

Gross Head				Ger	nerator	r Outou	ነተ እለህ					
Ft.	290	295	300	305	<u>310</u>	315	320	325	330	335	340	345
457												
460												
465												
47 0												
+75												
80												
85												
90												
95												
00												
)5												
0												
5												
0												
5												
0												
5												
1												
)	6900	(050										
)	6790	6950	7005									
	6680	6830	7025	7075								
5	6575	6725	6900	7075	7100							
)	6500	6640	6790	6940	7120	71(0)						
5	6415	6540	6690	6840	7000	7160	7000					
0	6335	6455	6590	6740	6895	7045	7220	2010				
5 0	6280	6385	6515	6650	6800	6950	7105	7260				
)	6200	6320	6440	6580	6720	6860	7010	7160	2050			
	6155	6255	6370	6490	6630	6770	6925	7070	7250	7000		
l	6105	6205	6 3 10	6430	6570	6700	6850	6980	7150	7290	3950	
	6060	6160	6260	6375	6510	6630	6775	6910	7060	7200	7350	7/05
)	6020	6110	6215	6325	6460	6575	6710	6840	6980	7120	7265	7425
5	5975	6070	6175	6285	6415	6525	6650	6775	6910	7045	7180	7320
30	5930	6030	6140	6250	6370	6480	6600	6720	6840	6970	7100	7230

.

Elevation	Gross	Usable	Space	Area
(feet)	Storage	<u>Storag</u> e	Available	(acres)
1445.0	1452.2	0.0	2015.8	9047
.5	1456.8	4.8	2011.2	
1446.0	1461.3 1465.8	9.3 13.8	2006.7 2002.2	9 086
.5 1447.0 .5	1470.4 1474.9	18.4	1997.6	9125
1448.0	1479.4	27.4	1993.1 1988.6	9165
.5	1484.0	32.0	1984.0	9204
1449.0	1488.6	36.6	1979.4	
.5	1493.1	41.1	1974.9	9244
1450.0	1497.7	45.7	1970.3	
.5	1502.3	50.3	1965.7	9284
1451.0	1506.8	54.8	1961.2	
.5	1511.4	59.4	1956.6	9324
1452.0	1516.0	64.0	1952.0	
.5	1520.6	68.6	1947.4	9364
1453.0	1525.2	73.2	1942.8	
.5	1529.8	77.8	1938.2	9404
1454.0	1534.4	82.4	1933.6	
.5	1539.1	87.1	1928.9	9445
1455.0	1543.7	91.7	1924.3	
.5	1548.3	96.3	1919.7	9 485
1456.0	1552.9	100.9	1915.0	
.5	1557.6	105.6	1910.4	9526
1457.0	1562.2	110.2	1905.8	
.5	1566.9	114.9	1901.1	9567
1458.0	1571.5	119.5	1896.5	
.5	1576.2	124.2	1891.8	9 608
1459.0	1580.9	128.9	1887.1	
.5	1585.6	133.6	1882.4	9649
1460.0	1590.2	138.2	1877.8	
.5	1594.9	142.9	1873.1	9690
1461.0	1599.6	147.6	1868.4	
.5 1462.0 .5	1604.3 1609.0	152.3 157.0	1863.7 1859.0	9732
1463.0	1613.7 1618.4	161.7 166.4	1854.3 1849.6	9774
.5	1623.1	171.1	1844.9	9815
1464.0	1627.9	175.9	1840.1	
.5 1465.0 .5	1632.6 1637.3	180.6 185.3	1835.4 1830.7	9857
1466.0	1642.1 1646.8	190.1 194.8	1825.9 1821.2	9 899
.5	1651.6	199.6	1816.4	9942
1467.0	1656.3	204.3	1811.7	
.5	1661.1	209.1	1806.9	
• 7	1001+1	203.1	1000.9	

Elevation	Gross	Usable	Space	Area
(feet)	Storage	Storage	<u>Available</u>	(acres)
1468.0	1665.9	213.9	1802.1	9984
.5	1670.6	218.6	1797.4	
1469.0	1675.4 1680.2	223.4	1792.6 1787.8	10026
1470.0	1685.0 1639.8	233.0 237.8	1783.0 1778.2	10069
1471.0	1694.6 1699.4	242.6	1773.4 1768.6	10112
1472.0 .5	1704.2 1709.0	252.2 257.0	1763.8 1759.0	10155
1473.0	1713.9	261.9	1754.1	10198
.5	1718.7	266.7	1749.3	
1474.0	1723.5	271.5	1744.5	10242
.5	1728.4	276.4	1739.6	
1475.0	1733.2 1738.1	281.2 286.1	1734.8 1729.9	10285
1476.0	1742.9 1747.8	290.9 295.8	1725.1 1720.2	10328
1477.0	1752.7 1757.5	300.7 305.5	1715.3 1710.5	10372
1478.0 .5 1479.0	1762.4 1767.3 1772.2	310.4 315.3	1705.6 1700.7	10416
.5	1777.1 1782.0	320.2 325.1 330.0	1695.8 1690.9 1686.0	10460 10504
.5	1786.9	334.9	1681.1	10504
1481.0	1791.9	339.9	1676.1	
.5	1796.8	344.8	1671.2	10543
1482.0	1801.8	349.8	1666.2	
.5	1806.8	354.8	1661.2	10535
1483.0	1811.8	359.8	1656.2	
.5	1816.8 1821.9	364.8 369.9	1651.2 1646.1	10683
.5	1826.9	374.9	1641.1	10728
1485.0	1832.0	380.0	1636.0	
.5	1837.1	385.1	1630.9	10773
1486.0	1842.3	390.3	1625.7	
.5	1847.4	395.4	1620.6	10819
1487.0	1852.6	400.6	1615.4	
.5	1857.8	405.8	1610.2	10864
1488.0	1863.0	411.0	1605.0	
.5	1868.2	416.2	1599.8	10910
1489.0	1873.4	421.4	1594.6	
.5	1878.7	426.7	1589.3	10956
1490.0	1884.0	432.0	1584.0	
.5	1889.3	437.3	1578.7	

Elevation	Gross	Usable	Space	Area
(feet)	Storage	Storage	Available	(acres)
1491.0	1894.6	442.6	1573.4	11001
.5	1899.9	447.9	1568.1	11048
1492.0	1905.3	453.3	1562.7	
.5	1910.7	458.7	1557.3	11094
1493.0	1916.1	464.1	1551.9	
.5	1921.5	469.5	1546.5	11141
1494.0	1926.9	474.9	1541.1	
.5	1932.4	480.4	1535.6	11187
1495.0	1937.9	485.9	1530.1	
.5	1943.4	491.4	1524.6	11234
1496.0	1948.9	496.9	1519.1	
.5	1954.4	502.4	1513.6	11281
1497.0	1960.0	508.0	1508.0	
.5	1965.6 1971.2	513.6 519.2	1502.4 1496.8	11328
.5 1499.0	1976.8 1982.4	524.8	1491.2 1485.6	11375
.5	1982.4 1988.1 1993.8	536.1	1479.9 1474.2	11423
1500.0	1999.5	541.8 547.5	1468.5	11423
1501.0	2005.2 2010.9	553.2 558.9	1462.8 1457.1	
1502.0	2016.7	564.7	1451.3	11518
.5	2022.5	570.5	1445.5	
1503.0	2028.3	576.3	1439.7	11566
.5	2034.1	582.1	1433.9	
1504.0	2039.9	587 .9	1428.1	11614
.5	2045.8	593.8	1422.2	
1505.0	2051.7	599.7	1416.3	11663
.5	2057.6	605.6	1410.4	
1506.0	2063.5 2069.5	611.5 617.5	1404.5 1398.5	11711
1507.0	2075.4 2081.4	623.4 629.4	1392.6 1386.6	11760
1508.0	2087.4 2093.5	635.4 641.5	1380.6 1374.5	11808
1509.0	2099.5	647.5	1368.5	11857
.5	2105.6 2111.7	653.6 659.7	1362.4 1356.3	11907
.5	2117.8	665.8	1350.2	11956
1511.0	2123.9	671.9	1344.1	
.5	2130.1	678.1	1337.9	12005
1512.0	2136.3	684.3	1331.7	
.5	2142.5	690.5	1325.5	12055
1513.0	2148.7	696.7	1319.3	
.5	2154.9	702.9	1313.1	

Elevation (feet)	Gross Storage	Usable Storage	Space Available	Area (acres)
1514.0	2161.2	709.2	1306.8	12105
.5 1515.0	2167.5 2173.8	715.5 721.8	1300.5 1294.2	12155
.5 1516.0	2180.1 2186.5	728.1 734.5	1287.9 1281.5	12205
.5 1517.0	2192.8 2199.2	740.8 747.2	1275.2 1268.8	12255
.5	2205.6	753.6	1262.4	
1518.0 .5	2212.1 2218.5	760.1 766.5	1255.9 1249.5	12306
1519.0	2225.0	773.0	1243.0	12356
.5 1520.0	2231.5 2238.0	779.5 786.0	1236.5 1230.0	12407
.5	2244.6	792.6	1223.4	10450
1521.0	2251.1 2257.7	799.1 805.7	1216.9 1210.3	12459
1522.0	2264.2	812.2 818.8	1203.8 1197.2	12510
.5 1523.0	2270.8 2277.4	825.4	1190.6	12561
.5 1524.0	2284.0 2290.6	832.0 838.6	1184.0 1177.4	12613
.5	2297.2	845.2	1170.8	12664
1525.0	2303.9 2310.5	851.9 858.5	1164.1 1157.5	
1526.0	2317.1 2323.8	865.1 871.8	1150.9 1144.2	12716
1527.0	2330.5	878.5	1137.5	12769
.5 1528.0	2337.2 2343.8	885.2 891.8	1130.8 1124.2	12821
.5	2350.5	898.5	1117.4	
1529.0 .5	2357.3 2364.0	905.3 912.0	1110.7 1104.0	12873
1530.0	2370.7 2377.5	918.7 925.5	1097.3 1090.5	12926
1531.0	2384.2	932.2	1083.8	12979
.5 1532.0	2391.0 2397.8	939.0 945.8	1077.0 1070.2	13032
.5	2404.5	952.5	1063.5	
1533.0 .5	2411.3 2418.1	959.3 966.1	1056.7 1049.9	13085
1534.0 .5	2425.0 2431.8	973.0 979.8	1043.0 1036.2	13138
1535.0	2438.6	986.6	1029.4	13192
.5 1536.0	2445.5 2452.3	993.5 1000.3	1022.5 1015.7	13246
.5	2459.2	1007.2	1008.8	

Elevation (feet)	Gross Storage	Usable Storage	Space Available	Area (acres)
1537.0 .5	2466.1 2473.0	014.1 021.0	1001.9 995.0	13300
1538.0	2479.9 2486.8	027.9 034.8	988.1 981.2	13354
1539.0	2493.7 2500.6	041.7 048.6	974.3 966.0	13408
1540.0	2507.6 2514.5	055.6	960.4 953.5	13462
1541.0	2521.5 2528.5	069.5	946.5 939.5	13517
1542.0	2535.4 2542.4	083.4 090.4	932.6 925.6	13572
1543.0	2549.4 2556.5	097.4 1104.5	918.5 911.5	13627
1544.0	2563.5 2570.5	1111.5 1118.5	904.5 897.5	13682
1545.0	2577.6 2584.6	1125.6 1132.6	890.4 883.4	13738
1546.0	2591.7 2598.8	1139.7 1146.8	876.3 869.2	13793
1547.0	2605.9 2613.0	1153.9 1161.0	862.1 855.0	13849
1548.0	2620.1 2627.2	1168.1 1175.2	847.9 840.8	13905
1549.0	2634.4 2641.5	1182.4 1189.5	833.6 826.5	13961
1550.0	2648.7 2655.8	1196.7 1203.8	819.3 812.2	14018
1551.0 .5	2663.0 2670.2	1211.0 1218.2	805.0 797.8	14074
1552.0 .5	2677.4 2684.6	1225.4 1232.6	790.6 783.4	14131
1553.0 .5	2691.8 2699.0	1239.8 1247.0	776.2 769.0	14188
1554.0 .5	2706.3 2713.5	1254.3 1261.5	761.7 754.5	14245
1555.0 .5	2720.8 2728.1	1268.8 1276.1	747.2 739.9	14302
1556.0 .5	2735.4 2742.6	1283.4 1290.6	732.6 725.4	14360
1557.0 .5	2750.0 2757.3	1298.0 1305.3	718.0 710.7	14418
1558.0 .5	2764.6 2771.9	1312.6 1319.9	703.4 696.1	14475
1559.0 .5	2779.3 2786.6	1327.3 1334.6	688.7 681.4	14534

Elevation (feet)	Gross Storage	Usable Storage	Space Available	Area (acres)
1560.0	2794.0	1342.0	674.0	14592
.5 1561.0 .5	2801.4 2808.8 2816.3	1349.4 1356.8 1364.3	666.6 659.2 651.7	14650
1562.0	2823.7	1371.7	644.3	14709
.5 1563.0	2831.2 2838.7 2846.3	1379.2 1386.7 1394.3	636.8 629.3 621.7	14768
.5 1564.0 .5	2953.8 2861.4	1401.8 1409.4	614.2 606.6	14827
1565.0	2869.0 2876.7	1405.4 1417.0 1424.7	599.0 591.3	14886
1566.0	2884.4 2892.0	1432.4 1440.0	583.6 576.0	14946
1567.0	2899.8 2907.5	1447.8 1455.5	568.2 560.5	15005
1568.0	2915.3 2923.1	1463.3 1471.1	552.7 544.9	15065
1569.0	2930.9 2938.7	1478.9 1486.7	537.1 529.3	1 5125
1570.0	2946.6 2954.5	1494.6 1502.5	521.4 513.5	15186
.5 1571.0 .5	2962.4 2970.4	1510.4 1518.4	505.6 497.6	15246
.5 1572.0 .5	2978.4 2978.4 2986.4	1526.4 1534.4	489.6 481.6	15307
.5 1573.0 .5	2994.4 3002.5	1542.4 1550.5	473.6 465.5	15368
1574.0	3010.5 3018.6	1558.5 1566.6	457.5 449.4	15429
1575.0	3026.8 3034.9	1574.8 1582.9	441.2 433.1	15490
1576.0	3043.1 3051.3	1591.1 1599.3	424.9 416.7	15552
1577.0 .5	3059.6 3067.8	1607.6 1615.8	408.4	15613
1578.0	3076.3 3084.5	1624.1 1632.5	391.9 383.5	15675
.5 1579.0 .5	3092.8 3101.2	1640.8 1649.2	375.2 366.8	15737
1580.0	3109.6 3118.0	1657.6 1666.0	358.4 350.0	15800
.5 1581.0 .5	3126.4 3134.9	1674.4 1682.9	341.6 333.1	15862
.5 1582.0 .5	3134.9 3143.4 3152.0	1691.4 1700.0	333.1 324.6 316.0	15925

Elevation	Gross	Usable	Space	Area
(feet)	Storage	Storage	Available	(acres)
	¥	¥		<u></u>
1583.0	3160.5	1708.5	307.5	15988
.5	3165.7	1713.7	302.7	
1584.0	3177.7	1725.7	290.3	16051
.5	3186.4	1734.4	281.6	
1585.0	3195.0	1743.0	273.0	16114
.5	3203.7	1751.7	264.3	4 4 4 7 0
1586.0	3212.5	1760.5	255.5	16178
.5	3221.2	1769.2	246.8	
1587.0	3230.0	1778.0	238.0	16242
• 5	3238.8	1786.8	229.2	
1588.0	3247.6	1795.6	220.4	16306
.5	3256.5	1804.5	211.5	
1589.0	3265.4	1813.4	202.6	16370
.5	3274.3	1822.3	193.7	
1590.0	3283.2	1831.2	184.8	16435
.5	3292.2	1840.2	175.8	
1591.0	3301.2	1849.2	166.8	16499
.5	3310.2	1858.2	157.8	
1592.0	3319.3	1867.3	148.7	16564
.5	3328.4	1876.4	139.6	
1593.0	3337.5	1885.5	130.5	16629
.5	3346.6	1894.6	121.6	
1594.0	3355.8	1903.8	112.8	16694
.5	3365.0	1913.0	103.0	
1595.0	3374.2	1922.2	93.8	16760
.5	3383.4	1931.4	84.6	
1596.0	3392.7	1940.7	75.3	16826
.5	3402.0	1950.0	66.0	
1597.0	3411.3	1959.3	56.7	16891
.5	3420.7	1968.7	47.3	
1598.0	3430.1	1978.1	37.9	16957
.5	3439.5	1987.5	28.5	
1599.0	3448.9	1996.9	19.1	17024
.5	3458.4	2006.4	9.6	
1600.0	3468.0	2016.0	0.0	17090

DWORSHAK PUBLIC RECREATION FACILITIES

					Oper	ational ((ft msl)	Elev.
Recreation Areas	Elevation (ft. msl)	Acre Developed	s <u>Total</u>	Major Use	Boat Ramp	Boat Dock	Swimming Area
Big Eddy	1615	4	20	Boat launching, swimming, picnicking, hiking, marina	1445+	1560+	1595+
Boehls	1600-1650	1	42	Primitive camping, picnicking			
Bruces Eddy	1620	7	66	Boat launching	1485+	1590+	
Canyon Creek	1600-1650	10	75	Boat launching, camping	1587+		
Cold Springs	1600-1650	2	31	Primitive group camping			
Dent Acres	1600-1750	85	366	Boat launching, camping, picnicking, swimming, hiking	1525+	1560+	
Dent Orchards	1600-1650	50	149	Picnicking, hiking			
Freeman C ree k	1600-1750	80	272	Boat launching, swimming, picnicking, hiking, playground	1535+	1560+	1595+
Grandad Creek	1610	5	66	Boat launching, primitive camping, picnicking	1555+		
Little North	Fk. 1625	3	14	Primitive camping			
Magnus Bay	1600-1700	6	150	Primitive camping			
Merrys Bay	1600-1650	8	46	Picnicking, swimming, hiking, playground			1595+
Mini-camps	1600-1650	50	100	Camping and picnicking, 78 areas (varies annually)		
Picnic Glen	1620-1640	3	6	Picnicking, hiking			
Three Meadows	1740-1780	10	78	Developed group camp			
Viewpoint #2	1620	2	3	Sightseeing			
Visitor Cente	r 1620	2	2	Sightseeing		1590+	

Sources: Walla Walla District Recreational Facilities Guide, March 1984. Dworshak Master Plan, Vol. 1, July 1985.

EXTREMES FOR AVERAGE MAXIMUM MONTHLY TEMPERATURES

Month	<u>Avery</u> Max	<u>R.S.2</u> 1/ Min	<u>Elk R</u> Max	iver 152/ Min	Headqu Max	uarters3/ Min	<u>Mulla</u> Max	an4/ <u>Min</u>	North Ran Max	<u>Star</u> nch5/ <u>Min</u>	<u>Orof</u> Max	<u>ino</u> 6/ Min	<u>Piero</u> Max	<u>Min</u>	Powe Max	8/ <u>Min</u>
Jan	36.8	19.7	41.3	25.6	41.4	26.0	41.4	24.4	41.6	23.7	48.2	24.5	35.7	26.4	39.4	23.6
Feb	39.8	31.1	46.9	34.9	47.0	36.3	45.1	35.5	48.1	38.2	56.3	30.7	40.5	33.3	43.0	33.2
Mar	52.5	40.8	51.3	38.3	52.8	39.4	51.1	40.3	57.7	45.6	67.3	45.6	51.4	37.8	52.3	36.8
Apr	64.1	45.8	63.4	47.2	61.2	45.8	60.8	52.3	66.6	51.7	77.8	58.4	54.1	45.0	60.0	45.1
May	72.0	59.0	77.8	58.4	72.3	55.6	65.9	56.6	72.9	61.0	88.4	65.2	70.3	56.9	70.2	55.6
Jun	81.2	65.8	80.6	66.0	81.7	65.2	75.4	63.1	82.7	79.7	91.7	74.5	76.5	65.0	79.5	65.4
Jul	89.6	77.8	87.6	77.5	88.8	76.7	80 .9	75.2	88.8	81.5	100.5	83.8	85.6	77.5	88.0	78.6
Aug	87.6	75.7	9 0.9	75.3	90.5	73.7	83.7	70.2	94.6	77.4	99.7	81.0	87.0	73.2	90.3	74.1
Sep	75.2	63.8	81.0	63.3	81.1	63.3	73 .4	62.3	85.7	66.9	89.7	71.9	77.5	60.2	82.4	60.6
Oct	62.3	51.6	72.4	53.4	64.0	52.4	60.1	55.9	66.4	51.5	76.6	53.6	63.8	49.6	65.3	51.7
Nov	41.4	34.4	49.6	35.4	47.9	36.8	44.2	36.1	47.2	39.0	55.3	40.0	45.1	35.6	44.7	34.0
Dec	35.5	36.8	40.3	29.7	38.8	30.7	39.6	27.3	38.6	29.5	47.0	32.0	34.0	28.1	36.1	26.3

1/ Period of Record, 1968 - 1981, 14 years, station elevation 2,390 feet msl. 2/ Period of Record, 1952 - 1981, 30 years, station elevation 2,918 feet msl. 3/ Period of Record, 1959 - 1981, 23 years, station elevation 3,138 feet msl. 4/ Period of Record, 1975 - 1981, 7 years, station elevation 3,317 feet msl. 5/ Period of Record, 1967 - 1981, 15 years, station elevation 2,800 feet msl. 6/ Period of Record, 1903 - 1981, 79 years, station elevation 1,027 feet msl. 7/ Period of Record, 1963 - 1981, 19 years, station elevation 3,185 feet msl. 8/ Period of Record, 1962 - 1981, 20 years, station elevation 3,632 feet msl.

Source of Data: Corps of Engineers, Walla Walla District, Hydrology Branch

TABLE 4-1 Sheet 1 of 1

EXTREMES FOR AVERAGE MINIMUM MONTHLY TEMPERATURES

<u>1</u>	lonth	Avery Max	<u>R.S.2</u> 1/ <u>Min</u>	<u>Elk Ri</u> <u>Max</u>	ver 152/ Min	<u>Headqu</u> Max	uarters ^{3/} Min	<u>Mulla</u> Max	m4/ Min	North Rar Max	Star Ich ⁵⁷ Min	<u>Orof</u> Max	ino6/ Min	Piero Max	<u>Min</u>	Powel Max	118/ <u>Min</u>
ı	Jan	28.4	5.9	30.0	1.9	26.4	2.3	28.2	7.3	26.7	2.8	35.1	3.8	24.7	-0.5	24.0	1.2
ł	Feb	30 .9	19.9	29.3	12.7	27.8	13.3	26.3	21.8	25.9	15.9	34.4	5.7	22.9	11.9	23.4	13.2
	Mar	34.4	22.7	28.4	14.0	28.5	15.8	28.6	21.5	28.6	19.3	35.9	25.1	27.1	13.7	26.2	12.7
1	Apr	36.7	28.8	36.4	26.7	32.9	24.7	34.0	30.4	34.1	27.5	41.3	31.4	32.6	26.1	31.2	24.6
	May	43.5	36.2	49. 0	32.7	38.2	31.0	39.8	35.1	39.0	33.2	48 .9	37.3	38.5	31.4	36.6	31.3
	Jun	49.2	42.3	47.8	37.8	46.8	37.4	45.7	40.9	47.1	41.2	54.9	44.2	43.4	38.1	43.8	38.3
	յսլ .	51.5	45.7	53.7	39.9	51.1	39.7	47.9	45.4	52.7	43.5	59.4	48.4	49. 3	40.3	49.8	41.6
,	Aug	50.6	4 5.2	46.7	39.3	46.5	39.4	49.3	43.0	47.5	40.2	55.8	42.7	45.5	37.3	46.5	38.4
	Sep	46.1	38.6	42.3	32.0	41.2	28.9	42.1	39.8	42.3	32.6	52.7	39.1	38.2	30.5	41.1	31.6
I	Oct	36.7	28.9	35.4	26.0	32.3	23.8	35.0	30.6	34.0	27.1	43.7	30.3	31.0	26.0	33.9	26.0
I	Nov	31.9	20.9	30.5	18.6	28.6	17.3	29.3	21.8	27.1	19.1	37.6	22.2	26.4	19.3	28.2	17.4
	Dec	2 9. 0	13.1	30.0	9.2	25.2	13.9	28.3	13.2	24.7	11.0	35.0	9.9	22.6	9.6	23.5	8.6
-							tion eleva tion eleva										

Period of Record, 1968 - 1981, 14 years, station elevation 2,390 feet msl.
Period of Record, 1952 - 1981, 30 years, station elevation 2,918 feet msl.
Period of Record, 1959 - 1981, 23 years, station elevation 3,138 feet msl.
Period of Record, 1975 - 1981, 7 years, station elevation 3,317 feet msl.
Period of Record, 1967 - 1981, 15 years, station elevation 2,800 feet msl.
Period of Record, 1903 - 1981, 79 years, station elevation 1,027 feet msl.
Period of Record, 1963 - 1981, 19 years, station elevation 3,185 feet msl.
Period of Record, 1962 - 1981, 20 years, station elevation 3,632 feet msl.

Source of Data: Corps of Engineers, Walla Walla District, Hydrology Branch

TABLE 4-2Sheet 1 of 1

Month	<u>Avery</u> <u>Max</u>	<u>R.S.2</u> 1/ <u>Min</u>	Elk F Max	River 152/ Min	<u>Headq</u> <u>Max</u>	<u>uarters</u> 3/ <u>Min</u>	<u>Mull</u> Max	an4/ Min	<u>North</u> Ra Max	Star nch57 <u>Min</u>	<u>Orof</u> Max	<u>ino</u> 6/ Min	<u>Pier</u> Max	<u>ce</u> 7/ <u>Min</u>	Powe Max	118/ <u>Min</u>
Jan	47	-17	54	-31	55	-27	53	-20	58	-21	62	-22	51	-29	47	-28
Feb	52	- 9	63	-25	64	-18	65	-8	62	-14	68	-23	58	-17	61	-16
Mar	75	O	70	-23	72	-10	74	-3	80	4	82	-1	75	-6	73	-12
Apr	88	21	83	11	87	4	87	19	92	16	9 8	20	88	14	86	10
May	89	25	91	19	9 3	19	81	26	94	20	105	26	92	21	91	20
Jun	96	31	96	29	97	25	93	30	101	30	110	31	96	28	99	26
Jul	101	34	104	29	102	26	94	34	105	30	118	37	101	29	102	28
Aug	104	3	107	27	108	28	94	31	105	32	116	33	97	28	105	24
Sep	97	4	100	21	99	21	92	28	101	23	107	21	97	18	9 8	21
Oct	78	11	88	4	85	4	83	20	85	4	92	14	86	3	86	2
Nov	59	4	66	-13	68	-5	65	0	67	- 3	71	-6	69	-2	66	-10
Dec	50	-23	58	-37	55	-28	52	-21	54	-18	63	-24	45	-33	45	-28

MONTHLY EXTREME MAXIMUM AND MINIMUM TEMPERATURES

Source of Data: Corps of Engineers, Walla Walla District, Hydrology Branch.

TABLE 4-3 Sheet 1 of 1

TOTAL MONTHLY PRECIPITATION

	Ave	ry R.S.	<u>21/</u>	Elk	River	15 <u>2/</u>	Head	lquarte	rs <u>3/</u>		Mullan <mark>4</mark>	<u>L</u>		North ₅ S Ranch <u>5</u>	tar	()rofino ^{6/}	
Month	Max	Min	Avg	Max	Min	Avg	Max	Min	Avg	Max	Min	Avg	<u>Max</u>	Min	Avg	Max	Min	Avg
Jan	10.15	1.58	6.22	12.33	2.13	5.99	10.08	1.80	5.83	15.80	1.02	4.98	16.31	0.73	3.45	8.16	0.58	2.98
F eb	8.00	0.77	3.65	7.82	0,79	4,21	8,47	1.73	3,96	7,50	1,20	4.05	5,28	0.73	2,26	6.04	0.05	2.56
Mar	5.27	0.85	3,27	7.14	1.06	3.81	6.37	1.36	3.83	5,20	1.88	3.23	4,29	0,53	1.99	5.83	0.47	2.61
Apr	4.60	0.41	2.82	6.74	0.18	3.03	5.37	0.22	3.30	4.21	0.49	2,38	3.13	0.44	2.15	4.64	0.31	2.16
May	5.08	1.92	2.87	5.17	0.86	2.74	5.47	0.58	3.04	4.97	1.40	2.93	3.50	1.15	2.20	6,97	0.00	2.26
Jun	5.36	0.38	2.46	4.75	0.79	2.36	6.35	0.49	2.55	5.29	0.37	2.27	5.03	0.77	2.32	5.43	0.07	2.03
Jul	3.00	0.00	1.24	2.36	0.00	0.82	2.37	0.00	0.96	2.30	0.00	1.25	2.40	0.10	1,13	4,32	0.00	0.69
Aug	4.26	0.03	1.69	3.67	0.00	1.26	4.18	0.00	1.51	3.48	0.30	1.86	4.26	0.05	1.37	2.75	0.00	0.70
Sep	4.14	0.21	2.12	7,79	0.00	1.86	7.76	0.14	2.20	3,49	0.20	1.74	3.93	0.08	1.84	5.04	0,00	1,46
Oct	6.05	0.06	2.17	5.69	0.01	2.75	6.33	0.00	3.12	5.20	0.10	1.99	5.03	0.12	1.93	5.92	0.06	2.14
Nov	6.89	1.36	3.74	10.70	1.10	4.42	10.55	1.08	4.69	10.40	1.01	4.64	4.58	1.06	2.56	9.66	0.18	3.21
Dec	10.43	2.79	5.61	13.13	1.93	5.51	12.57	1.51	5.39	9.99	2.18	5.75	6.87	1.21	3.35	12.01	0.22	3.34

1/ Period of Record, 1968 - 1981, 14 years, station elevation 2,390 feet msl. 2/ Period of Record, 1952 - 1981, 30 years, station elevation 2,918 feet msl. 3/ Period of Record, 1959 - 1981, 23 years, station elevation 3,138 feet msl. 4/ Period of Record, 1975 - 1981, 7 years, station elevation 3,317 feet msl. 5/ Period of Record, 1967 - 1981, 15 years, station elevation 2,800 feet msl. 6/ Period of Record, 1903 - 1981, 79 years, station elevation 1,027 feet msl. 7/ Period of Record, 1963 - 1981, 19 years, station elevation 3,185 feet msl. 8/ Period of Record, 1962 - 1981, 20 years, station elevation 3,632 feet msl.

Source of Data: Corps of Engineers, Walla Walla District, Hydrology Branch.

<u> </u>	ierce <u>7/</u>		f	owe11 <u>8/</u>	
Max	Min	Avg	Max	<u>Min</u>	Avg
10.59	1.80	6.04	11.52	0.90	6.64
8.59	1.29	4.16	9.95	1.01	3.98
6.13	1,55	3.82	7.03	0.65	3,32
5.36	0.74	3.57	4,47	0.39	2,48
5.75	1.51	3.31	5,09	1,38	2.64
7.29	1.02	3.16	7.48	0.73	3.25
3.65	0.00	1.08	2.80	0.05	1.21
4.74	0.00	1.74	4.35	0.05	1.80
4.52	0.46	2.34	5.10	0.13	2.27
6.96	0,25	3.20	7,91	0.50	3.03
8.58	. 1.09	4.29	8.41	0.79	4,26
11.10	1,92	6.02	12,65	1.77	5.95

.

52

TABLE 4-4 Sheet 1 of 1

TOTAL EVAPORATION IN INCHES

STATION - MOSCOW-UNIVERSITY OF IDAHO STATION NO. - 10-6152, ELEVATION - 2660 FMSL

	0.11		,				
Year	Apr	May	Jun	Jul	Aug	Sep	<u>Oct</u>
1939			5.32E	7.93	7.72	5.18E	
1940	3.69E	5.15	5.57	7.14E	6.93	3.74E	2.24E
1941		3.98E	4.53E	7.48	5.35	2.66E	
1942		3.55E	4.76	7.75	7.34E	3.67E	
1942		4.19	4.21	6.95		3.58E	
1943				8.33	6.04	3.80	
1944		4.40	5.04	8.20	5.36	2,66	
	2.62	3.39	5.37	7.34	5.66	2.93	
1946 1947	2.02 	5.71	5.11	8.43	6.33	3.90	
	1.90	3.28	5.16	5.69	4.35	3.08	
1948		3.20 4.38	5.10 6.75	8.42	4.35 8.62	5.16	
1949	3.12				7.39	5.07	
1950	3.53	6.12	5.50E	8.10	7.87	5.07	
1951	4.92	5.39	6.35	9.10		5.03	
1952	4.26	4.93	5.48	8.54	8,29		
1953		4.50E	5.13E	8.59E	6.59	5.75E	
1954	3.67	5.18	4.85	7.75	5.52	3.97	
1955	2.42	4.74	6.56	6.25	8.01	4.58	1 00
1956	4.29	3.57	5.09	8.30	6.37	4.76	1.90
1957	3.33	4.37	5.82	8.19	7.45	5.40	
1958	2.37	6.17	5.95	9.53	9.70	5.36	
1959	3.89	4.49	6.30	9.29E	8.14	3.34	
1960	2.96	4.64	7.36	8.73E	5.78E		
1961	3.16	5.98	6.45	9.05	9.02	5.59	
1962	5.01	3.68	6.32	8.97	7.11	6.02	
1963	3.36E	6.07	5.65	8.11	8.57	6.21	
1964	3.33	5.57	5.45	7.40	6.34	3.95	
1965	3.40	6.13	7.27	8.60E	7.10	4.09	
1966	4.59	7.81	5.68	8.58	8.38	6.26	2.47
1967	2.81	5.24	6.54E	8.95E	9.84	6.42	2.96
1968	4.45	6.65	7.20	9.86	6.56	4.78	
1969	4.52	5.44	7.35	9.29	9.75	5.29	
1970			7.03	8.86	9.77	4.72	3.58E
1971		6.17	5.61	9.37	9.39	4.53E	2.79
1972			6.13E	8.91	9.59E	5.85	
1973	4.54E	6.90	7.54	11.44E	9.70	5.46	2.72
1974				7.32	8.17	6.56	3.70
1975			6.57E	8.11	7.92	5.89	2.89E
1976		7.25E	6.20	7.86	6.39	6.14	3.66
1977		4.86	8.73	9.84	10.78	4.64	
1978		5.04	8.19	8.32	7.08	4.27	3.57
1979	3.83		7.96	9.77	8.58	6.48	
1980			5.78	8.37	8.55		3.94
1000			0.70	0.07	0.00		2.2.
N	25	34	40	42	41	40	12
Mean	3.60	5.14	6.15	8.41	7.64	4.78	3.04
Max	5.01	7.81	8.73	11.44	10.78	6.42	3.94
Min	1.90	3.28	4.21	5.69	5.35	2.66	1.90

E Estimated Values During Month Dashes (--) denote missing numbers.

TABLE 4-7Sheet 1 of 1

NORTH FORK CLEARWATER RIVER NEAR CANYON RANGER STATION (13340600) Monthly Discharge Volume in 1,000 acre-feet Drainage Area: 1,360 square miles

Water <u>Yea</u> r	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
1968 1969 1970	90.0 144.2 60.3	106.7 177.6 48.5	100.0 128.4 67.6	94.2 206.5 134.0	250.4 99.3 130.3	265.6 150.2 137.5	250.0 523.0 189.1	558.9 815.7 692.3	459.2 370.2 644.7	128.1 130.1 157.6	72.9 59.5 67.8	99.7 49.7 63.6
1971 1972 1973 1974 1975	62.1 59.4 55.0 44.6 48.1	110.9 56.3 52.6 133.9 56.4	102.9 52.7 104.7 134.8 48.6	166.4 100.5 114.4 314.0 78.5	268.4 130.1 64.7 139.6 52.8	164.9 434.0 105.6 213.1 97.6	379.3 381.8 179.0 464.4 161.3	1080.8 1207.1 366.2 803.0 651.3	742.9 973.5 219.9 1227.4 853.0	247.2 253.9 82.2 289.2 303.4	79.9 74.7 42.9 94.3 105.3	61.7 57.2 41.9 56.6 67.0
1976 1977 1978 1979 1980	91.6 54.7 66.1 45.9 52.6	136.9 54.4 105.0 48.2 40.2	321.6 47.2 323.5 43.5 88.3	171.9 53.9 124.1 40.9 71.0	111.4 53.7 105.2 62.5 93.6	123.8 76.7 247.5 177.3 122.7	390.8 253.8 404.0 296.8 396.0	965.1 369.6 559.3 836.5 575.6	521.0 182.6 460.5 423.8 356.2	194.0 70.8 177.3 126.0 138.2	100.8 51.0 86.3 62.3 68.9	65.6 56.5 61.8 45.4 67.7
1981 1982 1983 1984 1985	50.3 56.9 71.3 55.5 58.2	83.4 68.4 72.1 119.3 95.6	230.6 100.9 79.9 58.7 62.5	18 9.9 71.4 124.4 139.9 50.5	181.5 240.8 131.9 112.3 40.1	173.6 265.2 276.8 193.5 89.2	309.4 338.9 264.5 373.2 456.8	479.6 825.6 517.9 656.5 822.0	473.0 751.1 382.4 676.6 519.0	175.2 277.2 178.7 193.9 112.1	74.9 91.1 86.6 73.2 72.9	56.1 59.5 59.1 56.1 92.9
STATISTIC	:5											
N	18	18	18	18	18	18	18	18	18	18	18	18
AVERAGE	64.8	87.0	116.5	124.8	126.0	184.1	334.0	710.2	568.7	179.7	75.9	62.1
MAXIMUM	144.2	177.6	323.5	314.0	268.4	434.0	523.0	1207.1	1227.4	303.4	105.3	99.7
MINIMUM	44.6	40.2	43.5	40.9	40.1	76.7	161.3	366.2	182.6	70.8	42.9	41.9

TABLE 4-13 Sheet 1 of 1

DWORSHAK RESERVOIR (13340950) Unregulated Monthly Inflow Volume in 1,000 acre-feet Drainage Area: 2,440 Square Miles

Water Year	<u>Oct</u>	Nov	Dec	Jan	Feb	<u>Mar</u>	Apr	May	Jun	<u>Jul</u>	Aug	Sep
1927	145.1	277.5	323.0	254.2	251.4	303.5	649.6	1259.9	1213.3	312.7	117.2	135.4
1928	249.6	1003.4	586.0	487.9	264.3	599.2	699.0	1853.6	584.0	192.8	92.6	66.6
1929	95.7	81.8	67.7	58.6	56.1	176.0	341.4	874.2	558.3	161.0	79.2	60.6
1930	70.6	49.1	109.1	55.5	172.0	262.7	864.2	606.4	302.4	120.3	66.0	63.9
1931	90.4	101.6	72.4	97.5	102.9	302.8	578.9	813.2	243.0	95.4	58.2	60.5
1932	64.9	75.7	79.5	80.0	95.3	386.5	947.2	1645.5	762.2	211.6	93.9	66.9
1933	79.3	184.1	138.8	144.6	80.4	214.1	682.2	1047.5	1423.3	277.3	105.1	91.2
1934	209.7	316.7	1125.1	852.6	425.8	898.1	1249.0	688.6	245.1	104.4	64.4	59.7
1935	100.2	167.2	138.6	134.8	127.0	250.4	624.0	1104.0	576.5	175.9	81.5	57.7
1936	62.5	58.1	61.9	93.6	63.2	217.9	1133.1	1390.2	428.6	133.8	69.0	60.4
1937	54.6	47.6	67.6	42.2	50.0	123.8	418.6	940.8	488.1	147.4	77.4	55.1
1938	58.9	110.9	153.5	155.4	121.3	357.0	899.9	1070.1	558.6	168.7	85.1	63.8
1939	78.9	87.4	116.3	100.3	76.5	286.3	757.4	954.8	329.6	134.6	66.8	57.5
1940	66.7	60.8	144.4	135.7	250.6	490.2	692.3	749.1	286.8	102.9	60.2	62.2
1941	85.1	101.6	178.3	155.2	134.1	240.2	343.6	526.0	349.2	130.3	77.2	110.7
1942	139.5	214.8	374.6	181.7	141.8	192.6	617.3	527.9	392.1	191.0	86.2	66.7
1943	66.3	182.6	171.2	175.1	132.8	299.6	1187.5	1126.0	1014.8	400.7	117.8	73.7
1944	85.1	84.5	115.8	69.0	89.8	118.0	422.4	601.1	311.5	123.9	72.6	62.9
1945	66.5	79.5	77.0	196.8	179.1	208.2	410.0	1130.2	544.4	170.4	80.7	82.2
1946	80.8	168.6	196.6	213.9	128.3	377.4	808.6	1105.4	560.3	238.6	101.3	84.3
1947	148.3	213.9	612.7	246.1	318.4	450.8	731.5	1243.5	548.9	188.8	97.6	92.0
1948	200.3	228.4	225.7	322.4	234.4	264.0	781.6	1747.9	1112.8	275.1	153.2	93.4
1949	95.2	124.8	99.2	84.8	128.7	395.5	996.3	1680.2	621.9	192.6	91.0	75.5
1950	96.2	132.5	134.3	135.9	183.9	424.3	851.1	1279.0	1407.1	496.8	154.6	96.6
1951	183.2	276.7	377.2	273.5	423.5	279.3	920.7	1105.8	568.6	218.9	98.2	78.5
1952	193.4	158.6	199.0	117.0	151.1	192.1	932.4	1264.7	565.5	213.9	94.4	69.5
1953	58.6	55.8	63.7	260.2	276.2	251.8	513.3	938.2	896.6	278.0	105.5	68.1
1954	63.2	88.6	135.9	125.5	232.0	296.0	795.2	1399.2	901.7	405.9	144.1	105.0
1955	105.0	126.1	109.7	99.8	93.6	100.2	386.2	1104.0	1085.2	412.7	130.8	93.6
1956	142.2	245.4	467.8	297.6	162.9	327.8	1138.1	1657.8	826.0	285.9	124.3	88.9
1957	102.8	122.8	192.8	109.9	162.3	381.1	743.5	1528.9	698.4	195.2	99.5	68.8
1958	83.9	80.5	110.4	108.6	305.5	262.1	729.8	1344.2	533.5	166.6	87.4	83.5
1959	124.3	366.6	452.0	489.8	248.5	329.8	826.7	1114.5	949.2	257.2	107.2	174.7
1960	358.6	405.4	270.0	169.9	204.7	424.0	809.4	934.0	763.1	202.4	110.1	77.3
1961	91.8	150.6	110.1	127.7	504.1	447.9	689.5	1206.0	825.0	174.8	81.1	81.6
1962	102.4	86.9	109.5	172.1	190.4	217.5	1025.6	1109.0	692.0	204.2	97.3	79.8
1963	172.9	222.6	274.7	164.7	391.4	334.0	483.0	724.1	432.2	160.1	81.6	71.8
1964	68.9	103.9	79.8	79.9	78.6	123.8	529.3	1191.0	1325.6	355.6	144.0	125.8
1965	124.4	177.0	610.8	396.6	369.9	379.9	1088.7	1184.9	789.4	240.5	132.9	107.3

TABLE 4-14 Page 1 of 2

Dworshak Reservoir (13340950) Unregulated Monthly Inflow Volume in 1,000 acre-feet Drainage Area: 2,440 square miles

WATER YEAR	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
1966 1967 1968 1969 1970	95.7 75.7 125.0 216.0 95.8	138.6 124.2 154.5 283.1 77.1	115.7 203.2 136.5 225.8 113.2	141.5 293.3 147.2 386.1 255.7	90.7 245.2 522.3 176.2 275.4	298.2 288.8 496.2 308.1 291.6	699.8 426.1 415.2 991.4 359.1	823.4 1047.8 760.5 1178.0 1052.5	456.7 965.8 611.5 525.6 976.3	165.1 248.8 183.3 178.9 229.9	81.2 90.5 107.2 88.5 103.3	57.1 67.9 145.5 73.0 95.6
1971 1972 1973 1974 1975	96.7 96.7 87.8 92.2 68.4	183.6 98.6 88.9 237.2 63.9	186.8 91.5 208.1 317.8 70.8	307.1 189.6 247.0 754.9 143.6	489.6 258.3 120.8 356.2 99.2	334.7 1050.9 219.2 511.3 237.6	722.1 754.1 302.3 1000.7 393.3	1820.7 1954.1 584.7 1284.5 1120.7	1118.3 1531.3 334.2 1873.6 1256.3	38 4.9 430.6 105.5 491.5 446.7	136.1 166.7 58.5 141.0 160.5	98.6 95.7 67.2 75.0 90.6
1976 1977 1978 1979 1980	151.5 70.0 98.0 70.2 73.4	208.9 73.4 177.3 67.8 48.8	525.4 62.5 629.0 47.6 134.9	320.3 55.5 225.9 65.5 103.9	234.3 73.4 247.3 128.9 189.4	284.6 130.9 512.9 373.7 275.9	794.2 380.2 653.4 606.0 654.2	1503.1 519.5 835.5 1345.4 890.6	779.3 252.5 660.3 578.2 546.9	284.0 87.7 249.9 161.7 193.6	147.4 66.4 108.9 75.2 87.3	74.2 84.5 55.1 49.0 69.2
1981 1982 1983 1984 1985	66.8 86.1 112.9 79.9 91.6	113.7 111.1 109.7 208.5 170.0	405.6 198.7 157.1 130.1 105.7	310.0 120.6 239.8 261.8 63.5	390.9 556.4 324.7 226.3 98.8	303.5 560.1 551.0 467.9 188.0	525.8 653.8 440.3 622.2 836.0	710.9 1233.3 815.4 965.0 1196.4	674.4 1069.5 591.5 900.9 769.0	249.3 361.0 275.5 274.3 144.4	100.2 122.8 113.9 98.6 78.7	32.9 63.1 56.7 60.6 135.1
STATISTI	CS									50	50	59
N	59	59	59	59	59	59	59	59	59	59	59	
AVERAGE	108.8	162.0	220.3	205.1	215.4	336.8	703.9	1108.7	732.0	231.6	100.3	80.0
MAXIMUM	358.6	1003.4	1125.1	852.6	556.4	1050.9	1249.0	1954.1	1873.6	4 96. 8	166.7	174.7
MINIMUM	54.6	47.6	47.6	42.2	50.0	100.2	302.3	519.5	243.0	87.7	58.2	32.9

CLEARWATER RIVER AT OROFINO (13340000) Monthly Discharge Volume in 1,000 acre-feet Drainage Area: 5,580 square miles

Water Year	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	<u>Jun</u>	Jul	Aug	Sep
1931 1932 1933	143.4 72.7 99.2	123.0 86.4 216.1	97.7 93.8 156.1	120.6 91.0 168.7	113.1 115.5 104.1	317.5 509.6 291.8	758.1 1103.2 815.8	1584.2 2517.7 1476.7	494.1 1466.4 2728.7	124.0 334.8 397.8	59.7 104.2 110.0	67.3 76.6 90.5
1934 1935 1936 1937 1938	215.1 100.5 70.9 60.8 68.0	340.8 175.8 71.5 55.0 97.0	659.7 143.9 69.1 72.3 173.4	676.3 135.3 101.0 49.2 171.9	411.3 139.1 81.1 57.2 145.8	899.1 269.2 331.1 145.4 399.2	1664.6 744.1 1666.5 409.8 1152.9	1108.8 1572.3 2422.4 1577.8 1897.6	383.8 1024.8 741.9 914.3 1287.9	123.5 256.4 176.4 212.4 276.0	61.4 85.5 76.2 82.6 95.3	54.8 59.4 65.2 55.4 65.7
1965 1966 1967 1968 1969	156.1 155.1 101.8 195.3 326.2	199.4 178.9 130.8 309.3 461.2	542.5 140.9 180.1 257.7 328.3	545.4 151.8 275.1 247.7 603.3	543.5 119.2 227.7 600.7 270.9	442.1 387.5 339.6 588.0 454.2	1370.5 883.1 523.8 630.9 1361.3	1984.3 1433.7 1867.5 1479.3 2152.5	1813.7 845.7 2098.5 1496.7 1079.8	448.3 225.4 427.9 360.6 365.7	176.0 85.1 101.0 162.5 105.3	189.2 74.9 64.6 283.0 85.0
1970 1971 1972 1973 1974	137.9 162.4 97.2 99.7 91.0	123.1 221.1 115.3 106.8 248.3	144.4 215.9 115.5 213.8 305.9	392.4 386.9 186.1 194.0 483.9	351.5 682.8 361.5 122.4 343.3	370.6 420.7 1223.0 234.5 552.4	485.8 892.8 943.9 380.3 1146.5	1902.7 2663.4 2679.1 1149.8 1800.8	2102.1 2125.9 2767.0 778.5 3159.5	493.7 578.4 673.0 210.6 687.6	128.1 143.2 158.8 76.9 177.2	147.9 101.2 103.1 81.1 96.6
1975 1976 1977 1978 1979	75.6 282.7 128.3 188.3 100.5	88.0 341.4 124.6 263.3 97.9	88.4 870.5 104.9 795.1 97.7	180.9 521.3 102.2 397.8 94.9	135.4 317.9 110.2 380.7 177.1	304.8 385.4 164.4 800.4 497.9	503.8 1147.5 640.2 1222.6 786.2	1713.0 2762.4 1051.9 1760.6 2174.3	2806.3 1860.3 607.8 1794.3 1189.3	1119.4 682.5 173.3 704.4 286.9	276.5 227.0 95.2 192.9 102.4	177.5 149.3 129.0 154.5 75.8
1980 1981 1982 1983 1984	87.2 109.2 113.0 213.5 123.3	79.3 215.4 137.0 181.0 212.7	145.6 453.1 218.6 193.5 124.4	147.0 427.1 198.0 303.6 361.3	195.8 419.8 550.2 328.2 276.9	323.3 398.6 642.3 624.0 694.6	881.2 720.2 862.5 578.7 999.2	1696.3 1423.0 2101.3 1340.3 1867.7	1272.4 1805.0 2348.9 1113.5 2212.4	444.0 464.5 881.2 478.8 601.2	132.9 130.8 193.9 166.2 152.0	152.9 91.3 129.8 114.3 148.7
1985	138.9	187.3	145.2	124.4	101.6	234.4	999.5	1807.0	1089.4	194.4	132.8	212.9
STATISTI	CS											
N	2 9	29	29	29	2 9	2 9	2 9	29	29	29	29	29
AVERAGE	135.0	178.9	246.5	270.3	268.4	456.7	906.0	1826.5	1565.8	427.7	130.7	113.7
MAXIMUM	326.2	461.2	870.5	676.3	682.8	1223.0	1666.5	2762.4	3159.5	1119.4	276.5	283.0
MINIMUM	60.8	55.0	69.1	49.2	57.2	145.4	380.3	1051.9	383.8	123.5	59.7	54.8
												TARLE 4-

TABLE 4-15 Sheet 1 of 1

CLEARWATER RIVER AT SPALDING (13342500) Unregulated Monthly Discharge Volume in 1,000 acre-feet Drainage Area: 9,570 square miles

Water Year	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	<u>Jul</u>	Aug	Sep
1911	283.7	644.9	456.7	270.9	267.4	681.5	1350.8	2485.1	2324.9	723.0	262.2	224.3
1912	274.0	341.5	244.5	457.7	714.6	441.3	1980.5	3994.4	3598.5	952.4	263.4	266.7
1913	218.9	390.7	267.9	319.1	339.5	679.1	2541.9	3835.1	3383.9	1056.1	305.5	204.2
1926	202.5	215.6	420.1	270.5	584.9	837.6	1884.1	1920.0	669.7	250.7	155.6	227.5
1927	422.5	683.5	1007.1	624.5	764.5	853.5	1555.5	3264.4	3853.5	860.1	280.7	333.7
1928	650.3	2317.1	1447.2	1353.7	757.5	1620.2	1777.4	4865.7	1792.7	617.9	231.1	171.1
1929	252.4	193.6	165.5	148.8	128.3	446.5	905.4	2460.5	1957.9	503.4	176.9	124.0
1930	140.4	121.4	267.6	128.1	431.6	673.8	2039.8	1877.8	1125.4	329.0	154.5	145.6
1931	237.2	232.4	175.9	233.2	241.5	742.3	1500.1	2300.1	770.6	226.4	119.0	128.7
1932	142.2	170.1	184.0	189.5	250.2	1265.2	2276.9	4396.6	2295.3	575.1	205.4	149.5
1933	185.4	430.9	313.6	316.4	188.9	689.5	1655.4	2631.5	4372.8	722.5	220.4	186.0
1934	446.9	690.1	2044.5	1751.2	885.2	1973.6	3074.6	1896.8	640.0	238.9	125.7	113.5
1935	202.6	351.1	310.8	317.4	322.6	631.3	1492.0	2716.2	1639.0	437.7	173.2	115.5
1936	136.0	131.0	135.8	223.7	162.5	725.5	2997.0	3936.5	1228.8	313.0	147.1	126.2
1937	118.6	106.1	143.7	97.0	114.8	362.5	985.2	2580.7	1425.7	361.6	164.2	111.3
1938	126.5	205.4	344.8	376.3	329.4	940.4	2168.8	3011.3	1841.3	454.1	186.1	130.0
1939	173.2	207.6	269.9	240.2	199.2	893.5	1894.2	2801.1	974.1	375.4	143.0	117.9
1940	142.1	136.2	285.8	323.0	657.0	1128.0	1808.4	2274.3	913.5	243.1	120.2	135.2
1941	230.4	262.0	427.1	375.3	315.6	519.1	885.2	1526.9	1147.5	392.3	184.2	303.4
1942	426.1	607.1	866.7	394.6	376.8	535.9	1745.1	1890.5	1500.9	583.4	203.1	150.7
1943	142.0	390.8	460.1	458.5	446.0	883.5	3175.6	3155.6	3200.2	1285.6	288.1	170.8
1944	180.5	209.2	226.0	158.4	201.6	327.6	1086.3	1910.9	1193.7	394.9	182.0	140.6
1945	143.7	174.1	168.3	405.0	416.9	539.4	1020.1	3208.5	1941.3	517.7	173.3	180.6
1946	189.1	409.2	476.5	539.4	357.9	1065.3	2111.6	2990.1	1575.7	597.8	221.6	208.4
1947	405.2	530.2	1448.4	610.1	795.9	1037.4	1840.3	3849.6	1823.0	592.3	223.9	199.7
1948	418.5	545.0	630.3	814.5	651.5	749.0	2046.6	5281.9	3826.2	763.9	362.2	198.7
1949	212.7	301.2	261.2	226.7	378.1	1222.8	2438.3	4670.9	1867.9	512.5	197.6	156.5
1950	216.1	342.5	370.8	357.1	635.9	1259.9	2077.5	3164.9	3945.0	1340.5	380.0	204.8
1951	415.4	662.2	840.1	653.8	1042.4	716.2	2184.2	3270.2	1846.2	668.1	220.0	158.2
1952	378.4	322.3	386.5	254.7	390.5	586.2	2410.7	3789.5	1823.4	562.5	207.4	142.0
1953	116.4	115.5	130.7	539.1	613.9	602.1	1232.1	2435.1	2923.7	828.7	231.4	132.9
1954	130.1	184.8	288.7	278.9	536.3	616.8	1729.0	3537.4	2419.3	1071.1	317.4	213.1
1955	210.1	241.4	211.0	202.2	196.9	237.8	1117.9	2914.6	3403.7	1239.3	301.4	190.3
1956	284.8	561.1	1070.9	750.9	407.5	1077.0	2858.6	4394.4	2334.4	669.7	261.9	182.2
1957	224.9	293.3	444.5	246.5	405.2	1082.6	1724.5	4457.7	2230.2	525.3	209.5	145.4
1958	187.8	185.3	269.5	262.1	746.3	576.9	1731.4	3600.8	1525.3	450.5	195.0	180.2
1959	278.6	801.6	1155.0	1175.8	699.8	923.3	2019.6	3023.3	3031.2	714.4	236.8	382.8
1960	1055.4	993.6	643.8	404.0	583.1	1127.3	2091.2	2546.2	2389.3	519.8	235.0	159.6

TABLE 4-16 Sheet 1 of 2

CLEARWATER RIVER AT SPALDING (13342500) Unregulated Monthly Discharge Volume in 1,000 Acre-feet Drainage Area: 9,570 Square Miles

Water Year	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	<u>Jul</u>	Aug	<u>Sep</u>
1961 1962 1963 1964 1965	183.4 271.1 403.4 149.8 284.0	309.0 217.9 549.5 225.2 383.7	246.4 281.3 697.7 196.4 1319.0	281.8 486.9 361.8 202.1 1123.1	1073.5 513.1 945.7 202.9 1042.3	1005.4 615.3 838.0 352.2 880.0	1568.4 2388.9 1272.8 1295.6 2632.5	3154.4 2926.7 2455.4 3246.2 3283.1	2412.7 2135.0 1690.3 4381.2 2732.1	401.2 532.4 540.6 1109.1 725.0	163.1 215.0 204.3 362.2 324.1	185.8 160.1 164.1 326.2 300.1
1966 1967 1968 1969 1970	257.6 186.7 323.5 538.2 238.3	320.5 259.7 468.5 746.4 206.5	263.6 394.4 419.0 584.3 265.9	307.9 632.1 409.9 1133.1 750.1	226.8 501.5 1234.6 477.4 716.6	785.6 680.9 1105.4 946.8 740.4	1624.5 1022.5 1063.0 2550.0 904.5	2342.9 2985.0 2285.8 3385.0 2953.4	1337.9 3071.1 2138.4 1619.7 3095.6	399. 8 694.4 548.8 555.3 722.5	172.3 198.7 276.3 201.6 236.0	140.5 134.8 429.0 160.1 249.9
1971 1972 1973 1974 1975	269.1 195.4 183.4 175.3 140.3	409.5 218.4 195.7 501.6 162.8	409.1 223.3 407.5 736.6 169.8	807.9 469.4 479.7 1458.5 350.0	1227.4 871.3 246.3 826.1 296.4	831.3 2648.0 491.6 1333.5 746.6	1696.3 1829.8 690.1 2423.6 1067.9	4488.9 4576.1 1714.9 3272.0 3075.6	3303.5 4257.0 1093.5 5310.0 4313.9	966.8 1135.2 318.9 1182.1 1639.4	276.7 313.0 121.9 306.6 424.1	193.5 196.5 149.5 165.0 264.4
1976 1977 1978 1979 1980	441.1 202.3 292.4 175.4 168.1	574.5 199.6 440.9 171.2 133.1	1520.0 176.6 1496.6 166.1 301.9	965.0 173.4 700.2 177.1 2 76. 0	652.2 203.3 717.3 380.8 463.5	800.7 295.2 1375.4 1064.2 679.2	2119.2 1011.8 1886.9 1509.6 1521.2	4367.5 1549.3 2580.9 3601.0 2564.1	2664.8 853.0 2399.0 1733.2 1791.7	964.0 258.5 933.9 446.3 619.1	382.2 203.2 301.7 182.6 214.2	219.5 218.5 221.2 132.1 209.8
1981 1982 1983 1984 1985	171.1 216.7 326.9 221.1 234.7	315.9 260.7 306.2 449.0 369.7	857.1 452.1 391.1 311.6 269.4	754.1 387.9 608.7 707.1 201.9	898.9 1391.0 769.2 591.8 220.6	719.4 1384.1 1289.3 1359.4 524.5	1264.4 1620.1 1099.5 1702.0 1979.5	2135.4 3337.6 2178.5 2889.6 3021.3	2532.1 3405.1 1718.9 3220.6 1855.4	719.1 1209.9 759.6 873.8 351.1	236.7 315.0 288.4 263.1 215.4	134.9 193.4 176.7 217.9 347.7
STATISTIC	S											
N	63	63	63	63	63	63	63	63	63	63	63	63
AVERAGE	261.1	382.5	505.1	491.3	543.3	869.3	1764.4	3067.3	2314.6	667.9	232.8	192.1
MAXIMUM	1055.4	2317.1	2044.5	1751.2	1391.0	2648.0	3175.6	5281.9	5310.0	1639.4	424.1	429.0
MINIMUM	116.4	106.1	130.7	97.0	114.8	237.8	690.1	1526.9	640.0	226.4	119.0	111.3

TABLE 4-16 Sheet 2 of 2

_

MAXIMUM AND MINIMUM SECCHI DICS READINGS IN FEET North Fork Clearwater River - Dworshak Reservoir

¥	RM 3		RM 35	EC 4	LNFK 1
	Max Min	MaxMin	Max Min	Max Min	Max Min
<u>Year</u>	20.3 2.1	16.0 3.5	14.0 5.7	17.7 3.3	10.3 *
1972	(29 Nov) (19 Jun)	(7 Sep) (13 Apr)	(18 Nov) (5 Jul)	(7 Sep) (6 Jul)	(1 Dec)
1973	18.0 5.1	16.0 6.7	14.5 6.9	22.5 6.2	12.0 5.0
	(26 Jul) (3 May)	(5 Sep) (2 May)	(9 Sep) (11 Mar)	(27 Jul) (2 May)	(14 Jul) (17 Nov)
1974	26.0 4.0	21.0 2.1	25.0 2.0	23.0 2.3	21.0 1.8
	(16 Jul) (13 Mar)	(7 Aug) (3 Apr)	(8 Aug) (2 Apr)	(20 Aug) (3 Apr)	(7 Aug) (2 Apr)
1975	12.8 9.0 (9 Dec) (11 Mar)	13.1 6.0 (20 Aug) (12 Mar)	NM NM	* 6.7 (12 Mar)	NM NM
1976	20.7 6.8	14.9 *	27.5 *	19.6 5.3	26.9 *
	(16 Sep) (11 Mar)	(16 Sep)	(14 Sep)	(16 Sep) (11 Mar)	(14 Sep)
1977	21.9 6.0	16.0 4.5	13.2 *	14.5 4.0	9.9 *
	(4 Oct) (17 May)	(20 Jul) (17 May)	(16 Mar)	(20 Aug) (17 May)	(5 Oct)
1978	9.9 6.2	12.1 5.9	17.1 8.1	10.9 5.7	20.6 *
	(17 Jul) (18 Apr)	(16 Aug) (20 Apr)	(17 Aug) (19 Apr)	(16 Aug) (20 Apr)	(17 Aug)
1979	15.1 4.6	13.5 4.9	13.8 5.5	16.4 3.5	* 5.3
	(14 Aug) (8 May)	(15 Aug) (25 Apr)	(26 Jun) (24 Apr)	(15 Aug) (25 Apr)	(24 Apr)
1980	17.1 4.6	18.8 9.2	21.1 11.0	16.3 6.5	17.1 *
	(7 Oct) (8 May)	(12 Aug) (18 Jun)	(8 Oct) (17 Jun)	(8 Oct) (18 Jun)	(8 Oct)
1981	22.2 9.4	17.5 7.1	17.5 9.1	15.2 4.9	17.3 7.8
	(23 Aug) (21 Jun)	(28 Oct) (14 May)	(28 Jul) (14 May)	(27 Oct) (14 May)	(28 July) (14 May)
1982	11.5 5.4	* 3.2	15.5 6.1	* 4.4	10.9 *
	(26 Jul) (24 May)	(29 Apr)	(29 Jun) (29 Apr)	(29 Apr)	(29 Jun)
1983	21.75 12.0	16.3 *	18.9 *	15.0 *	16.5 *
	(23 Aug) (21 Jun)	(29 Sep)	(29 Sep)	(29 Sep)	(29 Sep)
1984	17.7 * (15 Aug)	NM NM	NM NM	NM NM	NM NM

* Data not available because of limited sampling record. NM Not measured.

RM 3 – North Fork Clearwater River Mile 3. RM 19 – North Fork Clearwater River Mile 19. RM 35 – North Fork Clearwater River Mile 35. EC 4 – Elk Creek Mile 4. LNFK 1 – Little North Fork Clearwater River Mile 1.

Source of Data: Corps of Engineers, Walla Walla District, Environmental Resources Branch, March 1986

AVERAGE MONTHLY WATER TEMPERATURES

CLEARWATER RIVER NEAR OROFINO, RM 41.0

Year	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
1972 1973 1974 1975 1976 1977 1978 1979 1980	33.1 ++++ 33.1 35.0 32.0 39.2 34.2 *	34.2 35.8 ++++ 34.4 35.3 34.5 40.2 36.0 *	39.6 41.3 41.8 40.1 38.2 41.7 43.6 42.2 *	42.9 47.4 44.7 43.1 42.8 47.3 46.6 47.7 *	45.7 49.9 47 45.3 45.8 50.7 48.6 49.9 *	49.4 56.9 51.1 47.2 49.5 64.8 53.7 56.8 *	59.5 73.3 66.3 62.9 63.6 71.6 66.0 66.0 *	71.1 74.3 72.6 65.9 66.9 73.8 69.9 69.9 *	60.4 63.3 63.2 60.7 62.6 62.7 62.0 62.0 *	49.1 50.3 49.3 49.5 50.1 50.5 *	39.9 38.2 41.6 36.9 40.8 39.1 37.7 *	++++ 35.5 34.7 35.9 32.1 ++++ 34.9 *
N.F. CLEARWATER RIVER AT DWORSHAK DAM - STATION ESTABLISHED 9 FEB 1972												
Year	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
1972 1973 1974 1975 1976 1977 1978 1979 1980	43.5 40.7 41.9 39.7 39.9 38.6 37.5 39.9	42.3 39.3 40.4 37.0 39.3 37.6 36.9 38.5	36.3 42.0 39.2 40.3 37.3 39.7 38.8 37.6 38.7	40.2 41.6 40.5 40.8 39.3 40.3 41.4 40.6 40.6	42.7 41.8 44.7 41.2 43.8 47.0 44.8 44.8 44.8 46.2	46.2 42.1 47.6 43.7 47.6 50.0 47.7 48.9 47.8	47.5 42.2 53.0 53.4 51.9 49.6 51.2 49.8 47.5	48.4 54.3 61.3 57.5 54.9 48.3 52.6 49.6 49.6	48.3 53.7 58.9 56.2 56.1 49.4 54.9 49.0 49.5	48.2 54.9 50.0 ++++ 53.1 53.0 53.7 50.4 49.4	47.8 48.3 45.4 43.0 47.6 45.7 45.7 45.7 47.8 48.0	46.4 44.2 44.0 41.7 42.2 39.8 40.6 41.3 42.7
CLEARW	ATER RIVE	R NEAR PE	CK RM 37.4	4 - STATIO	ON ESTABL	ISHED 13	JAN 1972					
Year	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
1972 1973 1974 1975 1976 1977 1978 1979 1980	37.4 38.6 38.9 38.2 37.9 37.7 36.6 37.0	34.5 37.0 39.0 39.8 37.1 37.5 38.2 34.6 36.4	37.9 41.2 40.0 ++++ 38.9 40.1 40.8 39.3 40.2	41.6 46.1 43.2 42.9 43.2 44.7 44.3 43.8 44.5	45.1 49.2 45.2 44.7 46.4 47.8 46.0 46.4 47.4	47.2 53.4 50.2 46.6 49.8 59.4 50.6 52.5 50.9	57.0 57.5 ++++ 60.4 61.1 59.2 60.2 61.3 61.0	62.5 61.0 66.0 63.2 63.6 59.3 62.2 59.2 59.2 58.0	53.3 53.9 60.5 58.0 59.8 58.1 57.3 54.6 54.1	48.6 53.8 50.3 50.1 52.2 50.0 51.1 51.1 51.1	43.7 42.6 45.1 40.8 46.4 41.4 41.5 45.1 43.1	40.0 41.0 41.4 39.1 39.4 37.4 39.5 39.5 38.6

* Temperature gage removed for construction of sewage treatment plant.

++++ Data missing, instrument malfunction

Source of Data: Corps of Engineers, Walla Walla District, Enviromental Resources Branch, May 1986.

Water	H	October Minimum	Average	Maximum	November Minimum	Average	Maximum	December Minimum	Average	Maximum	January Minimum	Average	Maximum	February Minimum	<u>A</u>
<u>Year</u> 1972	<u>Maximum</u> O	<u>PTTH GROUM</u> O	0	0	0	0	0	0	0	0	0	0	0	0	
1973	2,900 (14 Oct)	1,000 (9 Oct)	1,528	6,500 (29 Nov)	1,200 (1 Nov)	3,498	9,000 (11 Dec)	600 (15 Dec)	4,666	11,200 (20 Jan)	1,700 (29 Jan)	4,390	2,400 (4 Feb)	700 (11 Feb)	
1974	(14 000)	0	0	100 (1 Nov)	0 (2 Nov)	3	0	0	0	25,700 (24 Jan)	0 (1 Jan)	8,939	16,200 (10 Feb)	0 (12 Feb)	
1975	0	0	0	0	0	0	0	0	0	0	0	0	18,300 (16 Feb)	0 (1 Feb)	
1976	0	0	0	0	0	0	19,500 (13 Dec)	0 (1 Dec)	1,658	0	0	0	2,600 (28 Feb)	0 (1 Feb)	
1977	300	0 (1 Oct)	19	0	0	0	0	0	0	0	0	0	0	0	
1070	(13 Oct) 0	(1 000)	0	0	0	0	0	0	0	0	0	0	0	0	
1978 1979	500	0 (1 Oct)	219	1,000 (7 Nov)	, 0 (1 Nov)	253	0	0	0	10,000 .(6 Jan)	0 (1 Jan)	697	0	0	
	(18 Oct)	(1 000)	0	0	0	0	0	0	0	0	0	0	0	0	
1980 1981	0 0	0	0	0	0	0	3,900 (28 Dec)	0 (1 Dec)	294	0	0	0	1,700 (2 Feb)	0 (1 Feb)	
1982	0	0	0	0	0	0	0	0	0	0	0	0	5,100 (27 Feb)	0 (1 Feb)	
1983	0	0	0	200 (16 Nov)	0 (1 Nov)	7	0	0	0	0	0	۵	0	0	
	0	0	0	(10 1107)	0	0	0	0	0	. 0	0	0	Û	0	
1984 1985	0 0	0	0	0	0	0	0	0	0	O	0	0	0	0	

SUMMARY FOR DWORSHAK DAILY SPILL IN CFS

Source: Corps of Engineer, Walla Walla District, Hydrology Branch.

1400000		March	
Average	Maximum	Minimum	Average
0	17,900 (25 Mar)	0 (1 Mar)	9,481
1,232	1,000 (1 Mar)	0 (11 Mar)	548
6,929	11,800 (5 Mar)	600 (31 Mar)	7,381
4,686	7,900 (16 Mar)	0 (25 Mar)	3,390
317	5,500 (23 Mar)	0 (29 Mar)	2,677
0	0	0	0
0	0	0	0
0	0	0	0
0	0	0	0
121	0	0	0
457	17,000 (23 Mar)	3,000 (27 Mar)	11,319
0	4,900 (13 Mar)	0 (1 Mar)	3,026
0	0	0	0
0	0	0	0

TABLE 4-22 Page 1 of 2

Water Year	Maximum	April Minimum	Average	Maximum	May Minimum	Average	Maximum	June Minimum	Average	Maximum	July Minimum	Average	Maximum	August Minimum
1972	16,700 (9 Apr)	14,100 (27 Apr)	15,603	25,900 (29 May)	10,000 (31 May)	20,100	18,500 (17 Jun)	6,000 (6 Jun)	11,580	12,400 (9 Jul)	3,100 (31 Jul)	6,621	3,600 (4 Aug)	780 (20 Aug)
1973	300 (26 Apr)	0 (1 Apr)	30	600 (13 May)	0 (1 May)	42	300 (12 Jun)	0 (1 Jun)	2 0	2,500 (18 Jul)	0 (1 Jul)	534	0	0
1974	15,000 (30 Apr)	0 (1 Apr)	7,837	19,200 (7 May)	0 (10 May)	3,397	32,900 (18 Jun)	0 (1 Jun)	12,523	10,700 (2 Jul)	1,000 (30 Jul)	4,852	0	0
1975	0	0	0	0	0	0	14,200 (27 Jun)	0 (1 Jun)	2,373	1,300 (1 Jul)	0 (2 Jul)	42	0	0
1976	10,800 (12 Apr)	0 (1 Apr)	3,19 3	0	0	0	5,600 (18 Jun)	0 (1 Jun)	537	0	0	D	0	0
1977	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1978	0	0	Ò	0	0	0	0	0	0	0	0	0	0	0
1979	0	0	0	0	' 0	0	0	0	0	0	0	0	0	0
1980	0	0	0	0	0	0	7,100 (2 Jun)	0 (14 Jun)	1,193	0	0	0	0	0
1981	0	0	0	6,500 (2 May)	0 (5 May)	7 26	7 ,600 (19 Jun)	0 (2 Jun)	2,133	0	0	0	0	0
1982	4,200 (4 Apr)	0 (8 Apr)	740	1,200 (26 May)	0 (1 May)	46 5	10,000 (22 Jun)	0 (2 Jun)	4,217	10,000 (1 Jul)	0 (31 Jul)	4,639	0	0
1983	4,000 (1 Apr)	0 (7 Apr)	717	6,800 (28 May)	0 (1 May)	432	7,000 (3 Jun)	0 (1 Jun)	1,863	0	0	0	0	0
1984	0	0	0	0	0	0	8,800 (22 Jun)	0 (1 Jun)	5,177	0	0	0	0	0
1985	5,400 (27 Apr)	0 (1 Арг)	753	5,300 (9 May)	0 (2 May)	1,835	17,500 (9 Jun)	0 (1 Jun)	2,723	0	0	0	0	0

SUMMARY FOR DWORSHAK DAILY SPILL IN CFS

Source: Corps of Engineers, Walla Walla District, Hydrology Branch.

		September								
Average	Maximum	Minimum	Average							
2,295	2,200 (23 Sep)	1,400 (9 Sep)	1,629							
0	0	0	0							
0	0	0	0							
0	0	0	0							
0	2,100 (23 Sep)	0 (1 Sep)	293							
0	0	0	0							
0	0	0	. 0							
0	0	. 0	0							
0	0	0	0							
0	0	0	0							
0	0	0	0							
0	0	0	0							
0	0	0	0							
0	0	0	0							

TABLE 4-22 Page 2 of 2

TABLE 6-1

RESERVOIR PROJECT DATA FOR COLUMBIA RIVER BASIN FLOOD CONTROL SYSTEM

	CATE GORY 1		. MC1	ACTIVE STOP	RAGE, AC. FT.		
Project	River	<u>Pool Elev</u> Min	Max	Total1/	Committed for Flood Control	Project Owner	
Mica Duncan Libby Hungry Horse Noxon Brown lee Dworshak	Columbia Duncan Kootenai S. Fk. Flathead Clark Fork Snake N. Fk. Clearwater	2320 2475 1792 1892 2287 2459 3336 3560 2295 2331 1976 2077 1445 1600		12,000,000 1,412,000 4,934,000 3,161,000 <u>3</u> / 231,000 980,000 2,016,000	12,000,0002/ 1,412,0002/ 4,934,000 2,980,0004/ 5/ 980,000 2,016,000	B.C. Hydro and Power Authority B.C. Hydro and Power Authority U.S. Corps of Engineers U.S. Bureau of Reclamation Washington Water Power Idaho Power Company U.S. Corps of Engineers	
	CATEGORY 11						
Jackson Lake Palisades Anderson Ranch Arrowrock - Lucky Peak Cascade Deadwood	Snake Snake S. Fk. Boise Boise Boise N. Fk. Payette Deadwood	6730 6769 5497 5620 4039.6 4196 2967 3216 2905 3060 4787 4828 5203 5334		847,000 1,200,000 423,000 286,600 278,200 653,200 160,400	1,400,000 988,000 <u>5/</u>	U.S. Bureau of Reclamation U.S. Bureau of Reclamation U.S. Bureau of Reclamation U.S. Bureau of Reclamation U.S. Corps of Engineers U.S. Bureau of Reclamation U.S. Bureau of Reclamation	
5 Yakima River Reservoirs				1,065,500	<u>5</u> /	U.S. Bureau of Reclamation	
	CATEGORY III						
Corra Linn Dam - Kootenay L.	Kootenay	1738	1745.326/	787,000	7/	W. Kootenay	
Kerr Dam – Flathead L.	Flathead	2883	2893 <u>6</u> /	1,219,000	<u>7</u> /	Montana Power Co.	
Albeni Falls Dam - Pend Oreille L.	Pend Oreille	2049.7	2062.5 <u>6</u> /	1,155,000	<u>7</u> /	U.S. Corps of Engineers	
Post Falls Dam - Coeur d'Alene L.	Spok ane	2120.5	2128 <u>6</u> /	225,000	<u>1</u> /	Washington Water Power	
	CATEGORY IV				- *		
Arrow Grand Coulee John Day	Columbia Columbia Columbia	1377 1208 257	1444 <u>8</u> / 1290 268	7,145,000 5,228,000 535,000	7,145,000 <u>2/,9/</u> 5,228,000 535,000	B.C. Hydro and Power Authority U.S. Bureau of Reclamation U.S. Corps of Engineers	
	CATEGORY V						
Chief Joseph Wells Rocky Reach Wanapum Priest Rapids McNary The Dalles Bonneville Lower Granite Little Goose Lower Monumental Ice Harbor	Columbia Columbia Columbia Columbia Columbia Columbia Columbia Snake Snake Snake Snake	930 767 703 539 465.9 335 155 70 733 633 537 437	956 779 707 575 491.5 340.5 160 74 738 638 540 440	116,00012 125,00012 36,00012 144,00012 44,00012 53,00012 87,00012 53,00012 49,00012 20,00012 20,00012 25,00012	/ 125,00011/ / 120,00011/ /) 500,000 / 10/ / 10/ / 10/ / 10/ / 10/ / 10/	U.S. Corps of Engineers Douglas County PUD Grant County PUD Grant County PUD Grant County PUD U.S. Corps of Engineers U.S. Corps of Engineers	

 $\underline{1}$ / From best information available as of September 1982.

 $\underline{27}$. Total of primary flood control and "on-call" storage.

 $\underline{3}$ / Reflects 6% of measured capacity to account for bank storage.

4/ Total measured capacity between pool limits, not including bank storage.

5/ Not committed but operated voluntarily by project owner for flood regulation.

 $\underline{6}/$ Controlled elevation for normal power operation. May be exceeded involuntarily during flood period.

 $\underline{\mathcal{I}}/$. Normally operated to preserve natural lake storage during flood period.

 $\underline{8}$ / May be operated to El. 1446 under large flood.

<u>9/</u> Includes involuntary storage.

10/ Pondage for re-regulation of floodflows.

 $\underline{11}/$ -Maximum allowable for replacement of lost valley storage.

 $\underline{12}$ / Normal power pondage.

<u>TABLE 7-1</u>

PROJECT RELEASE LIMITATIONS

Maximum $\Delta Q/60$ min. at Dworshak to Limit of 1 ft/60 min. Change of Stage at Peck Gaging Station

Increasing Releases	s (cfs)	Decreasing Releases	(cfs)
Starting	60 min.	Starting	60 min.
Peck Q	∆Q DWO1/	Peck Q	_∆Q DWO 1/
2,000- 3,000 3,100- 5,000 5,100- 7,000 7,100- 9,000 9,100-11,000 11,100-13,000 13,100-15,000 15,100-17,000 17,100-19,000 19,100-24,000 24,100-28,000 28,100-33,000 33,100-44,000 49,100-57,000 57,100-78,000 78,100<	+1,700 +2,200 +2,700 +3,100 +3,500 +4,000 +4,000 +4,400 +4,800 +5,000 +5,200 +5,600 +6,100 +6,600 +7,200 +7,700 +8,300	3,500- 4,700 4,800- 7,200 7,300- 7,600 9,700-11,900 12,000-14,400 14,500-16,900 17,000-19,000 19,100-21,400 21,500-23,500 23,600-28,800 28,900-33,200 33,300-38,700 38,800-50,200 50,300-63,700 63,800-85,200	-1,700 -2,200 -2,700 -3,100 -3,500 -4,000 -4,400 -4,800 -5,000 -5,200 -5,600 -6,100 -6,600 -7,200 -7,700 -8,300

1/ This table was developed from the Peck rating table and limited computer routings of DWO releases from power studies. This table should be checked by studies of actual project releases versus Peck flows.

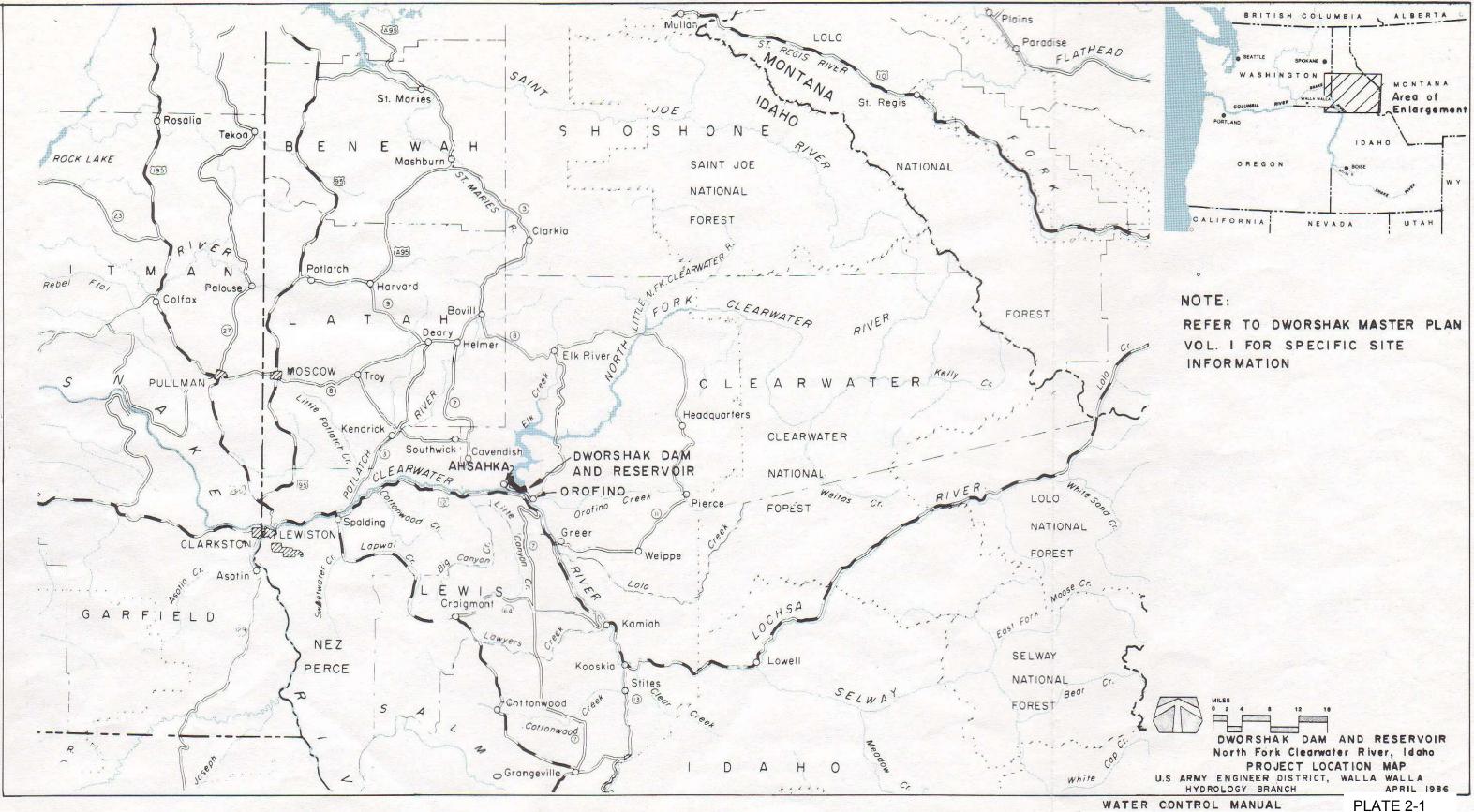
TABLE 8-1

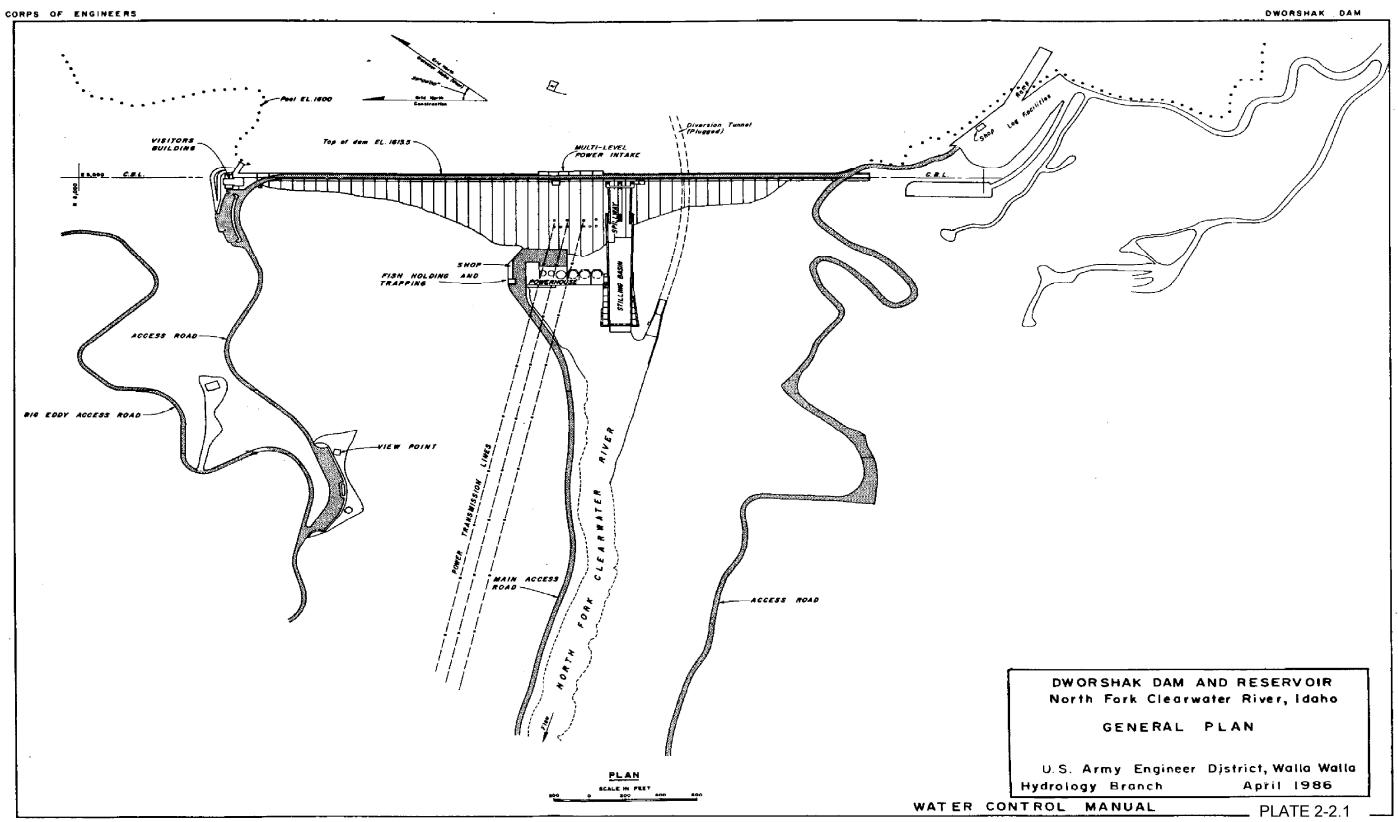
DWORSHAK DAM REGULATED MONTHLY DISCHARGE VOLUME IN 1,000 ACRE-FEET DRAINAGE AREA: 2,440 SQUARE MILES

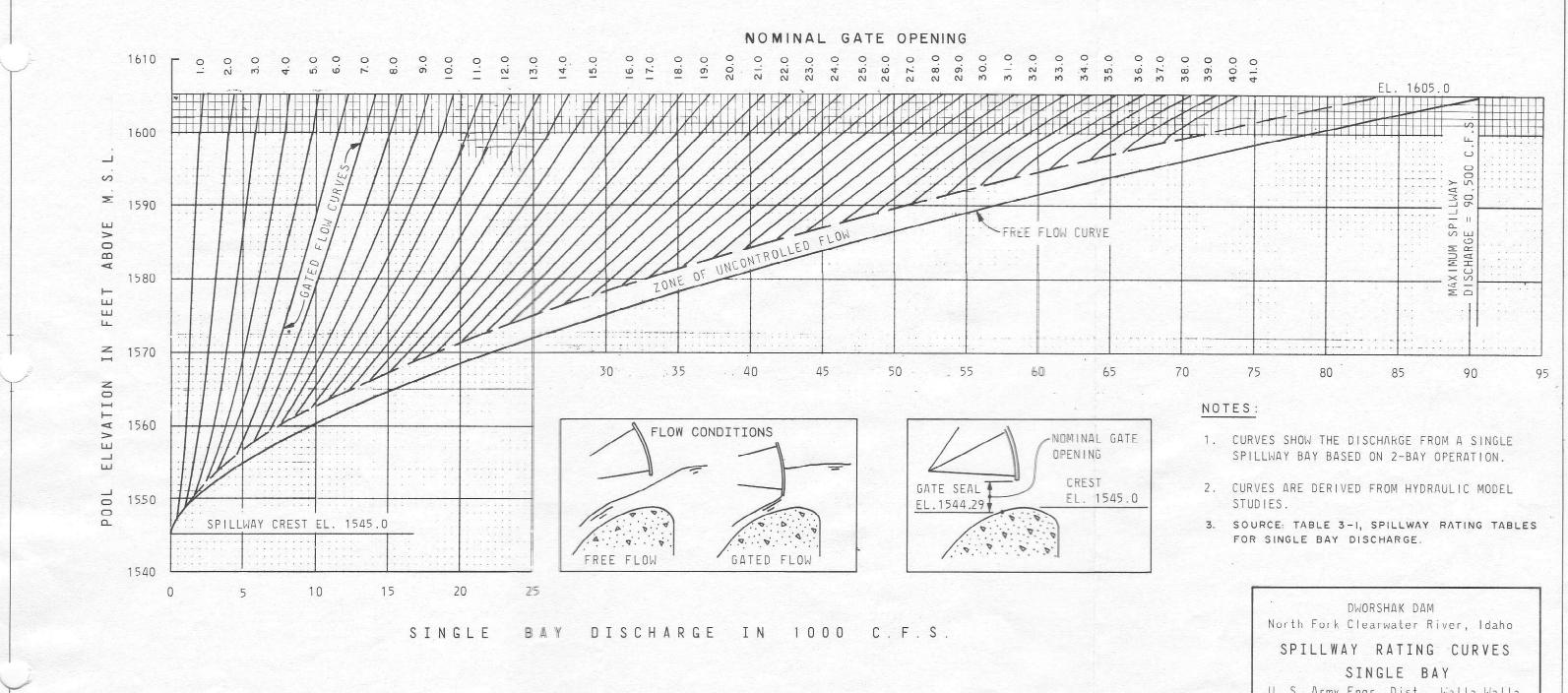
Water Year	Oct	Nov	Dec	Jan	<u>Feb</u>	Mar /	Apr <u>M</u>	lay Ju	in Jul	Aug	Sep
1973 1974 1975	93.9 179.1 160.5	208.2 129.9 326.1	286.9 318.9 233.9		840.8 10	16.1 9	99.7 42	.1.7 108 28.4 941 23.9 452	.4 475.	8 152.1	. 303.1
1976 1977 1978 1979 1980	218.4 150.9 123.4 98.0 163.4	349.3 290.6 293.8 318.7 291.6	676.6 312.2 347.1 616.5 455.8	377.9 625.2 524.6	236.4 1 591.5 6 112.9 2	35.7 31.1 48.9	60.3 15 63.1 13 96.6 41	59.0 461 50.7 165 34.9 377 10.8 480 79.1 527	5.0 279. 7.7 226. 0.6 218.	9 172.2 5 172.6 0 179.5	2 152.3 5 371.3 5 189.6
1981 1982 1983 1984 1985	140.0 146.8 182.3 156.5 135.9	302.5 236.8 308.6 358.0 275.3	474.7 404.2 416.7 540.7 354.8	551.6 452.8 236.6	458.8 12 245.8 5 147.6 3	65.7 5 95.4 2 99.1 4	30.8 23 65.2 19 93.1 42	17.8 679 36.8 366 90.4 395 21.1 814 39.0 474	5.7 340. 5.5 267. 4.8 270.	0 139.0 6 118.4 9 139.4) 337.4 4 404.9 4 409.2
STATISTICS	S										
N	1	13	13	13 13	13	13	13	13	13	13	13 13
AVERAGE	149.	.9 283	.8 418	4 486.1	374.5	483.7	301.2	288.0	480.4	276.6 1	174.1 333.9
MAXIMUM	218.	.4 358	.0 676	.6 976.1	840.8	1265.7	999.7	547.8	941.4	475.8	407.4 441.9
MINIMUM	93.	.9 129	.9 233	.9 236.6	68.4	66.1	60.3	111.7	108.9	198.5	92.8 152.3

TABLE 8-2

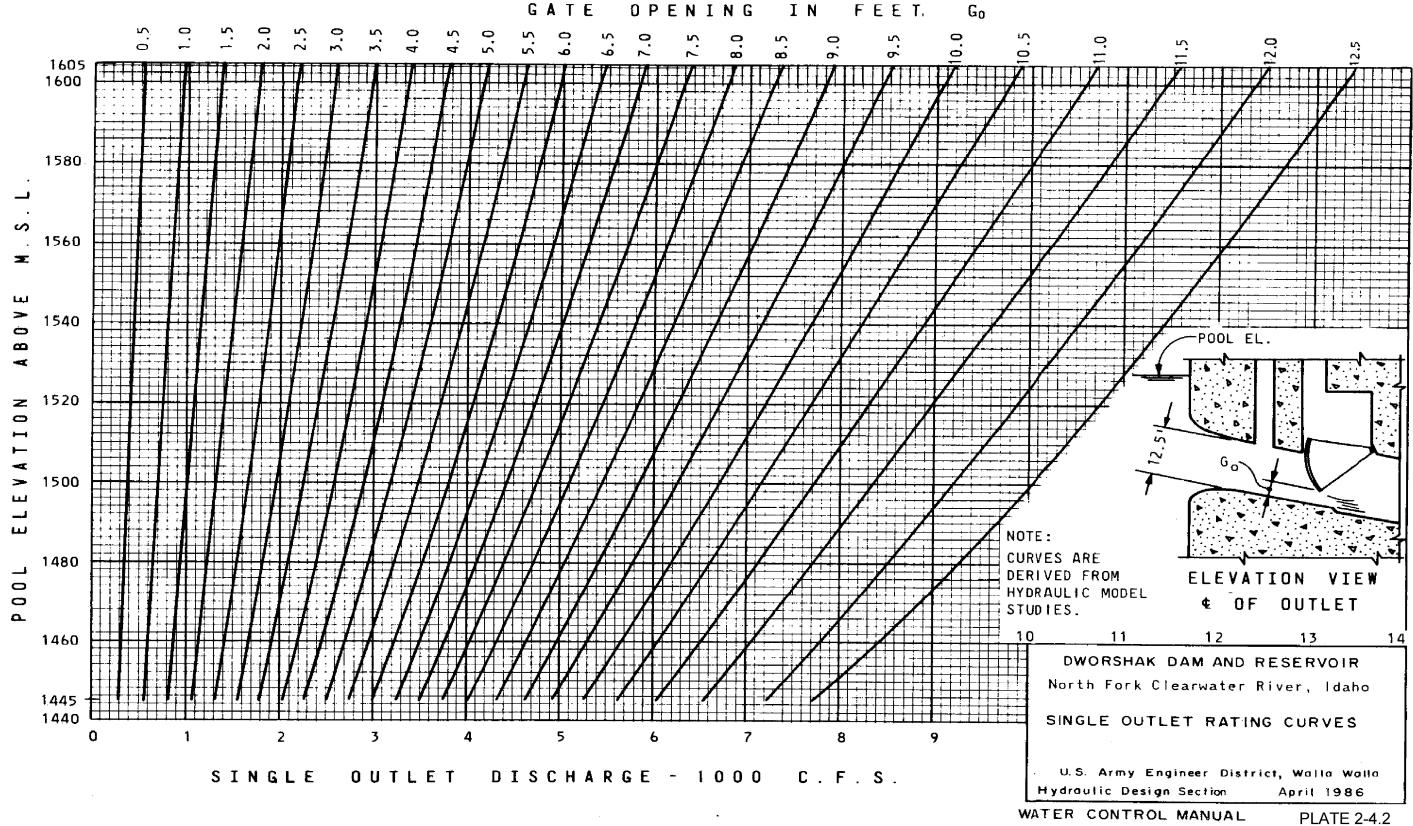
CLEARWATER RIVER AT SPALDING (13342500) REGULATED MONTHLY DISCHARGE VOLUME IN 1,000 ACRE-FEET DRAINAGE AREA: 9,570 SQUARE MILES

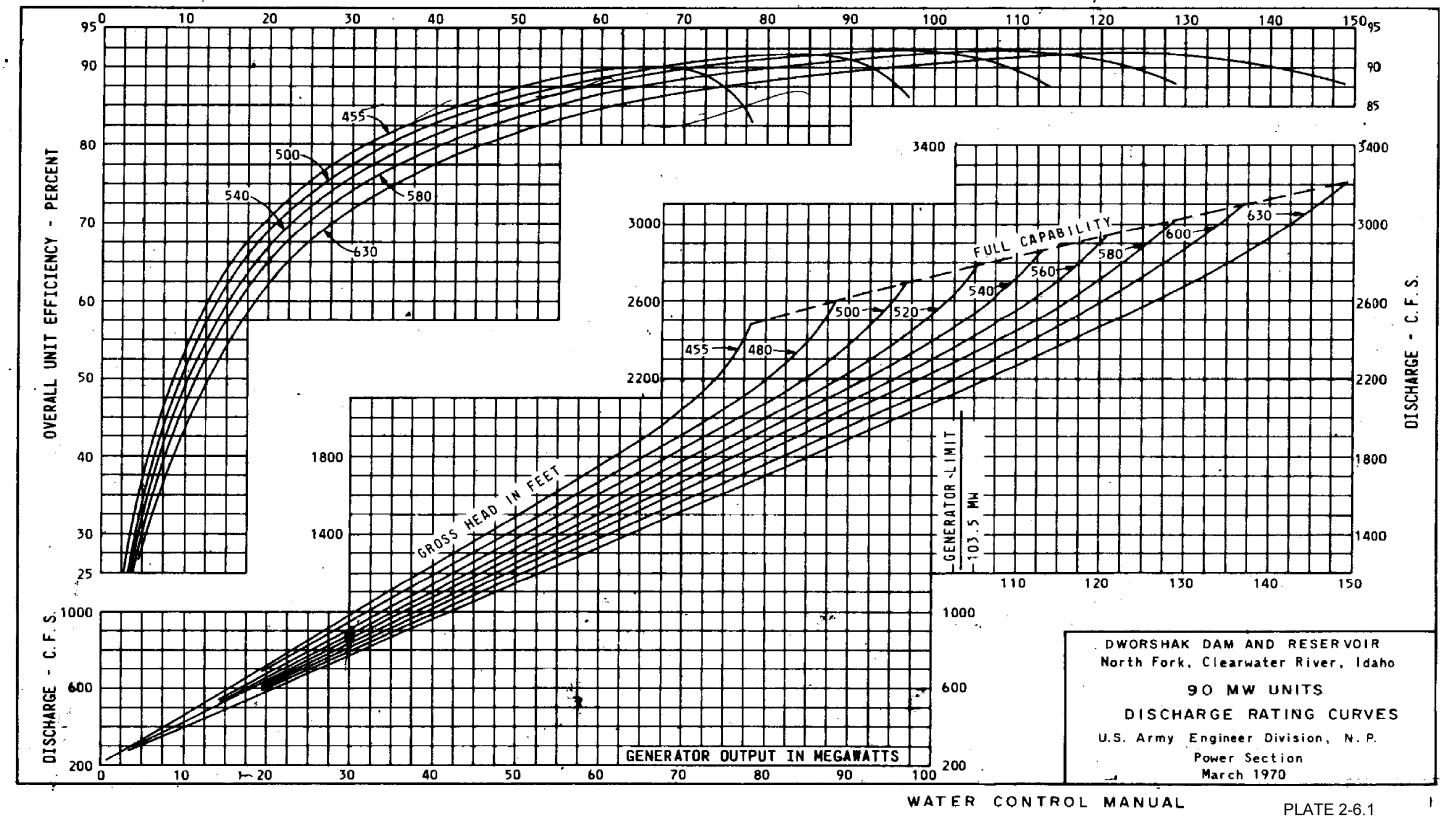

Water Year	<u>Oct</u>	Nov	Dec	<u>Jan</u>	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
1972 1973 1974 1975	105.2 186.4 262.1 232.3	131.4 310.6 394.3 425.0	152.5 493.7 737.8 332.9	307.7 492.6 1679.6 508.5	633.4 186.0 1310.7 902.8	2139.8 328.0 1838.3 1158.4	1897.2 461.8 2422.6 880.4	3884.9 1241.9 2415.9 2278.8	3534.0 868.2 4377.8 3509.6	1140.9 424.0 1166.4 1469.8	311.0 245.1 317.8 466.0	198.5 446.8 393.1 607.3
1976 1977 1978 1979 1980	507.9 283.3 317.8 203.1 258.1	714.9 416.8 557.3 421.3 375.9	1671.1 426.3 1214.7 734.8 622.9	1279.0 483.5 1099.5 614.2 549.5	1039.9 359.9 1061.2 363.5 415.5	1301.2 300.0 1493.6 939.5 541.0	1768.3 691.8 1296.6 1000.3 1095.2	3033.4 1180.6 1880.4 2666.4 1950.8	2347.3 765.6 2116.8 1637.6 1791.5	960.8 450.7 909.8 502.6 624.0	381.4 298.4 365.3 286.8 286.2	464.4 286.3 537.3 272.8 456.9
1981 1982 1983 1984 1985	244.3 277.4 396.3 297.7 278.9	504.7 386.4 505.2 598.6 475.0	926.1 657.6 650.7 722.2 518.5	821.3 818.9 821.7 681.9 751.9	668.8 1293.4 690.3 513.1 657.9	639.6 2089.6 1333.7 1290.5 470.7	1003.2 1497.2 904.5 1572.9 1354.7	1979.3 2341.1 1553.5 2345.7 2163.8	2537.3 2702.3 1522.9 3134.5 1560.8	723.8 1188.9 751.6 870.4 503.1	229.3 331.2 292.9 304.0 544.0	543.4 467.7 524.8 566.5 510.2
STATISTIC	cs											
N		14	14	14	14	14	14	14	14	14	14 3	14 14
AVERAGE	275	.1 44	4.1 70	4.4 77	9.3 72	1.2 113	3.1 1274	4.8 2208	8.3 2314	4.7 834	.8 332.	.8 448.3
MAXIMUM	507	.9 71	4.9 167	1.1 167	9.6 131	0.7 213	9.8 2423	2.6 3884	4.9 437	7.8 1469	.8 544.	.0 607.3
MINIMUM	105	.2 13	1.4 15	2.5 30	7.7 18	6.0 30	0.0 46	1.8 1180	0.6 76	5.6 424	.0 229	.3 198.5

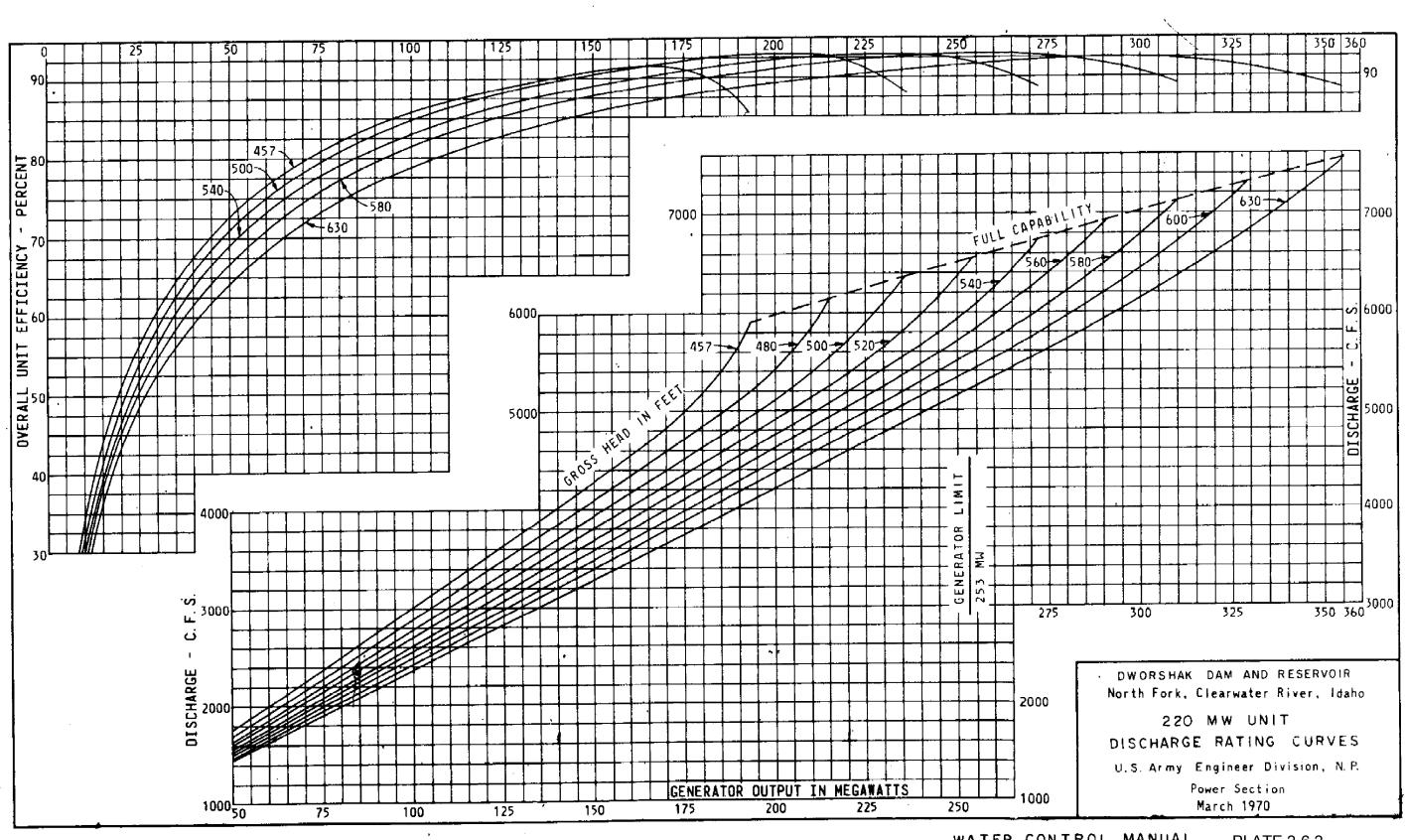

TABLE 8-2 Sheet 1 of 1


PLATES

<u>No 1.</u>


- 2-1 Project Location Map
- 2-2.1 General Plan
- 2-2.2 Dam Elevations
- 2-2.3 Spillway and Outlets: Plan and Section
- 2-2.4 Isometric View
- 2-3.1 Spillway Gates: Elevation and Arrangement
- 2-3.2 Spillway Rating Curves: Single Bay
- 2-4.1 Outlet Works: Sections
- 2-4.2 Single Outlet Rating curves
- 2-5.1 Selector Gates: Plan, Elevation and Sections
- 2-5.2 Selector Gate Position: Overshot Operation at Pool EL. 1600
- 2-5.3 Selector Gate Position: Overshot Operation at Pool EL. 1500
- 2-5.4 Selector Gate Position: Overshot Operation at Pool EL. 1445
- 2-6.1 90 MW Units: Discharge Rating Curves
- 2-6.2 220 MW Unit: Discharge Rating Curves
- 2-6.3 Powerhouse: Plans at Elevations 988 and 1005
- 2-6.4 Powerhouse Arrangement: Transverse Section at Bays 1 and 2
- 2-6.5 Powerhouse Arrangement: Transverse Sections at Bays 3 to 6
- 2-7 Tailwater Rating Curves: River Mile 1.69
- 2-8 Tailwater Rating Curves at Powerhouse Units 3 & 6
- 2-9 Lake and Land Use Map: Sheet 1 of 3 Lake and Land Use Map: Sheet 2 of 3
 - Lake and Land Use Map: Sheet 3 of 3
- 2-10 July 1986: Regional Recreation
- 4-1 Basin Map
- 4-2 Summary Hydrographs: North fork Clearwater River
- 4-3 Summary Hydrographs: Near Ahsahka, ID
- 4-4 Mean Daily Total Unregulated Inflow: POR 9/1926 10/1985 Mean Daily Total Unregulated Inflow: POR 10/1926 – 9/1985 Mean Daily Total Unregulated Inflow: POR 9/1926 – 10/1985 Mean Daily Total Unregulated Inflow: POR 10/1926 – 9/1985
- 4-5 Summary Hydrographs: Orofino, ID
- 4-6 Summary Hydrographs: Spalding, ID
- 4-7 Typical Reservoir Temperature Profiles
- 5-1 Automated Hydromet Network: Location Map
- 7-1 Operating Curves for Flood Control
- 7-2 Variable Refill Curves: Based on NPW Forecasts
- 8-1 Flood Regulation Examples
- 8-2 Regulation of the Probable Maximum Flood
- 8-3.1 Annual Peak Discharge Frequency Curve
- 8-3.2 Annual Peak Discharge Frequencies: At Spalding
- 8-3.3 Summary Hydrographs: Near Ahsahka, ID
- 8-3.4 Summary Hydrographs: Near Spalding, ID
- 8-4 Annual Peak Discharge Frequencies: Snake River at Lower Granite Dam
- 8-5 Annual Maximum Volume Frequencies: April thru July Runoff





U. S. Army Engr. Dist., Walla Walla Hydraulic Design Section R.P. July 1970 WATER CONTROL MANUAL PLATE 2-3.2

WATER CONTROL MANUAL PLATE 2-6.2

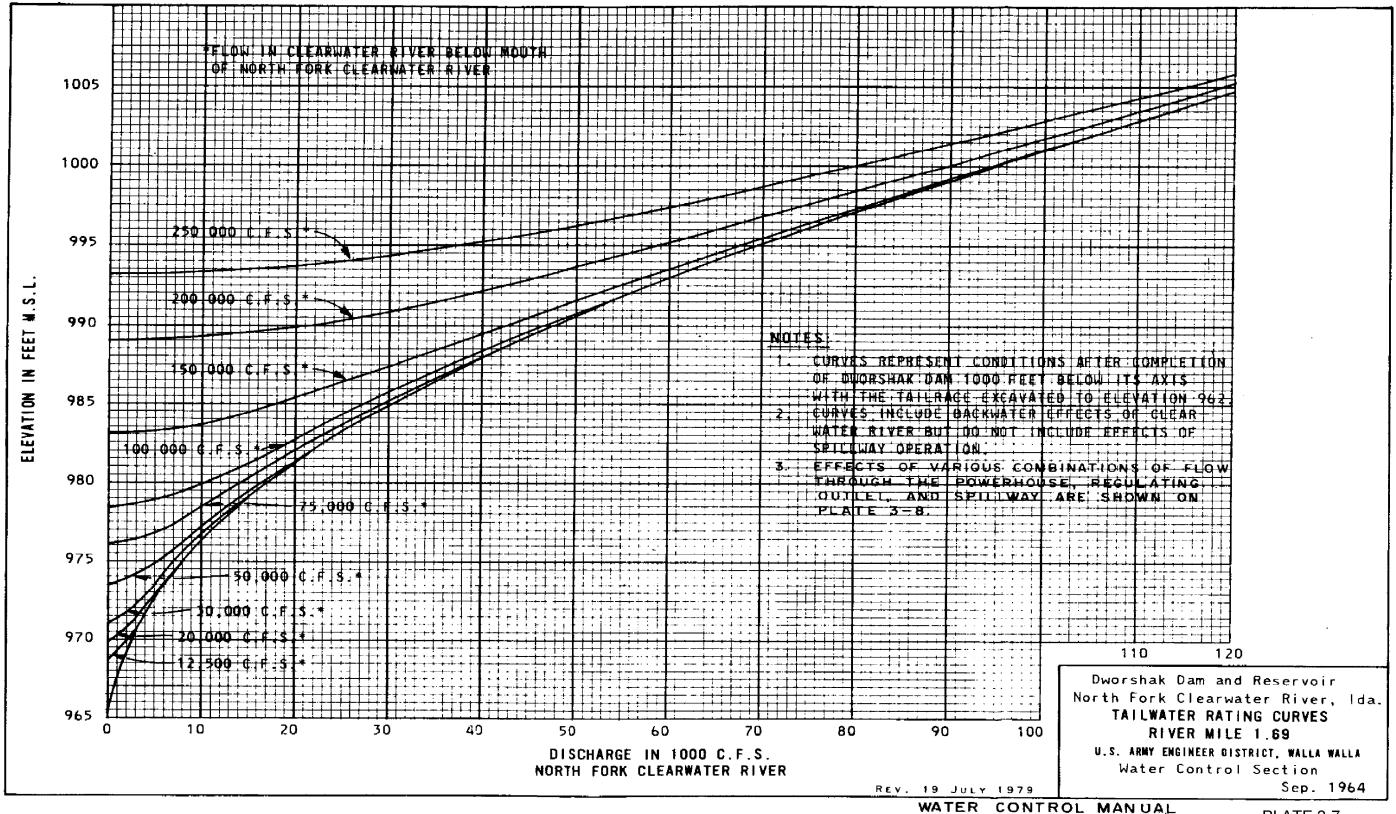
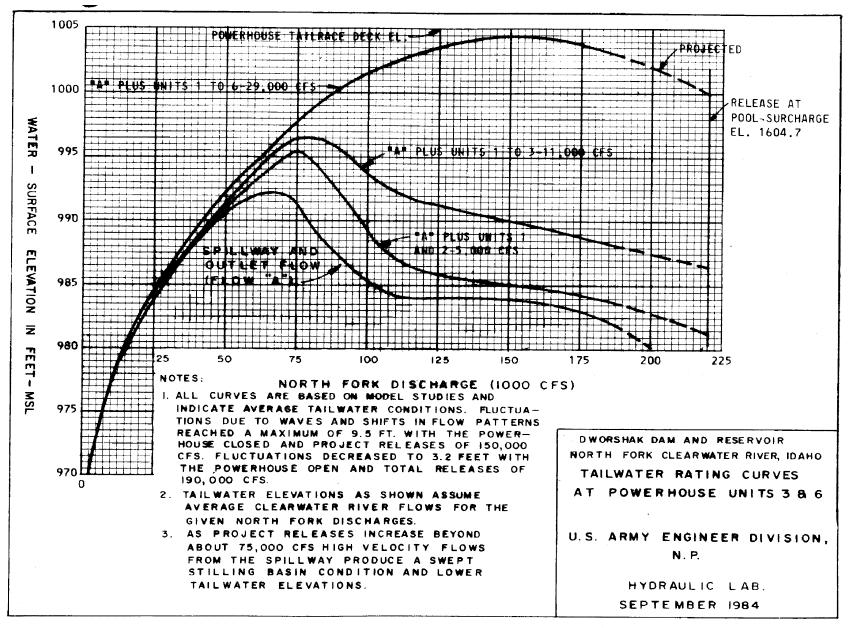
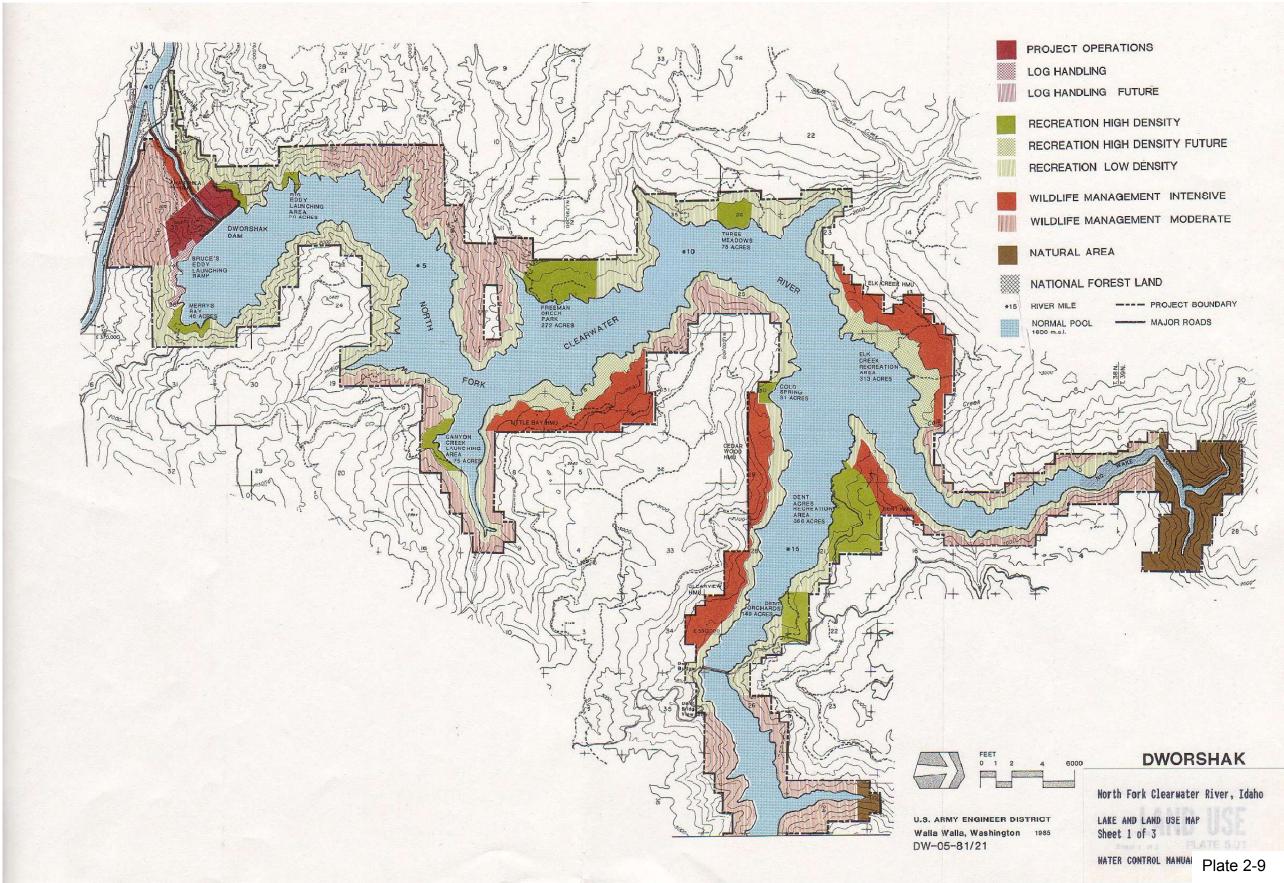
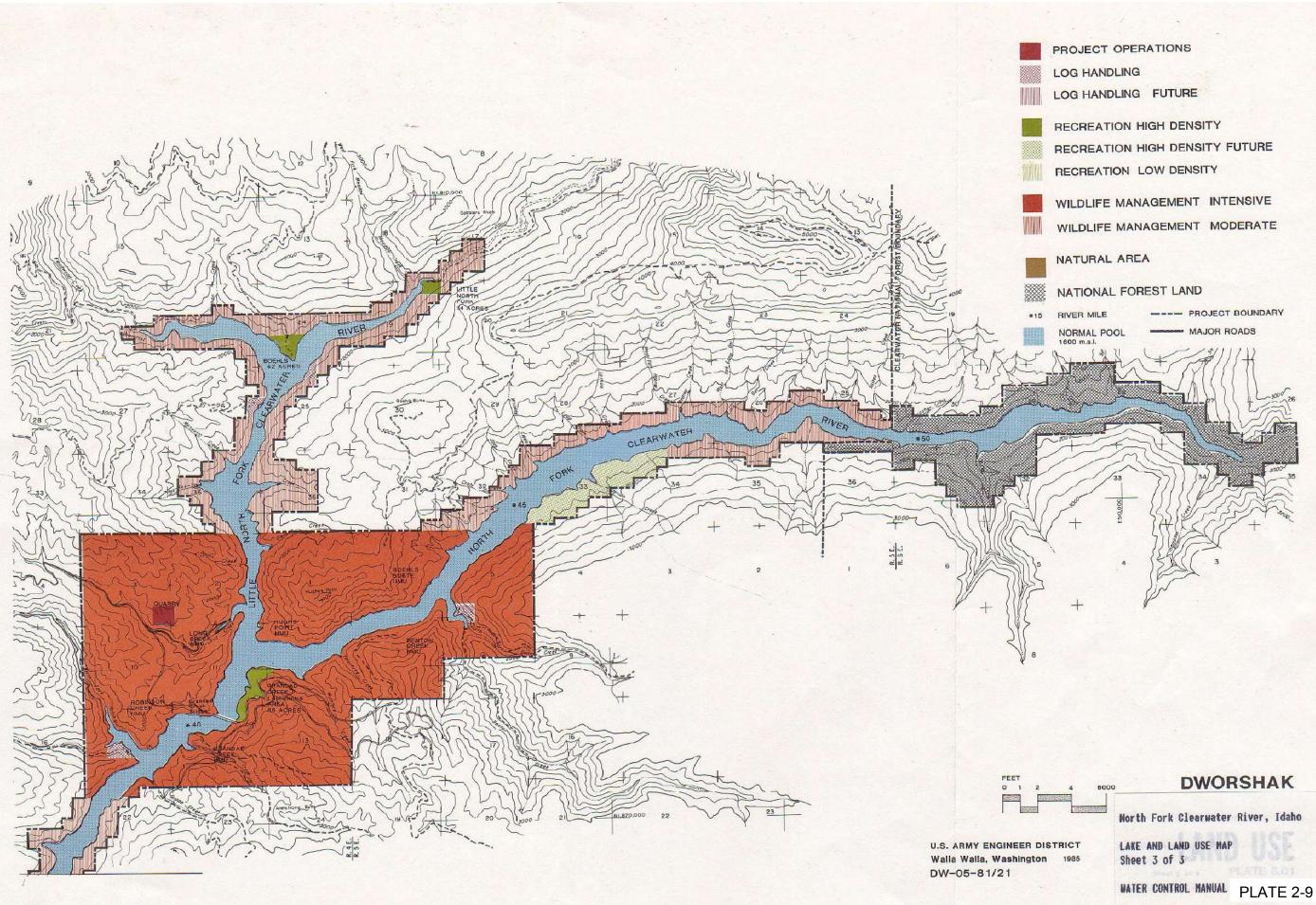
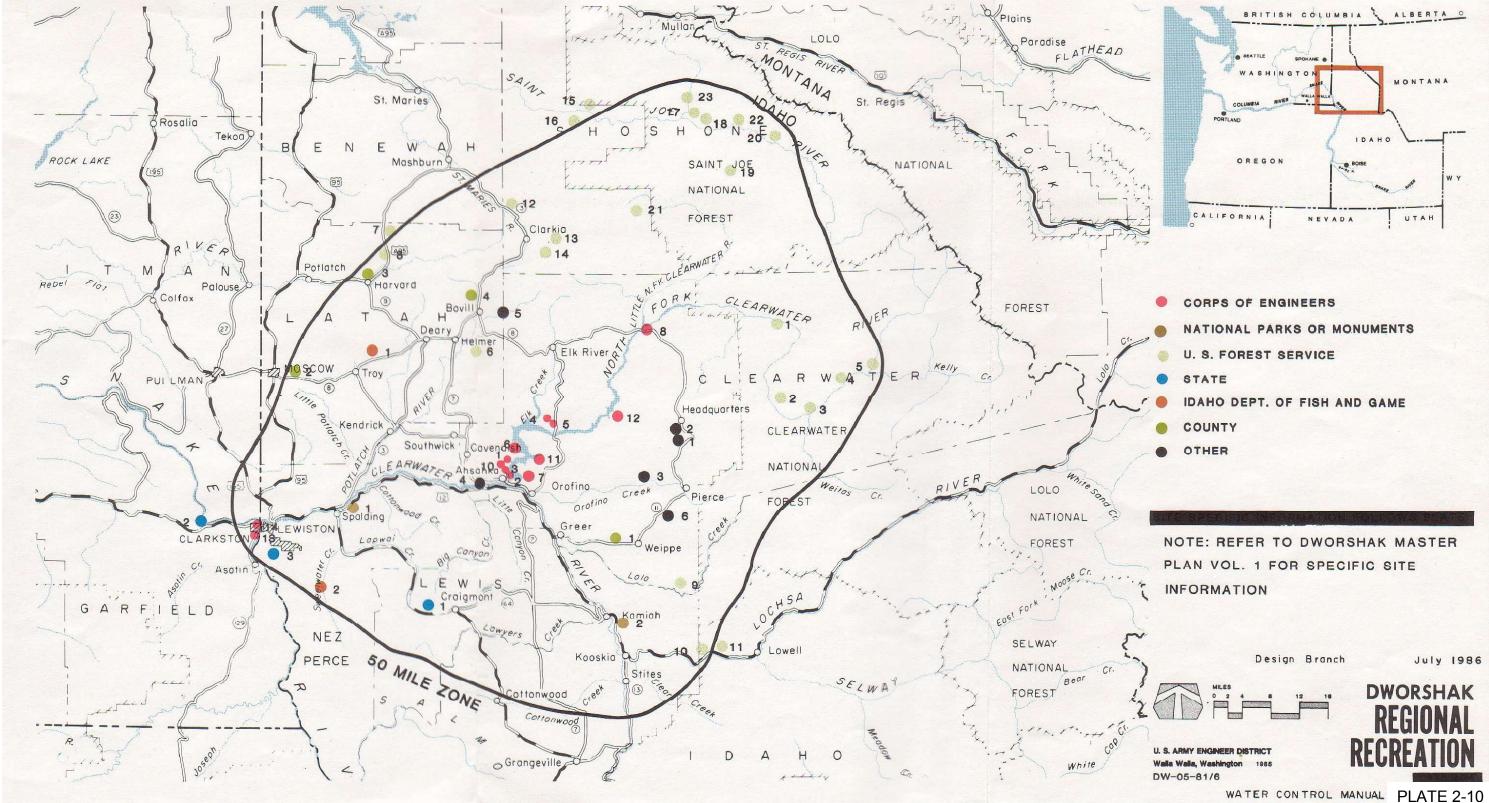
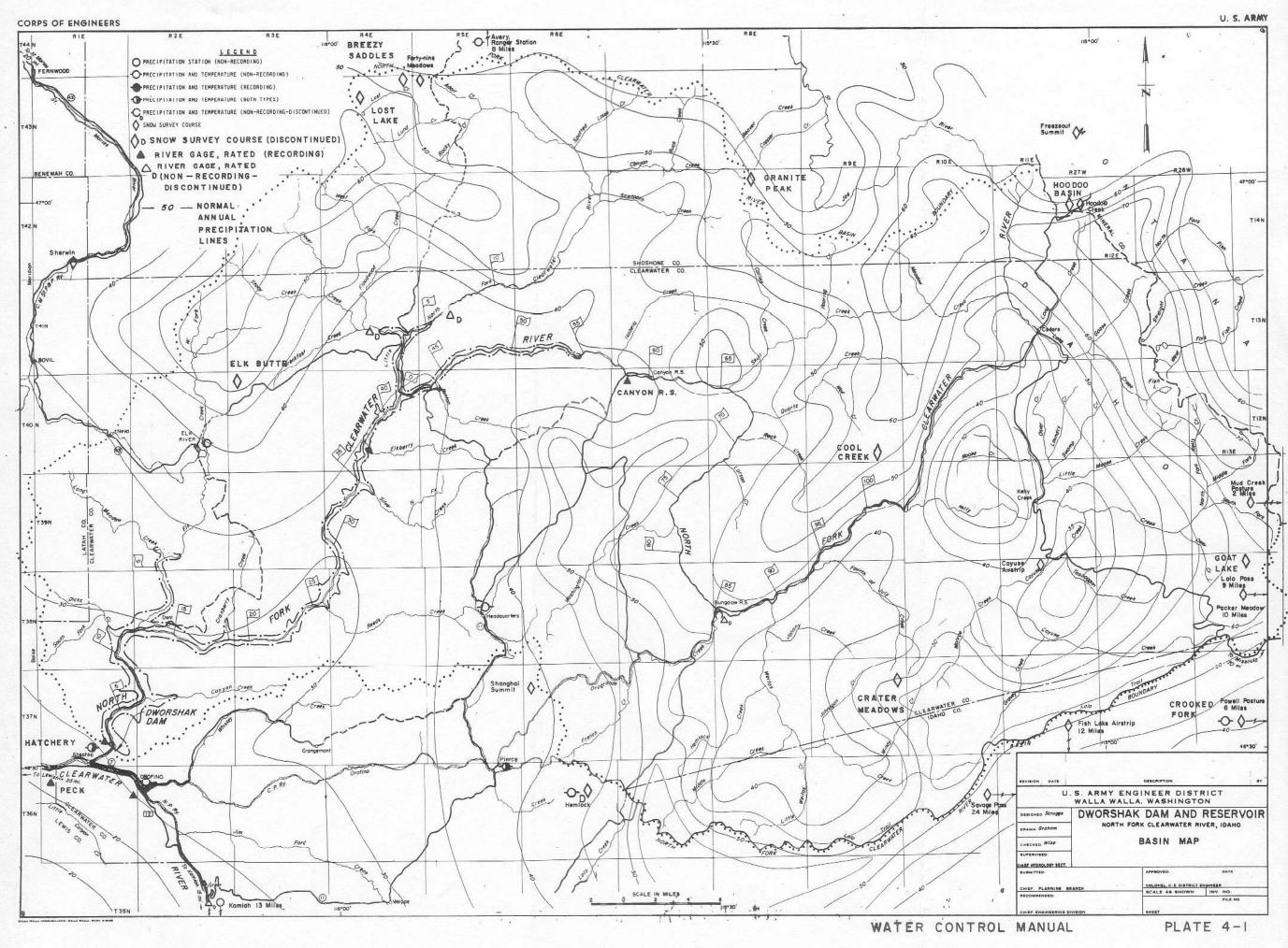
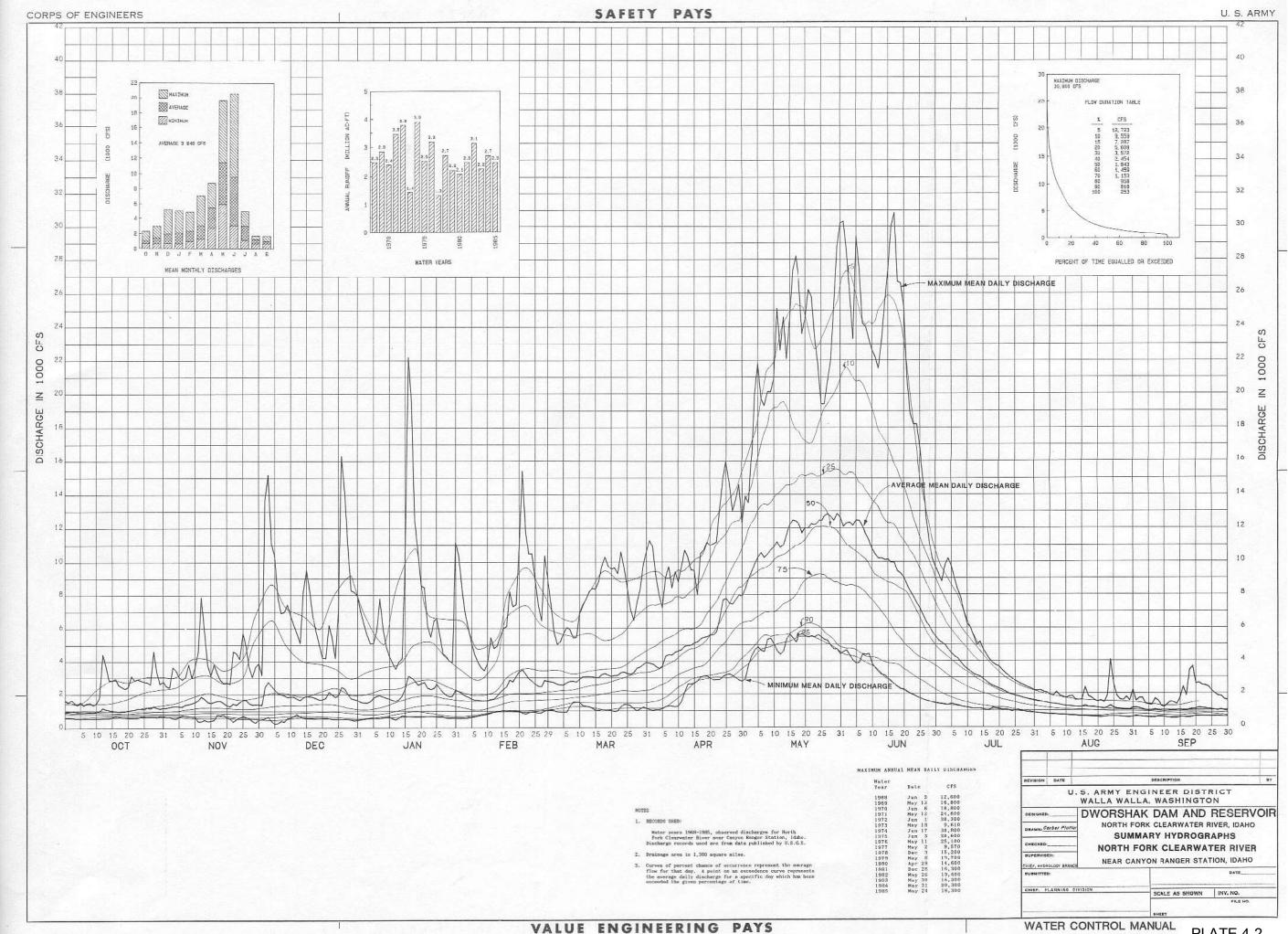
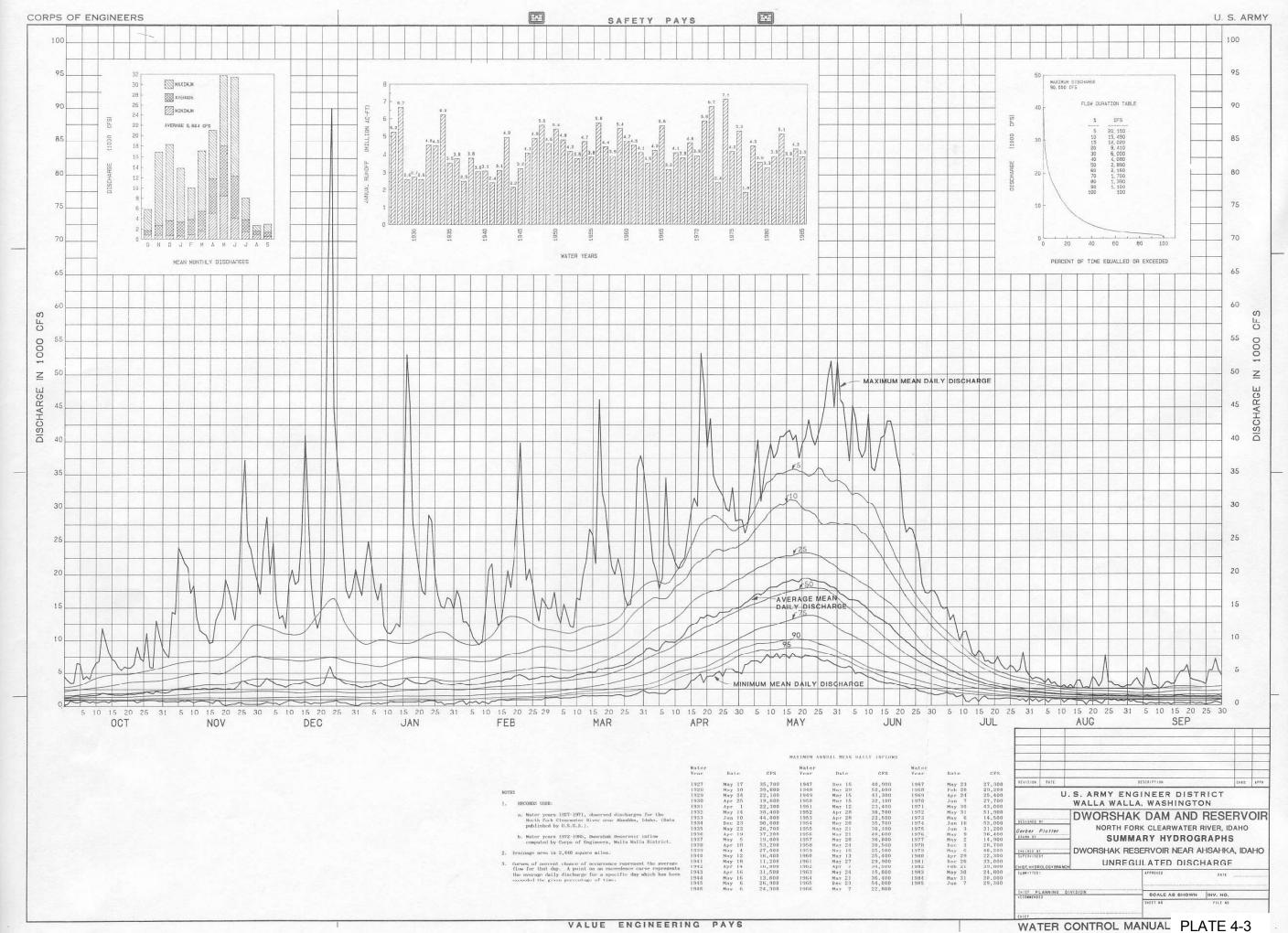
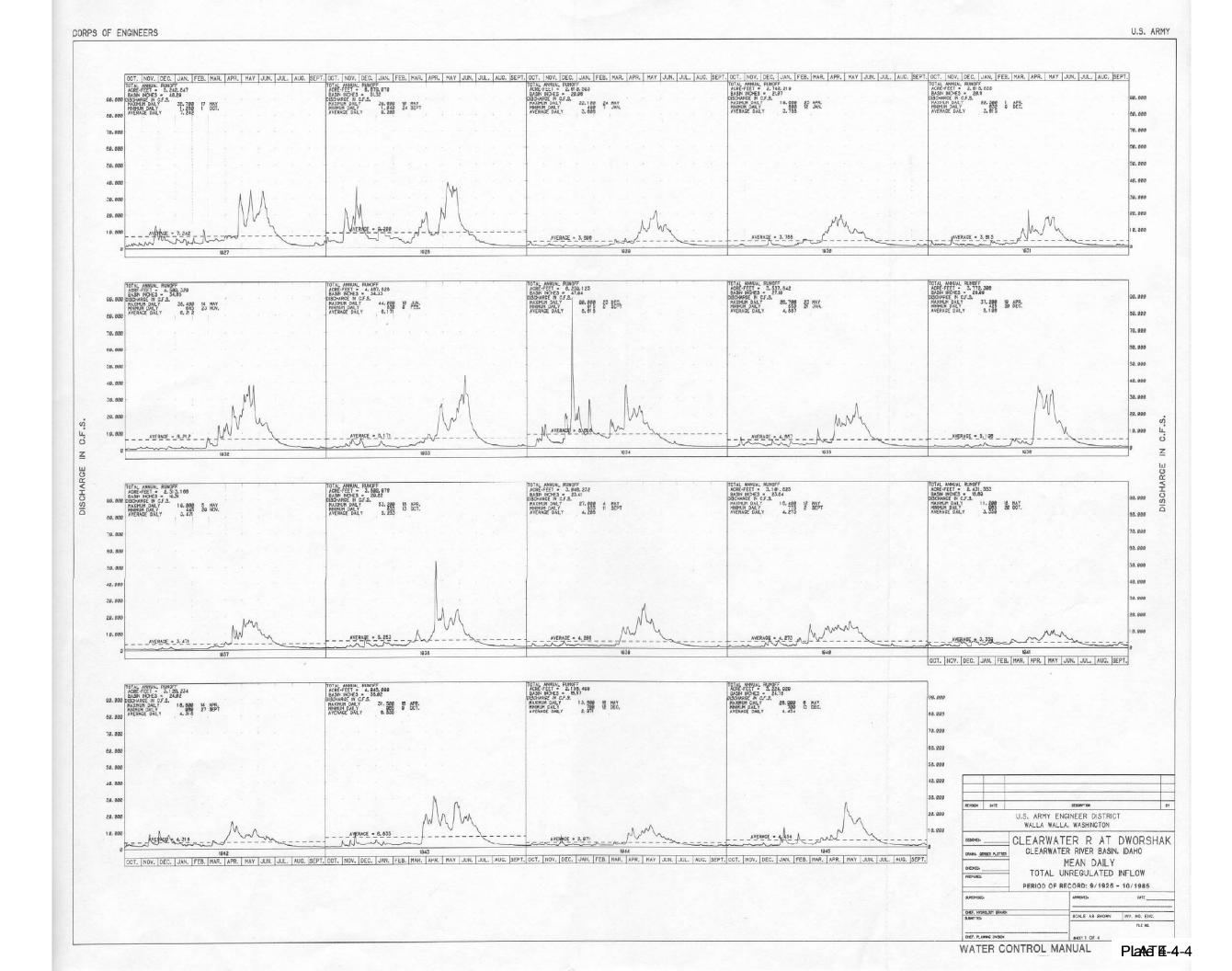


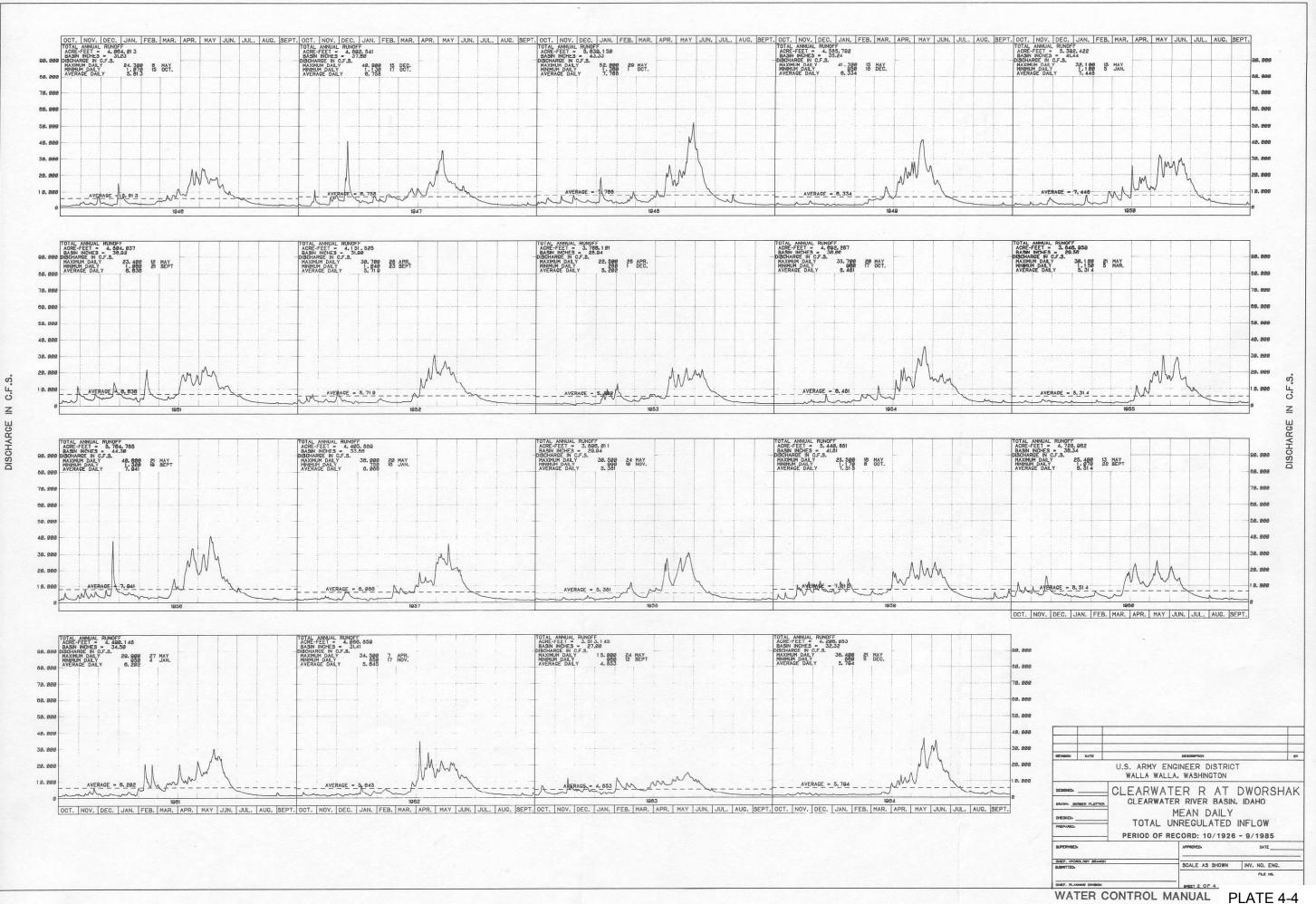
PLATE 2-7


PLATE 2-8

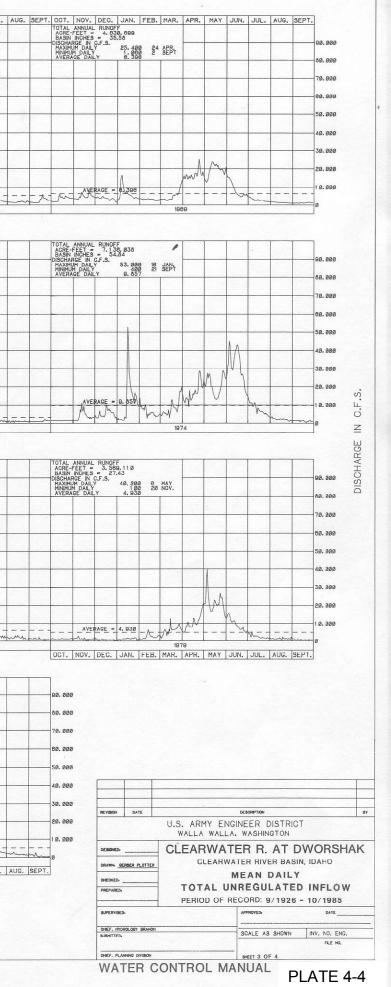





PLATE 4-2

0.1

DISCHARGE

U.S. ARMY



ACRE-FEET = 4.151.6	884		ACRE-FEET = 5.	307.251		TOTAL ANNUAL RUN ACRE-FEET = 1. BASIN INCHES =	656, 556			ACRE-FEET	T = 4,450	3, 553			
TOTAL ANNUAL RUNOFF ACRE-FEET = 4.151.6 BASIN INCHES = 31.90 DISCHARGE IN C.F.S. MAXIMUM DAILY AVERAGE DAILY STRAGE DAILY	. 200 3 JUN. 200 22 SEPT		TOTAL ANNUAL RUP ACRE-FEET = 5. BASIN INCHES = DISCHARGE IN C.F.S MAXIMUM DAILY MINIMUM DAILY AVERAGE DAILY	49.70 36.400 9 MAY 100 14 SEPT 7.311		DISCHARGE IN C.F.S. MAXIMUM DAILY MINIMUM DAILY AVERAGE DAILY	14.000 2 MAY 200 4 FEB. 2.584			TOTAL ANNI ACRE-FEET BASIN INCH DISCHARGE MAXIMUM D. MINIMUM DA AVERAGE I	IN C.F.S.	28,700 3 400 8	3 DEC. 22 SEPT		
AVERAGE DAILY 5	5. 735		AVERAGE DAILY	7, 31		AVERAGE DAIL	2, 304			AVERAGE L	DAILT	0,152			
											-			-	-
														1	
															-
	_										-			-	-
		I A Am													
		- Minu			A Man						IA			mm	5
	+	and the	AVERAGE	= 7. 211				to Alma		A	VERAGE -	8,152		W. Arm	N
AVERAGE = 5.	til trant	1	the think have	when the water		Manu AVERAGE	= 2.584		aza						
													1978		_
	1975			16	976			377		-					
	1975	· · · · ·			976							F			
	1975		TOTAL ANNUAL RUI ACRE-FEET = 3. BASIN INCHES -		976	TOTAL ANNUAL RUN ACRE-FEET = 5. BASIN NICHES -	0FF 136,472 39,47			TOTAL ANNU ACRE-FEET BASIN INCH	UAL RUNOFF I = 3,788 HES = 29.	F 8. 485			
	1975		TOTAL ANNUAL RU AGRE-FEET 3. DIGENARGE IN C.F.S MAXIMUM DAILY		976	DISCHARGE IN CES	0FF 138, 472 39,47			TOTAL ANNI ACRE-FEET BASIN INCH DISCHARGE MAXIMUM DA MINIMUM DA	UAL RUNOFF I = 3, 782 IN C.F.S. AILY NILY	F 8. 465 11 24. 800 300			
	1975		TOTAL ANNUAL RU ACRE-FEET = 3. DISCHARGE N. DLSC MARINE DALY AVERAGE DALY			TOTAL ANNUAL RUN ACRE-FEET = 5. BLABN HOHES - DISCHARGE PART - MINIMUM PALT AVERAGE DALLY	0FF 136,472 39,47			TOTAL ANNU ACRE-FEET DISCHARGE I MAXIMUM D. MINIMUM DA AVERAGE D	UAL RUNOFF I = 3,788 HES = 29,1 IN C.F.S. AILY NILY DAILY	F 8, 465 11 24, 800 5, 233	30 MAY 23 SEPT		
	1975		TOTAL ANNUAL RU ACRE-FEET = 3. DISCHARCE NO GF.S MINITUM DALY AVERAGE DALY			DISCHARGE IN CES	0FF 138, 472 39,47			TOTAL ANNI ACRE-FEET BASIN INCH DISCHARGE MAXIMUM DA MINITUM DA AVERAGE D	UAL RUNOFF T = 3, 768 EFS = 20. IN C.F.S. AILY DAILY	F 8, 485 .11 24, 800 5, 233			
	1975		TOTAL ANNUAL RU ACRE-FECT = 3. DISCHARGE ALC.S. MINIMUM DAL. AVERAGE DALLY			DISCHARGE IN CES	0FF 138, 472 39,47			TOTAL ANNU ACRE-FEET BASIN INCH DISCHARGE I MAXIMUM DA AVERAGE C	UAL RUNOFF I = 3, 766 IN C.F.S. AILY DAILY DAILY	F 8, 405 11 24, 800 5, 233			
	1975		TOTAL ANNUAL RU ACRE-FEET = 3. DOSANNER DALCY.S MENNUM DALL AVERACE DALLY			DISCHARGE IN CES	0FF 138, 472 39,47			TOTAL ANNU ACRE-FEET BASIN INCH DISCHARCE MAXIMUM D. MINIFUH DA AVERAGE C	UAL RUNOFF = 3.782 #E9 = 220: IN C.F.S. ALLY DAILY	F 8, 405 11 24, 800 5, 233			
	1975		TOTAL ANNUAL RU ACRE-FEET = 3. DOSANIAN INDEES OF MENNIAN DALLY. MENNIAN DALLY. AVERAGE DALLY			DISCHARGE IN CES	0FF 138, 472 39,47			TOTAL ANNU ACRE-FEET BASIN INCH DISCHARCE INAMINUT AVERAGE C	UAL RUNOFF T= 3, 766 4ES = 30. NL Y NL Y DAIL Y DAIL Y	5, 405 11 24, 300 5, 233			
	1975		TOTAL ANNUAL RU ACRE-FEET = 3. DOSANIAN INDEES OF MINIMUM DALLY. AVERAGE DALLY			DISCHARGE IN CES	0FF 138, 472 39,47			TOTAL ANNI ACRE-FEET BASIN INCH DISCHARGE I MINIPUUH DA AVERAGE C	UAL RUNOFS T = 3.705 ES - 3.705 IN O.F 20. IN O.F 20. ALY - 3. ALY - 3. ALY - 3. DAIL Y	5, 405 11 24, 500 5, 233			
	1975		TOTAL ANNUAL RU ACRE-FEET = 3. DISANNER S. C.Y.S MENNUE DALLY MENNUE DALLY AVERACE DALLY			DISCHARGE IN CES	0FF 138, 472 39,47			TOTAL ANNI ACRE-FEET BASIN NOM DISCHARGE I MAXIMUM D AVERAGE C	UAL RUNOFF T = 3, 766 ES o.F.S. NLY DAILY DAILY	F. 405 6, 405 7800 5, 233 5, 233			
	1975		TOTAL ANNUAL RU ACRE-FEET = 3. DISANNER SALES MENNER SALE			DISCHARGE IN CES	0FF 138, 472 39,47			TOTAL ANN ACRE-FEET BAIN NOC DISCHARGE MAXHUM D. AVERAGE C	UAL RUNOFF T = 3, 766 ESC CF.S. ALY DAILY DAILY	5, 405 11 24, 699 5, 233			
	1975		TOTAL ANNUAL BU ACRE-FEET = 3. BOSIN INDEES OF A CLY.S MENNION PALLY MENNION PALLY AVERAGE DAILY			DISCHARGE IN CES	0FF 138, 472 39,47			TOTAL ANNI ACRE-FEET ACRE-FEET MAXIMUM DA HUBHUM DA AVERAGE	UAL PUNOFS T = 3.76t KES = .20. IN C.F.S. AALLY AALLY	5, 405 11 24, 699 5, 233			
TOTAL ANNUAL RUNOFF ACCEPTED - 2.200.1 DISCHARGE IN C.F.3. MAXMUN DALLY 22 MAXMUN DALLY 24 AVERAGE DALLY 4	1975			NOFF 804.969 20.35 5.385 5.385 5.385 5.385 5.585	M NA	DISCHARGE IN CF.32 MAXMUM DALY AVERACE DALY	00FF 30,472 30,472 7,900 19 5EPT 7,900 19 5EPT								
TOTAL ANNUAL RUNOFF ACRE FERTE 3, 260,0 DISCHARGE IN C.F.3, 260,0 MAXIMUM DALY 2 MAXIMUM DALY 2 AVERAGE DALY 4 AVERAGE - 4, 	1975	MM		NOFF 604,000 20.5 33,000 26 DEG 5,305 4 4 4 4 4 5,305 4 4 4 4 5,305 4 4 4 5,305 4 4 5,305 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		DISCHARGE IN CES	00FF. 30.472 30.472 7,200 21 FEB. 7,200 10 SEPT				VERAGE -				

TOTAL AN ACRE-FE BASIN IN DISCHARGE MAXIMUM MINIMUM AVERAGE	NUAL RUNOF ET = 3.92 ICHES = 39 E IN C.F.S.	F 5, 51 3 1,17				TOTAL AN ACRE-FE BASIN IN DISCHARGE	NUAL RUN T = 5.1 HES = . IN C.F.S. DAILY DAILY DAILY	DFF 179.154 15.18					TOT AC BA DISC	AL ANNUAL RE-FEET = SIN INCHES HARGE IN C. XIMUM DAILY IMUM DAILY ERAGE DAILY	RUNOFF 8,718,18 51.63 F.S,	54						TOTAL ACRE-F BASIN DISCHAR	ANNUAL F EET = INCHES = GE IN CJ	RUNOFF 2. 424, 4 10,83 F.S. 1 4, 3,	42				
	DAILY DAILY E DAILY	27.700 7 760 3 5.422	DEC.			MINIMUM	DAILY DAILY DAILY	43.000 1.100 6.121	30 MAY 4 OCT.	-			MAN	KIMUM DAILY	51. <u>9.</u>	000 31 570 9 254	SEPT					MINIMUM	M DAILY 1 DAILY SE DAILY	14.	500 300 349	22 NOV.		-	
000							_									-		-			-						-	-	
00							-					-		-		-		-	-		-				_	-		-	
88							-														-				-				
00										M	1							M	My										
888				AA						1	1 l						A.	N											
000				N.M						m	U May			AVER	GE = 8, 2	54	1 JA	N	N					1			11	r.	
	AVERAGE =	5. 428	Aray	~f			nfn		47		>					A D	h			hunger		-	AVERA	IGE 3.	sta	Anna	mm -	Jum	hommo
D	2		197Ø		Contraction of the				1971				10000				1972									1973	3		

	7.730		K		AVERA	GE = 4.370						THE	-Jeak-	1967	-				intra	AGE = 5. 241	~+t~	1988	7-		
	7-739 K-1-1-		-k		AVERA	GE # 4.37Ø	M		w	harris and		F-	- WH M	- + -NAR			4-4-			AUL - 0. 241	- + +	. me -	24-		
4150.05								VV 1	4			AVERAGE =	5. 638		in	X	Section 1997		AVER	ACE = 5 241		1 The	1	5	Sec. and
	N	M						MILO							V	1						A N	N	m	
		1 Am		+	-			A	-		-					hm					-11-				
		M													1										
										20	12.4				-							-			
											-													-	
					100																1				201
													Sec. And									1			
					_								-	_	_			-							
																					-	-	-		-
																			-						
MINIHUM DAILY AVERAGE DAILY	1. 370 12 SEPT			M A	NIMUM DAILY	22, 00 78 4, 37	30 SEPT				MINIMUM	DAILY DAILY	61 Ø 5. 632	5 NOV.	-		-11		MINIMUM DAILY	29,200 302 Y 5.241	17 8	DEC:			
BASIN INCHES = 43.0	JAN. FEB. MAR. / 2.485 25 54.000 23 DEC. 1.370 12 SEPT 7.738			DIS	ASIN INCHES =	24.31					BASIN IN DISCHARGE	HES # 31.	33		-	-		D	BASIN INCHES	= 29.24				-	_
TOTAL ANNUAL RUNOFF	105		10021 11001	TO	TAL ANNUAL P	NUNOFF	1 LDT 1414		CONT COLL		TOTAL AN	NUAL RUNOF	300					T	TOTAL ANNUAL	RUNOFF					

U.S. ARMY

U.S. ARMY

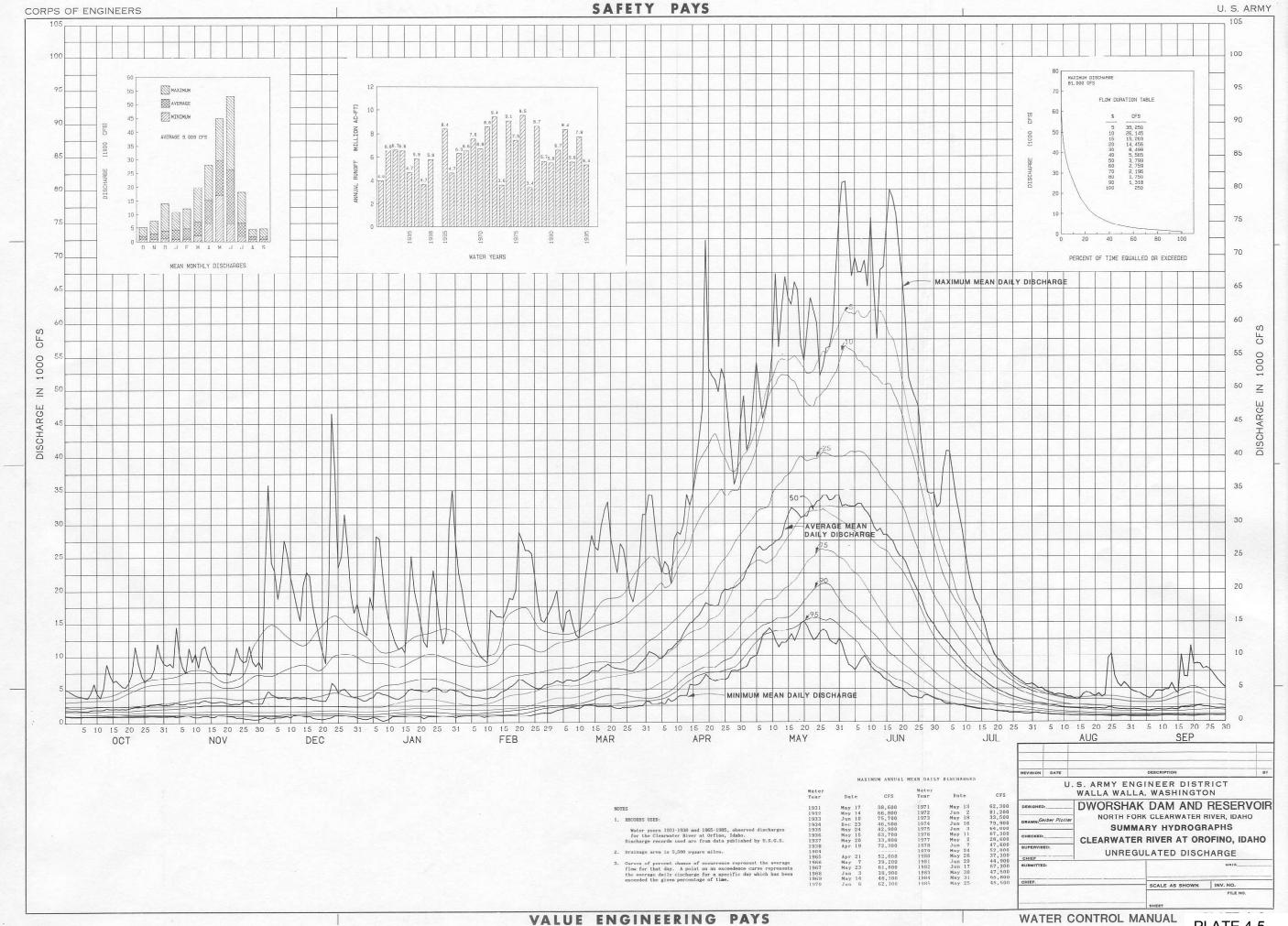
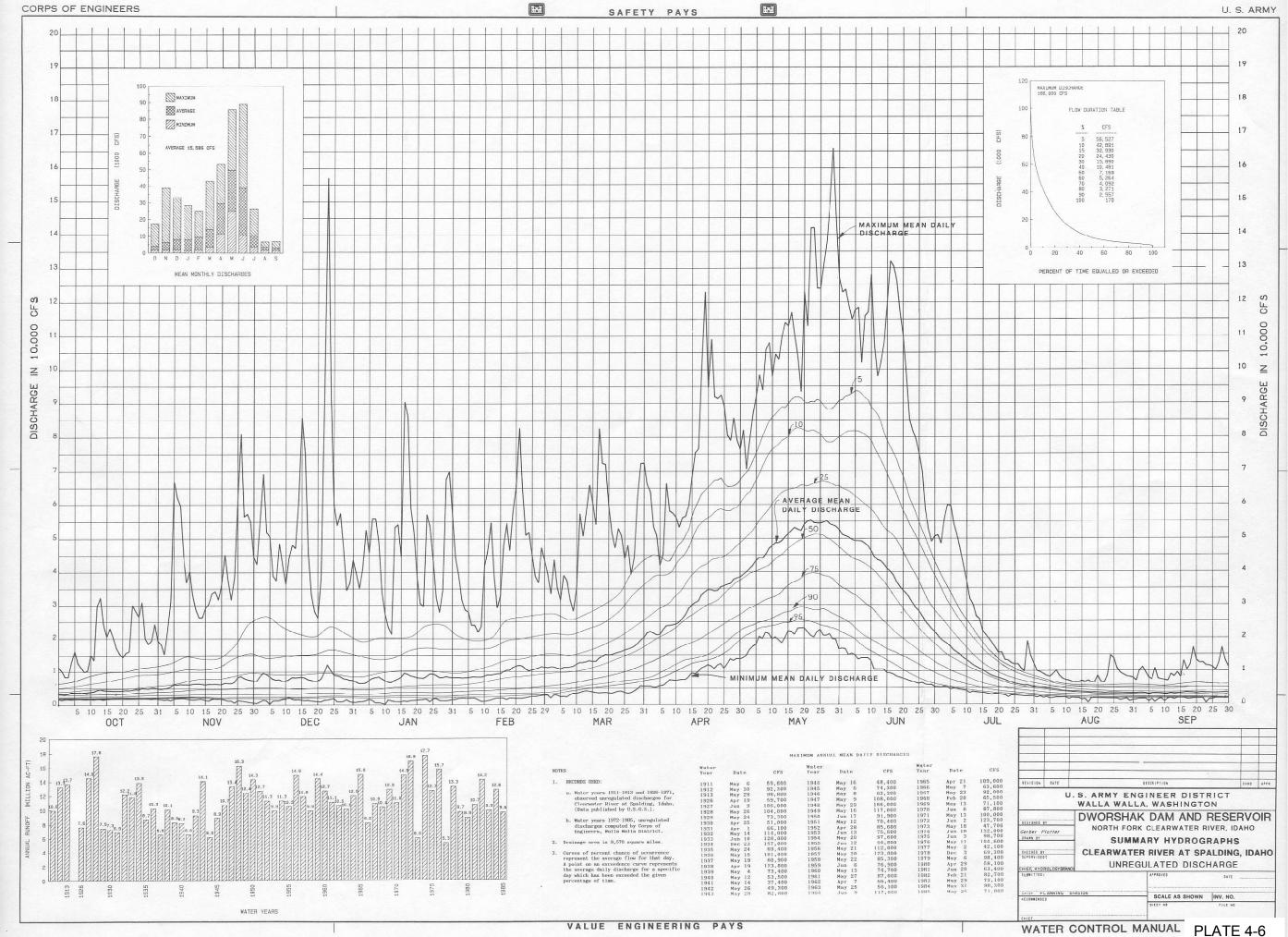
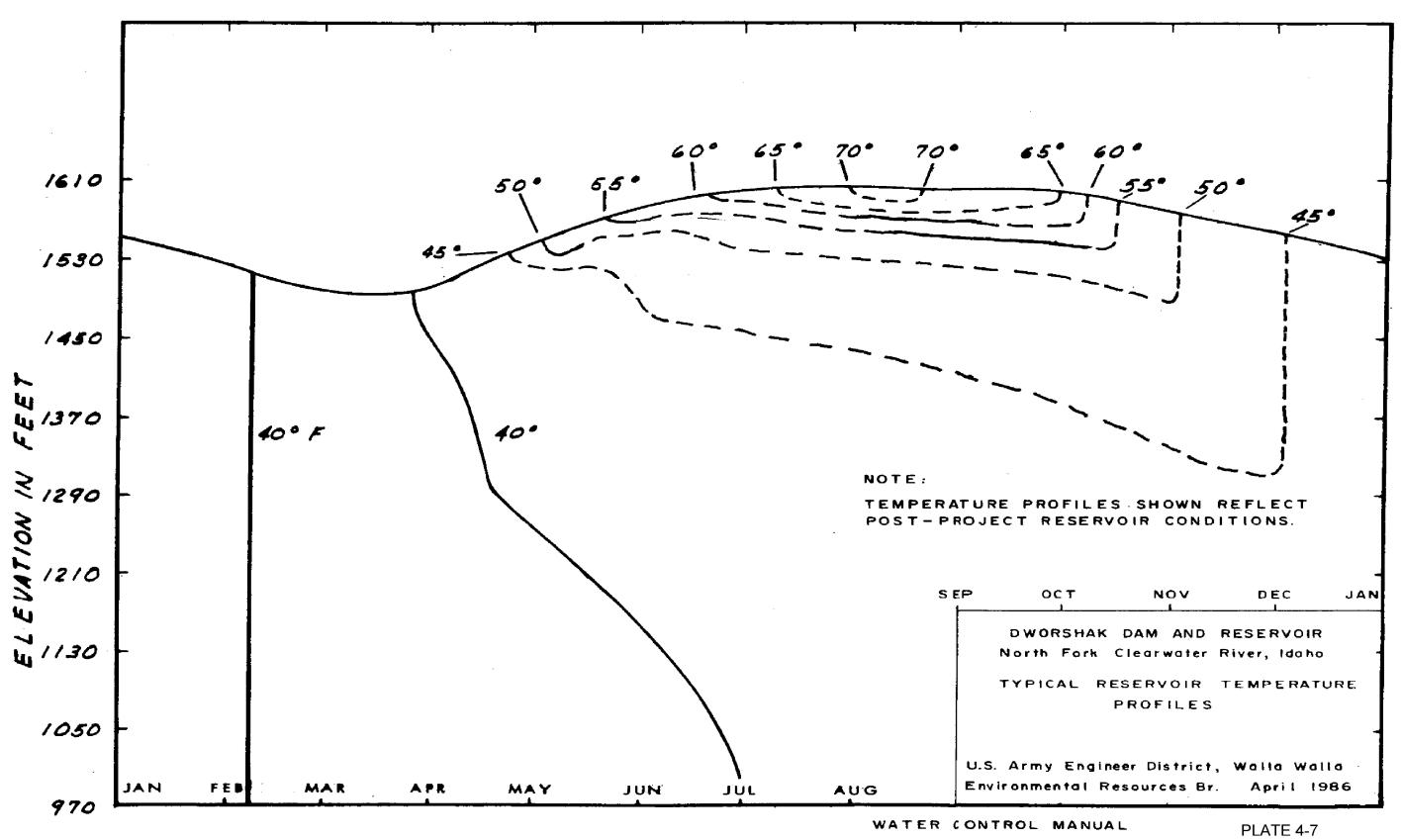
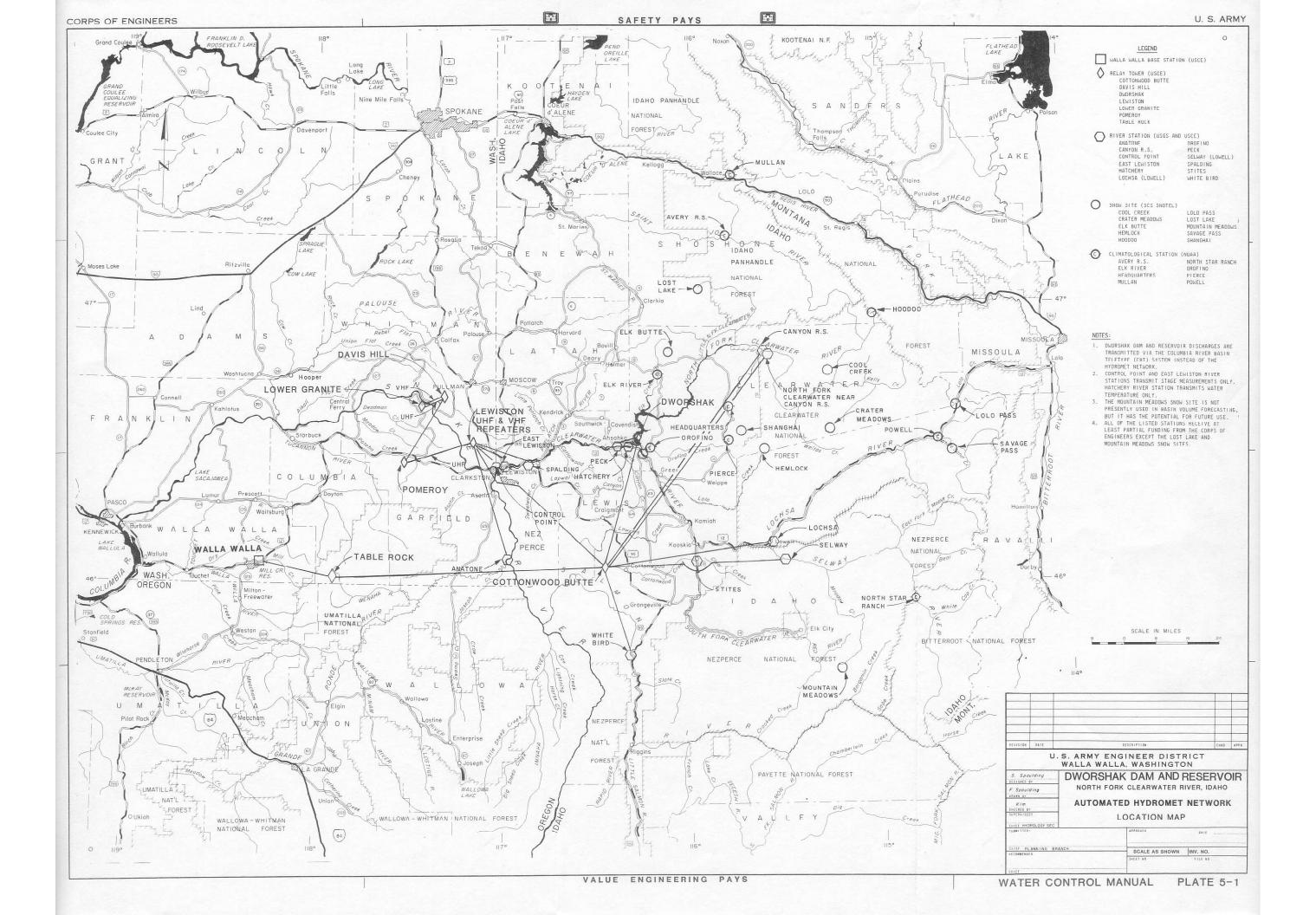
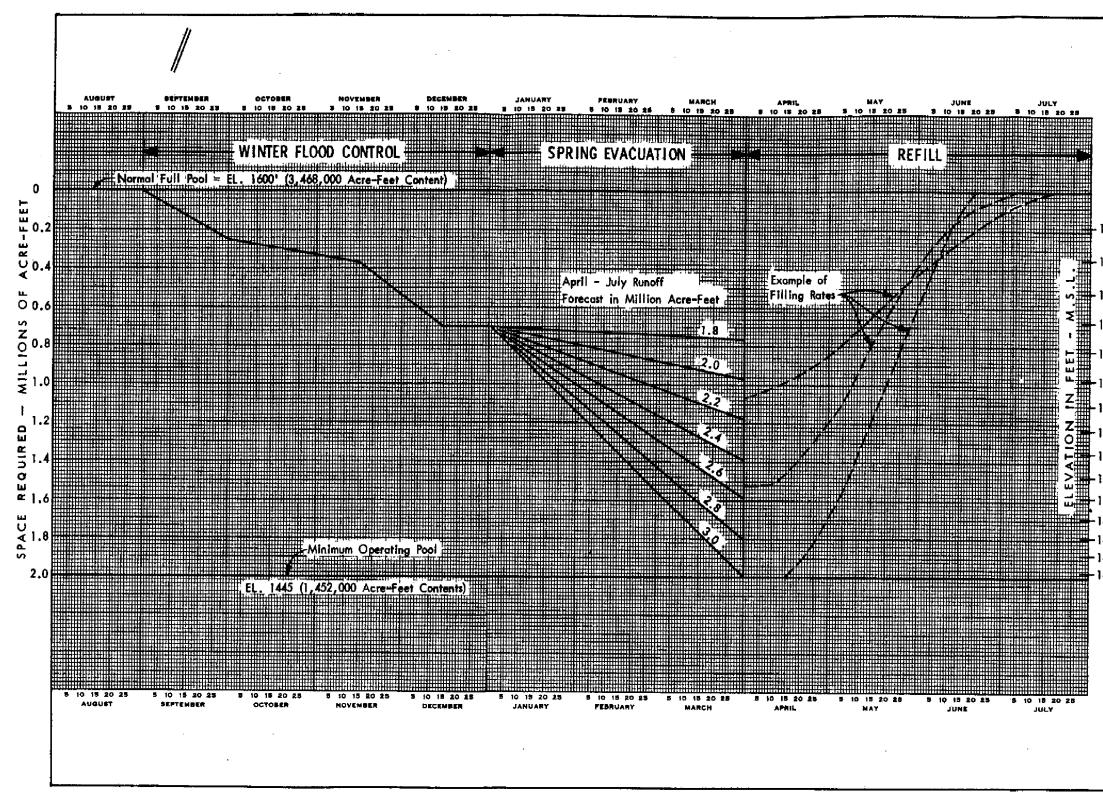
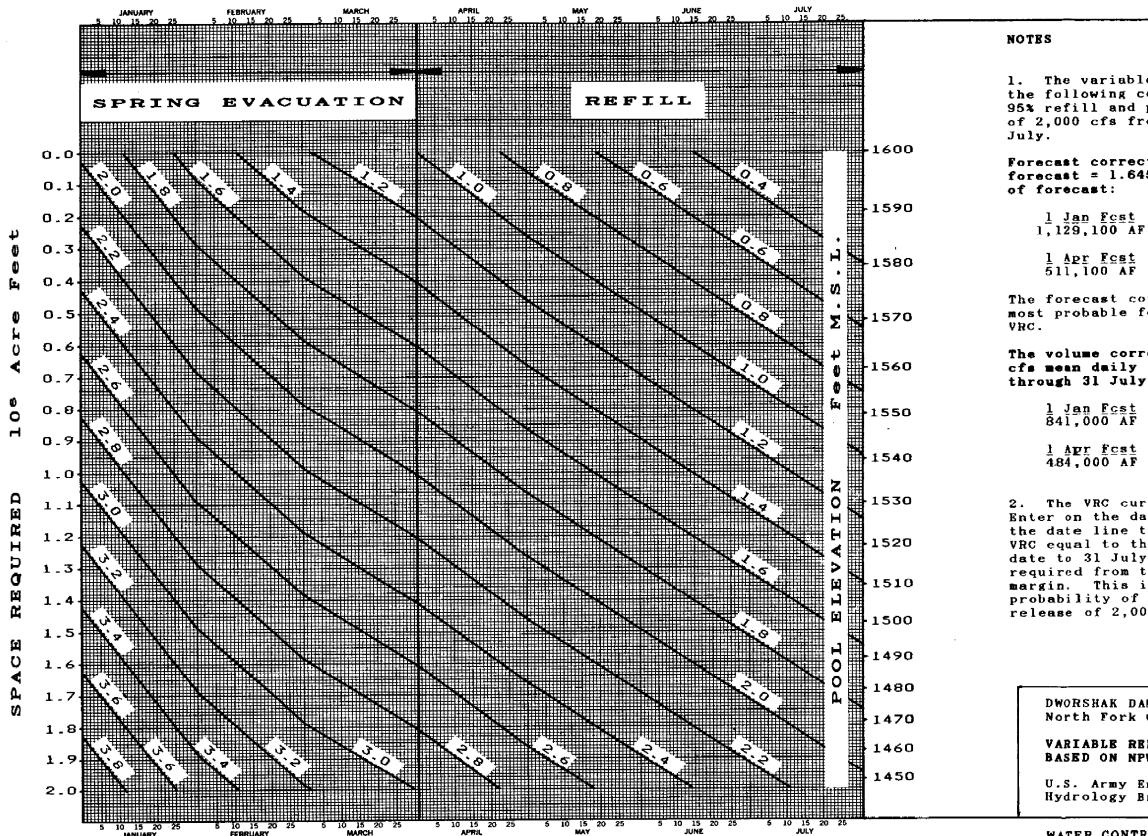
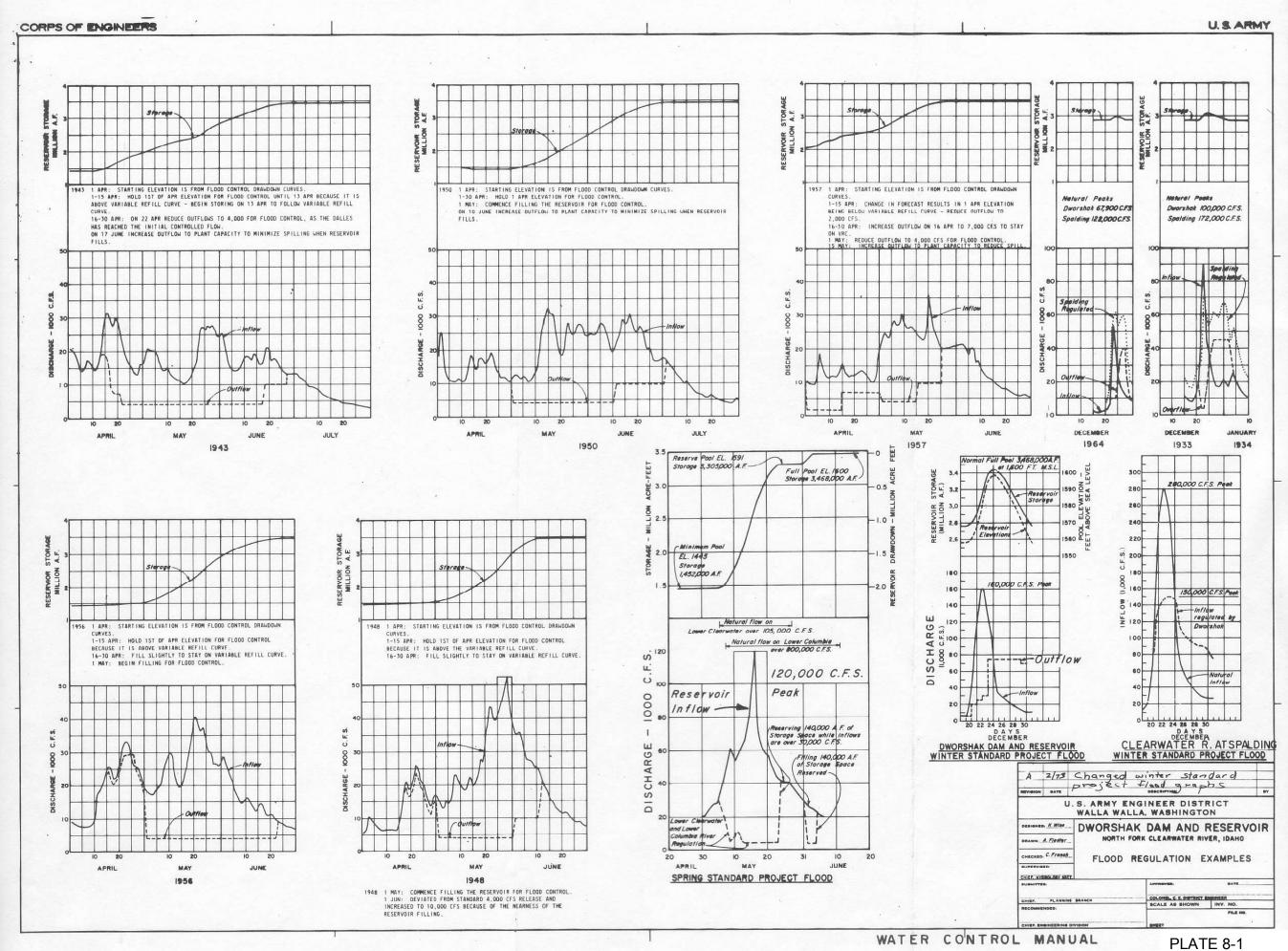






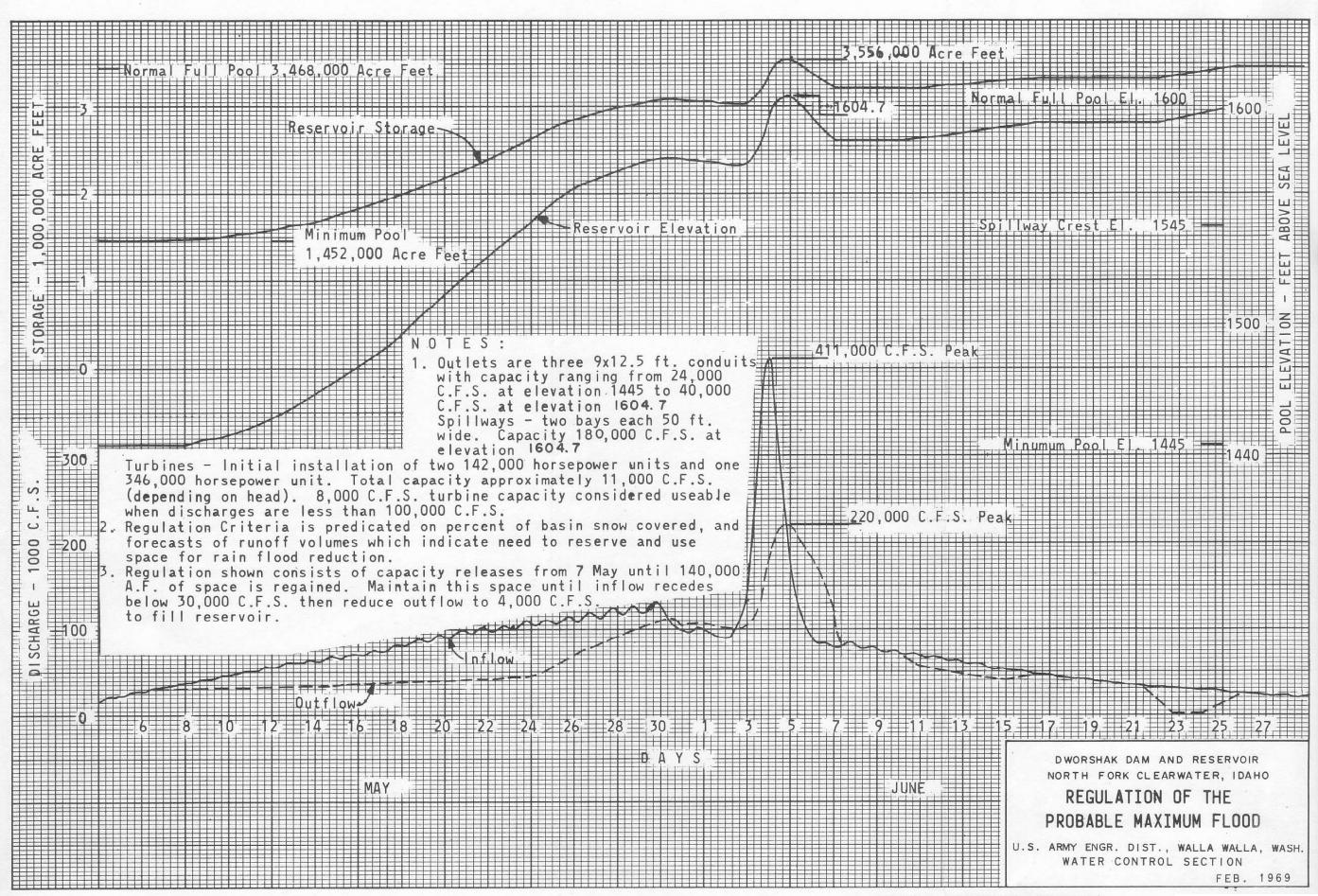
PLATE 4-5



					-	
	NC) T E S :	-			
	۱.			re to be u loped by l	sed with the NPW.	forecast
	2.	Elevatio until:	on reach	wed on 1 /	April will be	held
		α.		ists indicat v for floor	te a need to d control.	reduce
590		b.		le refill c	es lower than urve compute	
580	3.	4,000 c	fs unles	s forecasts	rol operation Indicate the	it .
570		filis.	In such	a case, o	esult when re utflows may l ty. This rul	96
560 550					ove variable	
540	4.	when sp	ace is	iess than 7	oce must be 700,000 A.F e refill curve	., unless
530						
		Perce	ent of.	Area	Minimum	
520		vered t	y Accu	umulated	Min Imum Space	
520 510			y Accu	umulated		Ft.
510		vered t	by Accu Snow 100	umulated	Space 1,000 Ac. 700	Ft.
510 500		vered t	Snow 100 80	umulated	Space 1,000 Ac. 700 540	Ft.
510 500 (90		vered t	9 Accu Snow 100 80 60	umulated	Space 1,000 Ac. 700 540 385	Ft.
510 500 190 180		vered t	Snow 100 80	umulated	Space 1,000 Ac. 700 540 385 230	Ft.
510 500 190 180 170		vered t	5y Accu Snow 100 80 60 40	umulated	Space 1,000 Ac. 700 540 385	Ft.
510 500 190 180 170		vered t	5 Accu Snow 100 80 60 40 20	umulated	Space 1,000 Ac. 700 540 385 230 80	Ft.
		vered t	5 Accu Snow 100 80 60 40 20	umulated	Space 1,000 Ac. 700 540 385 230 80	Ft.
510 500 190 180 170 160		Winter	by Acci Snow 100 80 60 40 20 10	Inviated back	Space 1,000 Ac. 700 540 385 230 80	/OIR
510 500 190 180 170 160		Winter	by Acce Snow 100 80 60 40 20 10 10	IMUIAIEd Dack IAK DAM Dack Clearw	Space 1,000 Ac. 700 540 385 230 80 0 0 AND RESERV ater River, 1 ES FOR FL	/O IR Idaho
510 500 190 180 170 160		Winter	Dy Accu Snow 100 80 60 40 20 10 10 DWORSE North Fe	IAK DAM ark Clearw IG CURV CON TR	Space 1,000 Ac. 700 540 385 230 80 0 0 AND RESERV ater River, 1 ES FOR FL	/OIR idaho .OOD
510 500 190 180 170 160		Winter OPE	by Accu Snow 100 80 60 40 20 10 10 DWORSH North Fe ERATIN 5. Army	IAK DAM ark Clearw IG CURV CON TR	Space 1,000 Ac. 700 540 385 230 80 0 0 AND RESERV rater River, I ES FOR FL OL District, Wal	/OIR idaho .OOD

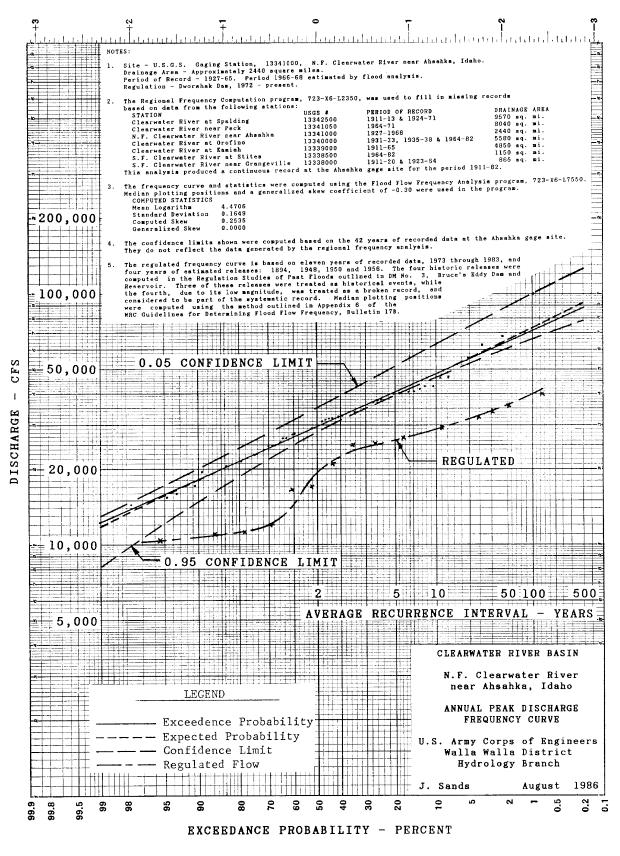
WATER CONTROL MANUAL

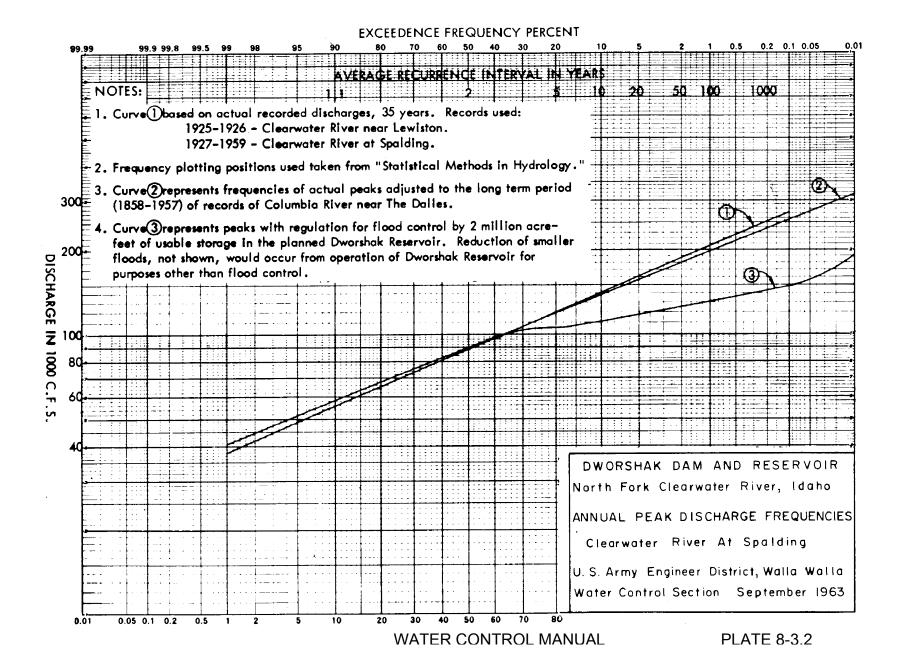

1. The variable refill curves (VRC) have the following corrections built in to assure 95% refill and provide a mean daily release of 2,000 cfs from forecast date through 31 Forecast correction applied to most probable forecast = 1.645 x standard error for period <u>1 Mar Fest</u> 609,500 AF $\frac{1}{797},\frac{Feb}{700},\frac{Fcst}{AF}$ $\frac{1}{374}, \frac{May}{200}, \frac{Fcst}{AF}$ <u>l Jun Fest</u> 265,200 AF The forecast correction is applied to the most probable forecast when computing the The volume correction required for a 2,000 cfs mean daily release from forecast date through 31 July is as follows: <u>1 Feb Fcst</u> 718,000 AF <u>l Mar Fest</u> 606,900 AF <u>l Jup Fest</u> 1 May Fest 242,000 AF 365,000 AF 2. The VRC curves are used as follows: Enter on the date of the forecast and follow the date line to its intersection with the VRC equal to the most probable volume from date to 31 July. Then read the space required from the vertical scale on the left margin. This is the space that has a 95% probability of refill with a mean daily release of 2,000 cfs. DWORSHAK DAM AND RESERVOIR North Fork Clearwater River, Idaho

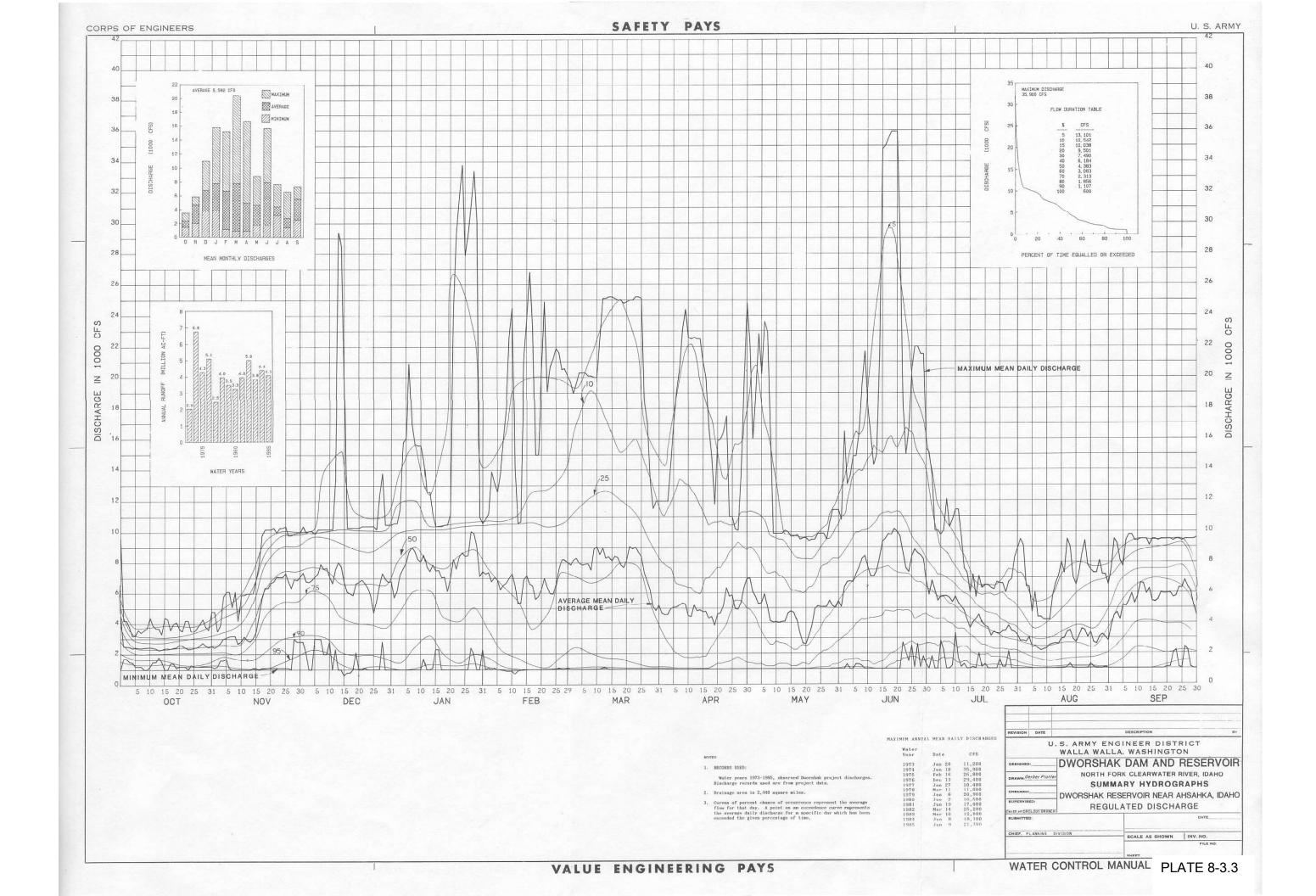

VARIABLE REFILL CURVES BASED ON NPW FORECASTS

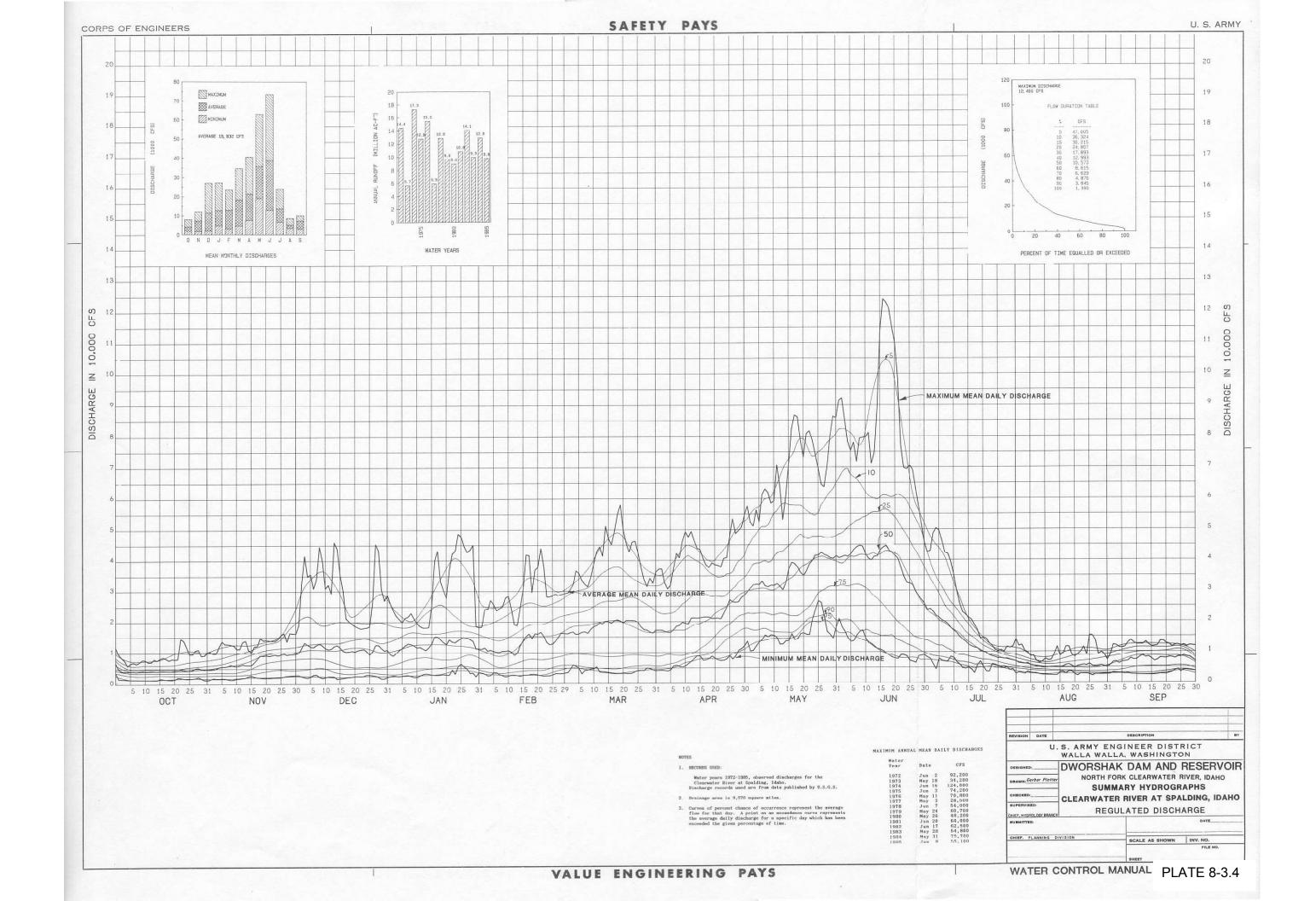
U.S. Army Engineer District, Walla Walla Hydrology Branch January, 1986

WATER CONTROL MANUAL

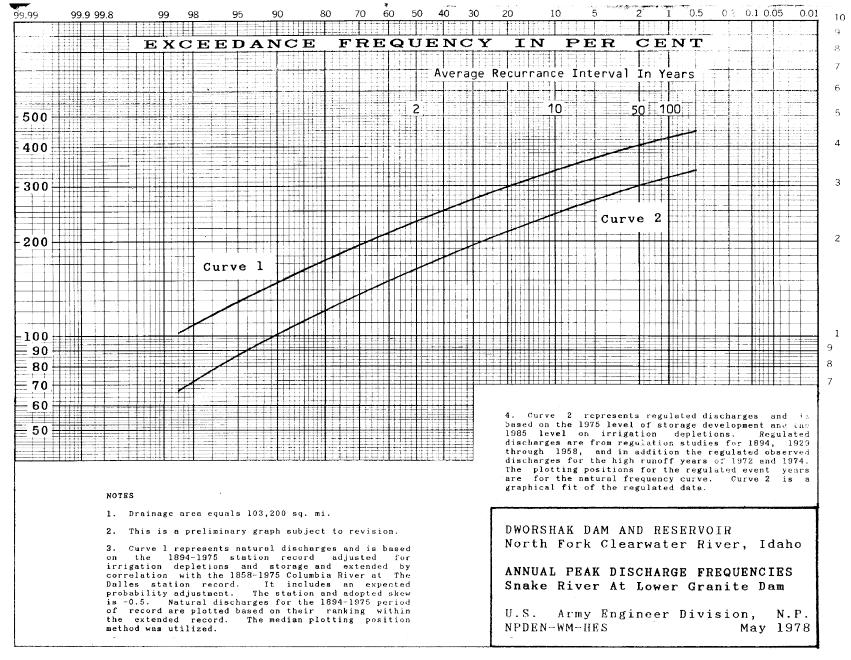

PLATE 7-2

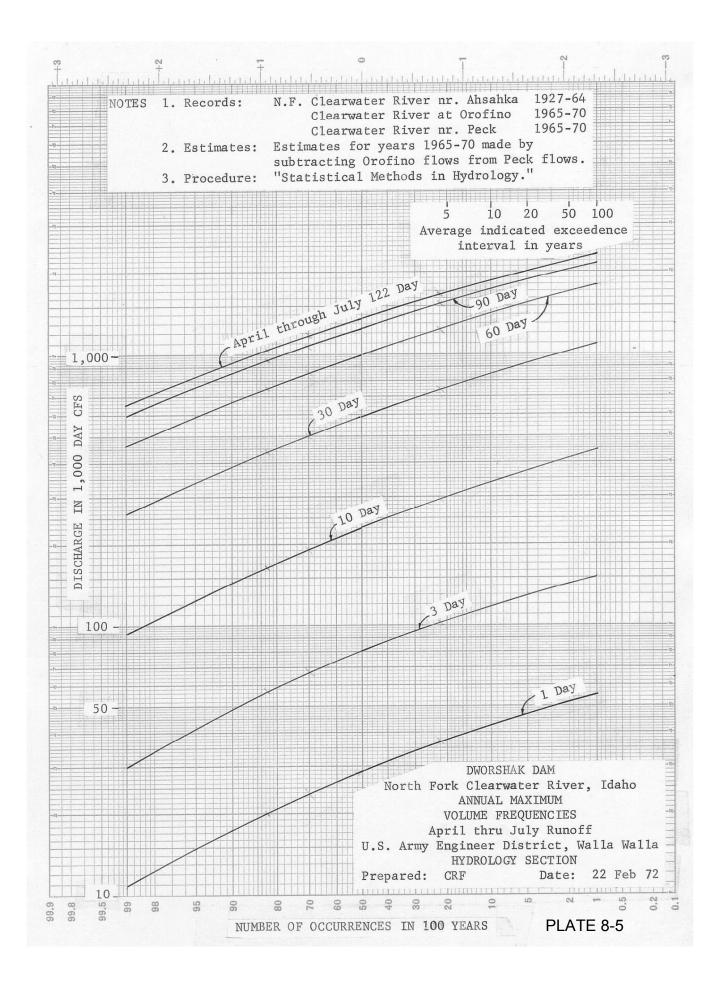

WATER CONTROL MANUAL


PLATE 8-2



WATER CONTROL MANUAL


PLATE 8-3.1



FIGURES

<u>No.</u>

- 2-1
- Boat Launch Ramps Usable Access Regional Geology (North Fork Clearwater) CROHMS Network Diagram 4-1
- 5-1

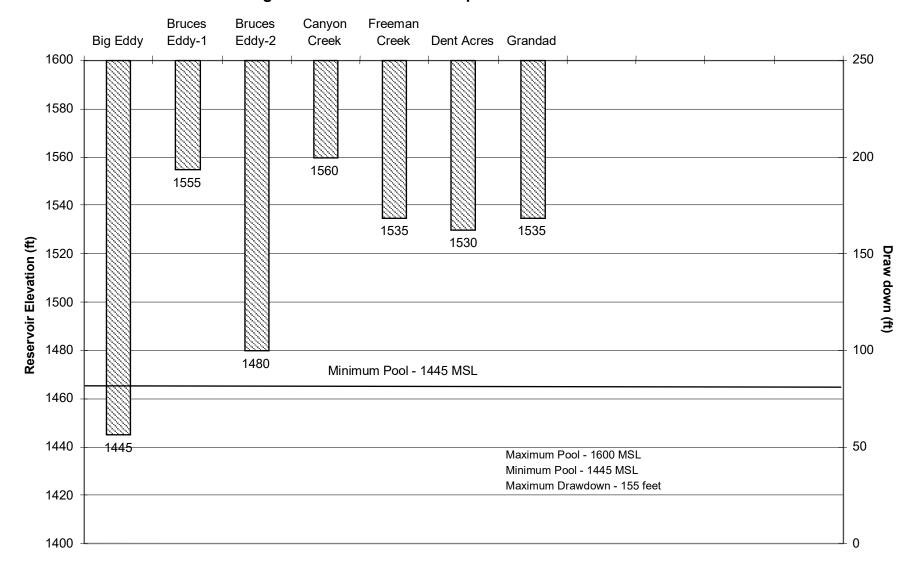
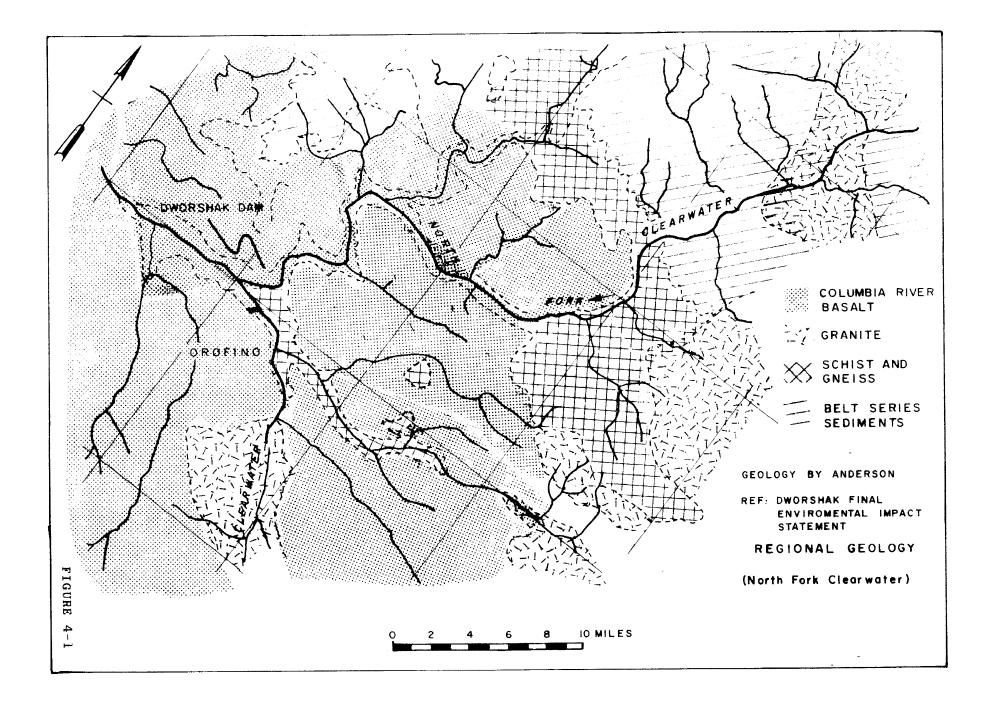



Figure 2-1 Boat Launch Ramps - Usable Access

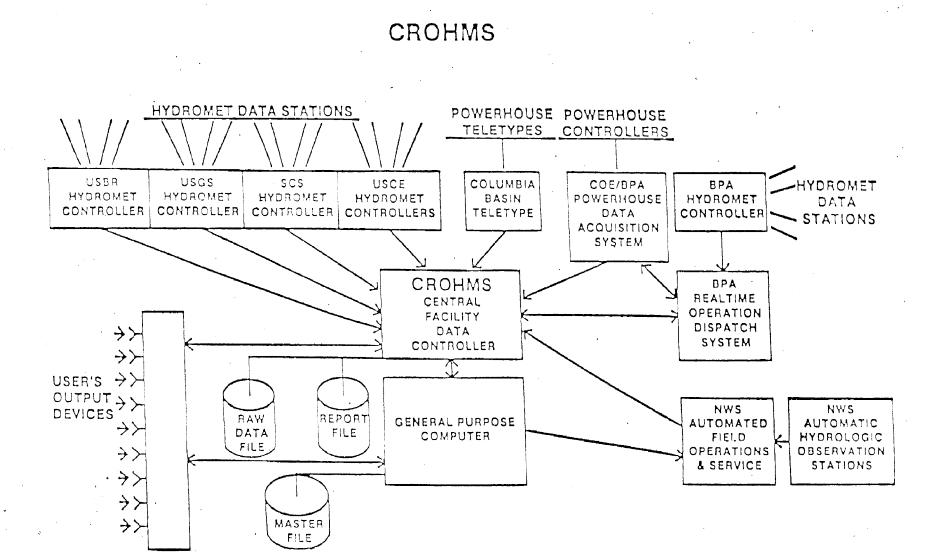
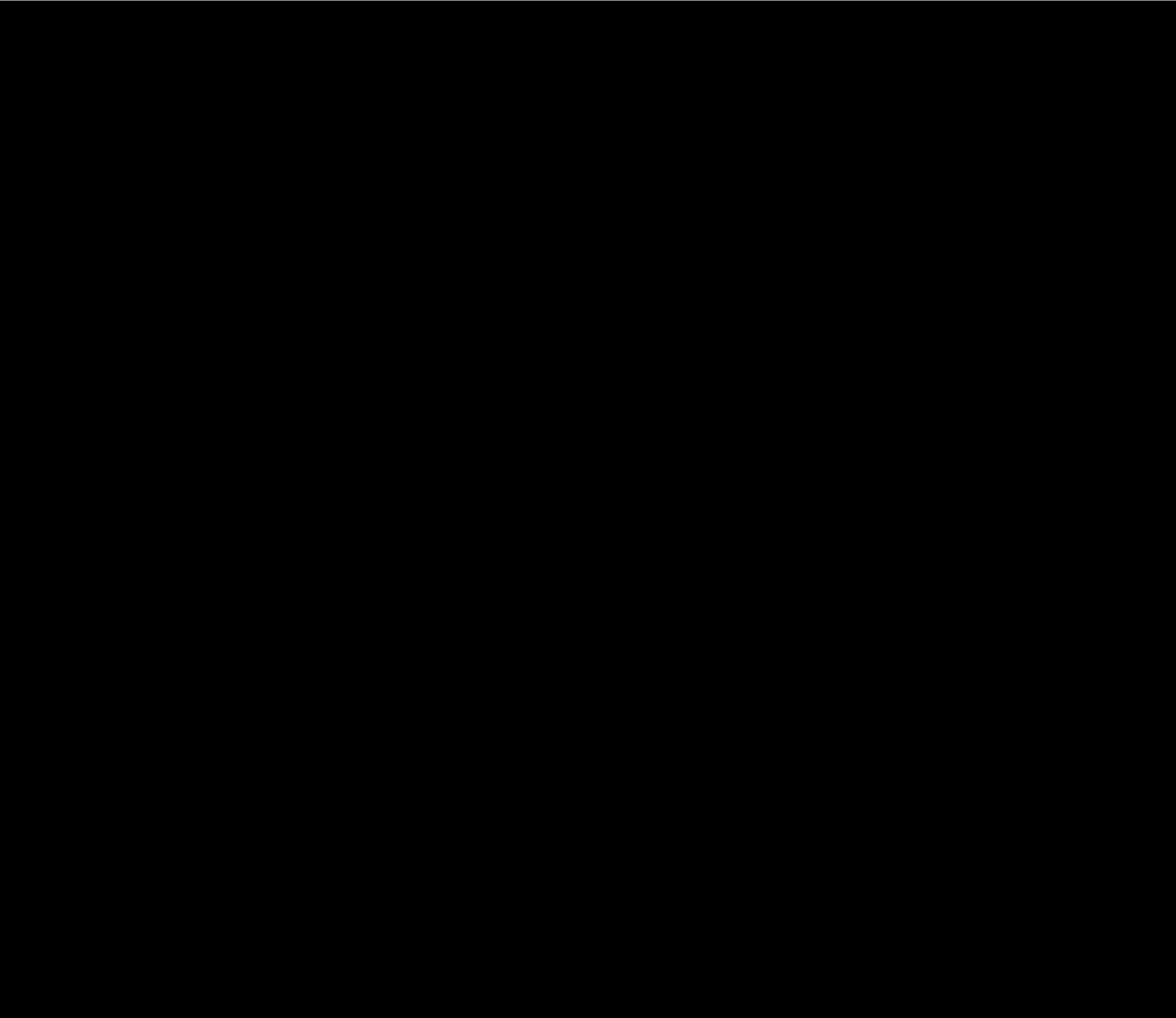



FIGURE 5-1. CROHMS Network Diagram.

EXHIBITS

<u>No.</u>

- 1 Flood Control
- 1-1 Design Memorandums
- 6-1 Volume Forecast Procedure
- Variable Refill Curve May (Sample computation through May 7) Letter to Idaho Fish and Game Commission 7-1
- 7-2 Historical Review of Dworshak Operation
- 7-3 Memorandum of Understanding

EXHIBIT 1-1

DWORSHAK DAM AND RESERVOIR DESIGN MEMORANDUMS

No.		Cover Date	2
1	Hydrology	15 December	1960
2	Type and Height of Dam		
	Volume 1 Volume 2	20 July 1 July	
3	General Design Memorandum (3 Volumes)	15 September	1961
	Supplement 1, Site Selection and Type of Concrete Dam	24 October	1962
	Supplement 2, Power Plant Studies	13 November	1964
	Supplement 3, Hydrologic Reporting Network	21 May	1971
	Letter Supplement 4, Boundary Surveys and Marking	18 November	1975
	Letter Supplement 5, Deletion of Left Abutment Access Road	26 May	1971
	Letter Supplement 6, Main Dam Debris Room	6 July	1972
	Supplement 7, Dam and Powerhouse Completion	10 December	1976
4	Deleted		
5	Powerplant, Preliminary Design Report	December	1966
	Supplement 1, Transmission Facilities and Station Service Power Supply	November	1968
5.1	Powerhouse Architectural Design	July	1967
5.2	Powerhouse Structural Design	January	1968
		EXHIBIT Sheet 1 c	

No.		Cover Date
5.3	Powerhouse Mechanical Design	October 1968
6	Main Dam, Grouting and Drainage, and Instrumentation	3 November 1964
	Letter Supplement 1, Dam Drainage	4 November 1980
	Letter Supplement 2, Sealing Upstream Face Crack for Monolith 35	11 December 1980
6.1	Main Dam Ancillary Features	16 April 1965
	Supplement 1, Penstocks, Penstock Emergency Gates, and Cathodic Protection	19 January 1966
	Supplement 2, Multi-Level Power Intake Structure	3 October 1969
6.2	Main Dam Gantry Crane	17 February 1971
6.3	Main Dam Postcooling Facilities	13 April 1966
7	Initial Relocations, Access, and Detour Road	8 January 1963
	Supplement 1, Relocations, Access, and Detour Road, Lower Reservoir Area	18 August 1964
	Letter Supplement 1, Freeman Creek Access Road	February 1984
	Supplement 2, Right Bank Access and Detour Roads	5 February 1965
7.1	Deleted	
7.2	Deleted	
7.3	Powerhouse Access Road	2 July 1969

EXHIBIT 1-1 Sheet 2 of 7

No.		Cover Date
7.4	(Left Abutment Access Road) Cancelled; See Letter Supplement 5 to D.M. 3	
7.5	Dent Bridge	July 1966
7.6	Relocation of Clearwater Highway District Road	22 November 1966
7.6	Relocation of Clearwater Highway District Road (Continued)	
	Letter Supplement 1, Paving Highway District Road	7 September 1976
7.7	Relocation of Clearwater County Road	20 February 1967
	Letter Supplement 1, Boat Ramp, Dent Bridge Area	2 February 1968
	Letter Supplement 2, Paving County Road	(Unapproved)
	Letter Supplement 3, Slide Repair	
7.8	Deleted	
7.9	Deleted	
8	Real Estate, Part 1, Damsite Construction Area, Access Roads, Related Borrow and Spoil Areas, Partial Flowage, and Public-	
	Use Areas	31 December 1962
	Letter Supplement 1, Fish Hatchery	8 August 1966
	Letter Supplement 2, Ahsahka Railroad Siding	9 September 1967
8	Real Estate, Part 2, Remainder of the Project, Remaining Public-Use Areas, Flowage Requirements, and Relocations	10 December 1963

EXHIBIT 1-1 Sheet 3 of 7

No.		Cover Date
8 (cont'	d) Letter Supplement 1, Big Game Replacement Range	1 August 1966
	Letter Supplement 2, Clearwater Highway District and Clearwater County Road Relocations	17 March 1967
9	Diversion Tunnel, Temporary Fish Facilities, Cofferdams	22 April 1964
	Supplement 1, Design and Cost Revisions, Temporary Fish Facilities	14 October 1964
10A	Reservoir Preliminary Master Plan	20 June 1966
10	Reservoir Public Use Plan	17 April 1970
10.1	Recreation Facilities and Public Use Areas	1 December 1971
	Letter Supplement No. 1, Mini-Recreation Sites	29 August 1972
	Letter Supplement No. 2, Dent Orchards Day-Use Area	29 March 1977
10.2	Freeman Creek Recreation Development	16 November 1978
10.3	Group Camps 1 and 3	29 October 1976
	Letter Supplement 1, Value Engineering Study	July 1979
	Letter Supplement 2, Three Meadows Group Camp	November 1983
11	Resident Office Facilities	8 January 1965

EXHIBIT 1-1 Sheet 4 of 7

No.		<u>Cover Date</u>
12	Spillway and Outlets	2 June 1965
	Letter Supplement 1, Stilling Basin Repair	13 May 1974
	Letter Supplement 2, Stilling Basin and Outlet Repairs	12 November 1974
	Letter Supplement 3, Stilling Basin Wall Extension	27 July 1979
13	Log Handling Facilities	5 March 1966
	Letter Supplement 1, Interim Log Facilities	20 February 1974
	Letter Supplement 2, Project Log Handling Elements	24 August 1977
14	Permanent Fish Facilities at Dam	3 June 1966
14.1	Steelhead Fish Hatchery	July 1966
	Supplement 1, Conversion of Rearing Facilities and Provision for Resident Fishery Mitigation	25 November 1970
	Letter Supplement 2, State Highway Drainage Repair	24 February 1971
	Letter Supplement 3, Laboratory Facilities	30 April 1971
	Letter Supplement 4, Water Treatment Facility Aerators	17 June 1974
	Letter Supplement 5, Additional Construction Requirements	1 June 1976

EXHIBIT 1-1 Sheet 5 of 7

No.		Cover Date
14.1	Steelhead Fish Hatchery (Continued)	
	Supplement 6, Building for Nursery Tanks	27 October 1977
	Letter Supplement 7, Energy Conservation Program	January 1982
	Supplement 8, Reuse System I Modification for Support of Ponds and Nursery Tanks	August 1980
	Supplement 9, Modification of Reuse System II	5 August 1977
	Letter Supplement 10, Modification of Filterbed Reuse System III	6 July 1979
	Letter Supplement 11, Hatchery Water Supp	1 y
15	Plan for Development of Rocky Mountain Elk Habitat	Rev. 6 April 1978
16	Concrete Aggregate and Concrete Properties Investigations	17 November 1966
17	Concrete Temperature Investigations	22 November 1966
18	Upper Reservoir Roads	4 December 1969
18.1	Grandad Creek Bridge	December 1968
19	Reservoir Clearing	3 December 1963
	Supplement 1, Clearing Below Minimum Pool	10 December 1969
	Letter Supplement 2, Debris Gathering and Disposal	13 June 1974

EXHIBIT 1-1 Sheet 6 of 7

No.		Cover Date
20	Visitor Facilities and Site Restoration	January 1972
	Supplement 1, Access Features for Visitors and Operations	15 November 1978
	Letter Supplement 1, Dock Access	Deleted May 1981
20.1	Architectural Treatment	18 February 1966
	Letter Supplement 1, Elevator on Downstream Face of Dam	13 September 1971 Deleted 6 May 1974
20.2	Damsite Visitor Viewpoint Development	29 March 1966
20.3	Left Abutment Accessory Features	
21	Relocation Washington Water Power Company Electrical Facilities	30 October 1970
22	Cost Allocation Studies	June 1975
23	Engineering Control During Construction	5 December 1969
24	Reservoir Filling Plan	12 November 1970
25	Proposed Reservoir Sedimentation Ranges and Investigation	April 1978
26	Master Plan (Draft)	July 1985

EXHIBIT 1-1 Sheet 7 of 7

EXHIBIT 6-1

DWORSHAK UNREGULATED INFLOW VOLUME FORECAST PROCEDURE

U.S. ARMY CORPS OF ENGINEERS WALLA WALLA DISTRICT

The Dworshak runoff forecast precedure consists of a multiple regression equation of the following form:

Y = CO + C1(Ycomb)

Where,

- Y = Forecasted runoff volume for the period 1 April through 31 July.
- Ycomb = (Yprecip + Ywc)/2) (Average of the Snow water content forecast (Ywc) plus the precipitation forecast (Yprecip).

CO, C1 = Regression Coefficients (Table 4).

* If forecast date is after 1 January, Ycomb = Ywc , do not include precipitation forecast.

SNOW WATER CONTENT FORECAST:

Ywc = (Sum [AO + A1(X1)])/n (average forecast for snow courses used)

Where,

```
Ywc = Averaged forecasted runoff volume (Date - 31 July).
```

AO,A1 = Regression coefficients (Tables 1 and 2).

X1 = Snow course measured water content in inches.

n = Number of snow courses used in forecast.

PRECIPITATION FORECAST:

Y precip = BO + B1(X2)

Where,

Yprecip = Forecasted Runoff Volume (Date - 31 July).

BO, B1 = Regression Coefficients (Table 3).

X2 = accumulated average monthly sums of weighted precipitation. The following pages illustrate forecast procedures.

> EXHIBIT 6-1 Page 1 of 5

Snow course	Elevation (feet)	AO (Table)	1)	Al (Table	2)	X1 measured water content (inches)	Forecasted runoff (in.) (YWC=AO+A1(X1)
Crater Meadows	6,100		Ī				
Crooked Fork	3,600		I				
Elk Butte	5,550		I				
Fishlake Airstri	5,000		I				
Hemlock Butte	5,500		I				
Hoodoo Basin	6,000		I				
Hoodoo Creek	5,900		Ī				
Lolo Pass	5,240		I				
Lost Lake	6,000		I				
Savage Pass	6,170		Ī				1
Shanghai Summit	4,600		Ī				

DWORSHAK SNOW WATER CONTENT FORECAST PROCEDURE:

Total = Sum [Ywc = A0 + A1(X1)] = _____

n = Number of snow courses used for forecast = _____ Ywc(inches) = average = Total/n = _____(inches)

> EXHIBIT 6-1 Page 2 of 5

DWORSHAK PRECIPITATION FORECAST PROCEDURE:

Precipitation	Station		Measure	d Stat	ion Pro	ecipit	ation	(inche	s)
Station	Weight	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun
Avery R.S.	1.63							l	
Elk River	1.42								
Headquarters	1.36					I			
Mullan	1.39								
North Star Ranch	2.36								
Orofino	2.07								
Pierce	1.23								
Powell	1.39								
Mont	hly weight	1.0	0 1.00	1.00	1.00	1.00	0.80	0.60	0.40
	Elevation	Sta Nov	tion Wei Dec						
Avery R.S.	2,390							1	
Elk Divon	2 01 0			1	1	1	1	1	1

1							
Elk River	2,918				Ι	Ι	
Headquarters	3,138				I	I	
Mullan	3,319		1.1		I	1	
North Star Ranch	2,800					1	
Orofino	1,027						
Pierce	3,100					1	I
Powell	3,632						
Weighted Monthly							
Average Monthly				1			
	X2 =	= Accumulated	average	monthly	sums.	=	

Yprecip	(inches)	=	BO -	ŀ	B1	(X2),	Refer	to	Table	3	for	B0	&	B1	values.	

Yprecip (inches) = _____ = ____

EXHIBIT 6-1 Page 3 of 5 DWORSHAK UNREGULATED INFLOW VOLUME INFLOW FORECAST PROCEDURE:

Forecast period ______ through 31 July
Forecast Date ______
Ycomb = (Ywc + Yprecip)/2 (1 January forecast)
 Ycomb(inches) = (____ + ___)/2 = ____(inches)
 Insert Ywc and Yprecip as computed on pages 2 and 3 of
 this forecast procedure.
Ycomb = Ywc(after 1 January - 31 July) = ____(inches)
Ycomb(acre-feet) = Ycomb(inches)*(130,133) = _____(acre-feet)
If forecast date is before 1 April:
1 April - 31 July Forecast = Y = C0 + C1(Ycomb)
Y = _____ acre-feet

Use Ycomb(acre-feet) found above, CO and C1 found in Table 4.

EXHIBIT 6-1 Page 4 of 5

TADLE I. KLUKL	.5510H LQ0			chicoly		
Snow Course	<u>1</u> Jan	1 Feb	1 Mar	1 Apr	1 May	1 Jun
Crater Meadows Crooked Fork Elk Butte Fish Lake Hemlock Butte	6.35 14.65 12.69	-1.01 9.81 7.51	1.94 4.67 -0.21 1.79	0.02 -2.05 -1.31 -6.63	-10.1 -0.53 -7.65 -7.88	2.69 6.41 1.57
Hoodoo Basin Hoodoo Creek Lolo Pass	1.76 4.99 12.92	-14.78 -4.23 -17.31	-13.95 -1.52 -0.52	-11.4 -0.63 -2.17	-8.45 -0.80 -1.80	-1.94 -1.39
Lost Lake Savage Pass	9.51	-11.65	5.89 -3.66	-5.06 -0.42 4.23	-3.40 -0.87 6.40	-0.44
Shanghai Summit TABLE 2. REGRI		4.37	6.67	4.23	0.40	
Snow Course	<u>1 Jan</u>	<u>1 Feb</u>	1 Mar	1 Apr	1 May	1 Jun
Crater Meadows Crooked Fork Elk Butte Fish Lake Hemlock Butte Hoodoo Basin Hoodoo Creek Lolo Pass Lost Lake Savage Pass Shanghai Summi	4.685 0.892 0.801 1.345 1.230 1.487 2.007 t 1.549	2.682 0.650 0.566 1.110 0.901 1.961 1.936 1.249	1.776 0.584 0.692 0.533 0.830 0.602 0.914 0.353 1.202 0.766	1.559 0.625 0.590 0.562 0.606 0.454 0.759 0.434 0.809 0.654	0.568 0.517 0.597 0.470 0.456 0.351 0.604 0.329 0.631 0.478	0.184 0.218 0.207 0.286 0.281 0.197
TABLE 3.						
Date	BO	<u>B1</u>				
1 February 1 March 1 April 1 May 1 June	14.53 11.45 3.56 -2.40 -2.57 -5.24 -6.64	1.107 0.737 0.801 0.776 0.706 0.733 0.738				
TABLE 4.						
Date	<u>C0</u>	<u>C1</u>				
	98200 46000 36500 0	0.763 0.854 0.908 1.000				
NOTE .						

TABLE 1. REGRESSION EQUATION INTERCEPT AO (inches)

NOTE: For dates other than the first of the month, values interpolated.

EXHIBIT 6-1 Page 5 of 5

EXHIBIT 7-1

DWORSHAK RESERVOIR VARIABLE REFILL CURVE - MAY

SAMPLE COMPUTATION THROUGH MAY 7

	95%	Mean		Resid	Min	Avail	VECC	VRC		
	Inflow	Daily	Accum	Volume		for	Full =	Full =	Actual	
Date	Fcst	Inflow	Inflow	Inflow	thru	Refill	1016.4	1600.0	Elev	
Duto										
May	KSFD	KSFD	KSFD	KSFD	KSFD	KSFD	KSFD	FT		
1	1,200.0	6.0	6.0	1,194.0	184.0	1,010.0	6.4	1,446.5		
2	1,200.0	7.0	13.0	1,187.0	182.0	1,005.0	11.4	1,447.6		
3	1,200.0	9.0	22.0	1,178.0	180.0	998.0	18.4	1,449.2		
4	1,200.0	9.0	31.0	1,169.0	178.0	991.0	25.4	1,450.7		
5	1,200.0	10.0	41.0	1,159.0	176.0	983.0	33.4	1,452.5		
6	1,200.0	12.0	53.0	1,147.0	174.0	973.0	43.4	1,454.7		
7	1,200.0	15.0	68.0	1,132.0	172.0	960.0	56.4	1,457.6		
8	1,200.0				170.0	The following are the steps necessary to compute the				
9	1,200.0				168.0	elevations necessary on a daily basis to assure refill.				
10	1,200.0				166.0	1. Come many della influence from the data the former of				
11	1,200.0				164.0	1. Sum mean daily inflow from the date the forecast of total inflow was made.				
12	1,200.0				162.0					
13	1,200.0				160.0			e inflow fro		
14	1,200.0				158.0	inflow through July. The result is the residual inflow forecast volume.3. Sum the minimum required outflow through July from the current date.4. Subtract the result of 3 from the result of 2. This gives the amount of water available for refill before July.				
15	1,200.0				156.0					
16	1,200.0				154.0					
17	1,200.0				152.0					
18	1,200.0				150.0					
19	1,200.0				148.0					
20	1,200.0				146.0					
21	1,200.0				144.0	5. Subtract 4, the available refill, from the total reservoir storage at full pool. This gives the amount of storage that must exist on the day of computation to				
22	1,200.0				142.0					
23	1,200.0				140.0	storage that must exist on the day of computation to assure refill. Any storage over this amount may be used to serve secondary power loads.				
24	1,200.0				138.0					
25	1,200.0				136.0	6. The arr	ount of stor	age found in	1.5 may the	1 be used
26	1,200.0				134.0	6. The amount of storage found in 5 may then be used with the appropriate storage table to find the pool elevation.				
27	1,200.0				132.0					
28	1,200.0				130.0			EXHI	BIT 7-1	
29	1,200.0				128.0					
30	1,200.0				126.0					
31	1,200.0				124.0					

Sheet 1 of 1

January 10, 1994

Planning Division (1110-2-1150a)

Mr. Wesley G. Rose, O.D. Chairman Idaho Fish and Game Commission 201 South Lincoln Jerome, Idaho 83338

Dear Mr. Rose:

Thank you for your letter of December 5, 1993, regarding the water control management of Dworshak Dam and how water management decisions are made.

We are and have been deeply concerned about the regulation of Dworshak Reservoir, especially during the summer months when recreation related activities are of most importance to the local communities. In the late 1980's, we placed a limit on the amount of reservoir draft that the Bonneville Power Administration could request for power to 5 feet between the time the reservoir reached its maximum height and Labor Day weekend. We believed this criteria to be a solution to most of the problems with summer pool elevation prior to 1985.

However, the Pacific Northwest Power Planning Council's Fish and Wildlife Program added significant new fish requirements since 1991 and subsequently, the National Marine Fisheries Service, in their interpretation of the Endangered Species Act, specified added requirements for listed salmon. At the present, these criteria call for significant releases of water in July and August so even if the reservoir is full by late June, there could be significant (similar to 1993) drafts to provide for flows at Lower Granite Dam. Once these drafts are made, there is little hope for the reservoir to recover for the prime summer season because the runoff is essentially over by mid-July. Thus far we have honored both initiatives, fully understanding the consequences to project uses.

Until the Biological Opinion and our Record of Decision is published in 1994, we cannot explicitly identify the expected elevations/releases of Dworshak Reservoir for 1994 or for the next 5 years for which the Biological Opinion is being written. In response to your request for background information relative to how water management decisions are made, we are enclosing the following documents:

a. The Columbia River System

b. Historical Review of Dworshak Operation

Please contact Mr. David Reese, Chief, Hydrology Branch, at 509-522-6599 if you have any additional questions.

Sincerely,

REESE/PL-H

KIM/PL-H/sg

FITZSIMMONS/PL

James S. Weller Lieutenant Colonel, Corps of Engineers District Engineer

LAWS/PL

TURNER/EA

BAEHRE/D-DE

WELLER/DE

IM-SM

PL-H Files

Enclosures

CF w/encls: CENPD-PE-WM-RCC (Russ George)

CENPD-PE-WM-R

Historical Review of Dworshak Operation

A. <u>Project Operation</u>. Dworshak reservoir elevation, inflow, and outflow for the period of record from water year 1972-1993 are shown on attachedgraphs (22 pgs). Since the initial filling of Dworshak reservoir was not completed until the summer of 1973, the 1974-1993 period would be considered to be representative of the project operation.

From 1974-1983 the typical pattern of operation followed the annual Operating Rule Curve for seasonal storage which included: (1) Winter flood control drawdown from September-December to provide at least 700 KAF by 15 December, (2) Spring flood control drawdown from January-March to maintain 700 KAF of space plus any additional space required, based on runoff volume forecasts, (3) Reservoir refill from April-July, and (4) Stable summer recreation pool from July-August.

Between 1984-1993 additional use of water from storage in Dworshak was used established for (1) Water Budget flow augmentation (15 April-15 June), (2) Summer flow augmentation (16 June-31 July), and lower Snake River temperature tests (August-September). Project operation from 1983-1993 are summarized in the following paragraphs:

(1) <u>1983 Operation</u>. The spring of 1983 was the first year of implementation of the Water Budget as provided for under the Northwest Power Planning Council's Fish and Wildlife Program. The Lower Granite April-July runoff volume forecast was 25 million acre-feet (AF), which exceeded 23 million AF, so no releases above firm power and/or flood control requirements would be required from Dworshak. The actual level of flows during the 15 April through 15 June Water Budget period flows at Lower Granite generally remained above 85 kcfs and additional water from Dworshak was not required for the Water Budget. The Water Budget was not an integral part of the coordinated system plan in 1983 because power operations planning occurs one year prior to actual implementation. 1983 tested the process of implementation and revealed problems such as methods of keeping track of amount of water used for Water Budget purposes and daily or weekly implementation.

(2) <u>1984 Operation</u>. This was the second year for operation of the Water Budget but only the first in which the Water budget was first incorporated into the system power studies. The Lower Granite April - July runoff volume forecast was 21.6 million AF, which indicated that during the Water Budget period flows expected at Lower Granite would not be adequate to meet the required minimum flow level of 85 kcfs at Lower Granite. However, above normal precipitation conditions during the 1984 snowmelt season caused flows in the Snake River at Lower Granite to exceed 85 kcfs during the Water Budget period and as a result, additional water from Dworshak was not required.

(3) <u>1985 Operation</u>. The Lower Granite April - July runoff volume forecast was -24.2 million AF, which indicated sufficient runoff from uncontrolled areas above Lower Granite that flow augmentation from Dworshak would probably not be necessary during the Water Budget period. Lower Granite. However, dry weather conditions, which began in December continued through April and May, coupled with cool temperatures in late April and early May resulted in low flows at Lower Granite from 20 April through 18 May. Dworshak discharge was increased from 1,000 cfs to full powerhouse capacity, 10,000 cfs, on 23 April. Even with the additional water from Dworshak the flows at Lower Granite were less than the desired minimum fish flow of 85 kcfs during the 22 April through 2 May period and again from 11-17 May. During the Water Budget period Dworshak provided 366 KAF of water for flow augmentation at Lower Granite.

(4) <u>1986 Operation</u>. The Lower Granite April - July runoff volume forecast was 19.6 million AF, which indicated that during the Water Budget period flows expected at Lower Granite would not be adequate to meet the required minimum flow level of 85 kcfs at Lower Granite. However, a wet April and early May followed by unseasonably hot weather in late May and June resulted in sufficient flows at Lower Granite that the 400 KAF allocated from storage in Dworshak was not required for flow augmentation.

(5) <u>1987 Operation</u>. The Lower Granite April - July runoff volume forecast was 13.3 million AF, which indicated that during the Water Budget period flows expected at Lower Granite would not be adequate to meet the required minimum flow level of 85 kcfs at Lower Granite. Therefore, approximately 300 KAF of storage in Dworshak and 150 KAF in Brownlee was made available for the Water Budget. Even with Water Budget releases of up to 25 kcfs from Dworshak and up to 26 kcfs from Brownlee, the flows at Lower Granite only exceeded 85 kcfs for 9 days during the Water Budget period. Where only limited storage is available in Dworshak and Brownlee for the Water Budget, it is not possible for these reservoirs to meet the 85 kcfs minimum desired fish flow in low runoff years. Dworshak provided 381.4 KAF of water from storage for the Water Budget.

(6) <u>1988 Operation</u>. The Lower Granite April - July runoff volume forecast was 13.3 million AF, which indicated that during the Water Budget period flows expected at Lower Granite would not be adequate to meet the required minimum flow level of 85 kcfs at Lower Granite. Therefore, approximately 300 KAF of storage in Dworshak and 150 KAF in Brownlee was allotted for the Water Budget. Even with Water Budget releases of up to 25 kcfs from Dworshak and up to 25 kcfs from Brownlee, the flows at Lower Granite did not exceeded 85 kcfs and were over 80 kcfs on only 4 days during the Water Budget period. Where only limited storage is available in Dworshak and Brownlee for the Water Budget, it is not possible for these reservoirs to meet the 85 kcfs minimum desired fish flow in low runoff years. Dworshak provided 301.3 KAF of water from storage for the Water Budget.

(7) <u>1989 Operation</u>. The Lower Granite April - July runoff volume forecast was 21.3 million AF (24 percent of average) Therefore, approximately 240 KAF of storage in Dworshak and 150 KAF in Brownlee was allotted for the Water Budget to maintain minimum flow level of 85 kcfs at Lower Granite. Flows at Lower Granite remained above 85 kcfs until 26 April. On 25 April the Fish Passage Center requested that 100,000 cfs be maintained at Lower Granite. Even with Water Budget releases of up to 20 kcfs from Dworshak and up to 31 kcfs from Brownlee, the flows at Lower Granite did not exceeded 100 kcfs until 7 May. The Water Budget discharges from Dworshak and Brownlee were reduced during the seasonal peaking period to maintain the requested 100 kcfs at Lower Granite. Then after the seasonal peak, Water Budget releases from Dworshak were again requested for the 15-20 May period: 10 kcfs for three days and 5 kcfs for two days. This used up the allotted of 240 KAF and also an additional 42 KAF.

(8) <u>1990 Operation</u>.

(a) <u>Water Budget Regulation</u>. The 1 April forecast of spring runoff for the Snake River at Lower Granite Dam was 14.8 million AF (65 percent of average). Based on that forecast, RCC committed to providing 308 KAF of shapeable storage from Dworshak for the 1990 Water Budget. Water Budget releases of up to 25,000 cfs were made from Dworshak during the period 7-15 May at the request of the Fish Passage Center in Portland and the reservoir was drawndown 14 feet from elevation 1586 to elevation 1572. Dworshak inflows during the 7-15 May Water Budget period averaged 11,000 cfs. The portion of the releases during the 7-15 May period that was credited to Water Budget totaled 307.6 KAF.

Following heavier than normal late spring precipitation, additional releases from Dworshak were needed for flood control in late May and June. As a result of increasing Dworshak outflows from 1,000 cfs to 9,500 cfs coupled with a special operation of Lower Granite to increase nighttime outflows and some increase in natural flows, the smolt index counts at Lower Granite Dam rose from 29,065 on 24 May (Lower Granite inflow 55,700 cfs) to 430,970 on 27 May (Lower Granite inflow 68,000 cfs). This special operation from 24-28 May provided an additional 61 KAF of water from Dworshak for flow augmentation above the 307.6 KAF that was credited to the Water Budget.

Regulated releases from Dworshak eventually reached a maximum of 17,100 cfs on 7 June and flows on the Clearwater River at Spalding reached a maximum of 70,000 cfs on 29 May. The peak regulated Lower Granite inflow reached a maximum of 119,200 cfs on 20 May during the 15 April - 15 June Water Budget period.

Dworshak reservoir refilled to elevation 1595 on 8 June, elevation 1599 on 1 July, and elevation 1600 on 18 July. Actual runoff for the 1 April - 31 July period totaled 2.8 million AF, or about 99 percent of average.

(b) Lower Snake River Temperature Regulation Test. In early September, the Fish Passage Center noted that unusually warm water temperatures in the 72 degree to 78 degree Fahrenheit range and low flows in the Lower Snake and Lower Columbia appeared to be hindering the upstream migration of the adults. RCC responded by increasing Dworshak releases from 1,000 cfs to 9,500 cfs (full powerplant capacity) in conjunction with the normal fall drawdown of Dworshak Reservoir. The Dworshak selector gates were also adjusted to lower the water temperature of the releases to 47 degrees Fahrenheit for about two weeks (7-19 September). After that the water temperatures of the releases were raised to the normal 53 degrees. During this special operation, the water temperature at Lower Granite Dam only dropped about 3 degrees, from 70 degrees to 67 degrees Fahrenheit, and no change in water temperature attributable to the special operation was noted downstream.

(9) <u>1991 Operation</u>.

8. - P

(a) <u>Water Budget and Flow Augmentation</u>. The 1 April forecast of spring runoff for the Snake River at Lower Granite Dam was 13.9 million AF (61 percent of average). Based on that forecast, RCC committed to providing shapeable water from Dworshak for the 1991 Water Budget. From 26 April to 5 May, following a request from the Fish Passage Center in Portland, Dworshak released 25,000 cfs discharged 400 KAF of water representing the Grand Coulee flood control shift (Supplemental Water Budget). On 5 May the outflow was reduced to near 11,500 cfs and releases from the standard Water Budget storage began. Through the end of May, at the request of the Fish Passage Center, 600 KAF of Water Budget water was release with outflows varying between 2,000 cfs and 20,200 cfs to augment Lower Granite inflows for juvenile fish migration. Dworshak reservoir was drafted to elevation 1,556.8 during the Water Budget releases, and then filled to elevation 1,581.7 by 31 May.

During the first week of June , an additional 100 KAF of water, above the previous 400 KAF credited to the Water Budget, was made available to the Fish Passage Center for Water Budget flow augmentation. At the request of the Fish Passage Center, Dworshak was filled to elevation 1599.6 ft., 0.4 ft. from full pool of 1,600 ft., on 24 June so it would be passing inflow when the sub yearling chinook salmon outmigration began in late June. Also from 9-13 July, Dworshak released 9,500 cfs and drafted 2 ft. to augment flows for the sub yearling chinook salmon.

The peak inflow for the year was 28,100 cfs on 19 May while outflow at the time was 9,000 cfs. The April - July observed runoff was 2.7 Million AF (96% of average) as compared to the forecasted April-July runoff of 2.3 million AF (82 % of average). Dworshak reservoir was refilled and maintained between 1,599 and 1600 ft. through 15 August.

(b) <u>Lower Snake River Temperature Control</u>. From 16 - 21 August, Dworshak released 9,400 cfs and drafted 5 ft., to evaluate the influence of cold water releases from Dworshak on lower Snake River water temperatures.

Following this release, Dworshak passed inflow through Labor Day weekend and then increased to full load and drafted throughout September for power and lower Snake River Temperature control. Dworshak reservoir reached elevation 1,565.1 by 30 September, 35 ft. from full pool.

(10) 1992 Operation.

(a) <u>Water Budget</u>. The 1 April forecast of spring runoff for the Snake River at Lower Granite Dam was 9.9 million AF (46 percent of average). Based on that forecast, RCC committed to providing 900 KAF of water from Dworshak for the 1992 Water Budget and Flow Augmentation. From 22-26 April, following a request from the Fish Passage Center in Portland, Dworshak released 12,000 cfs of Water Budget. Another 12,000 cfs was released from 1-6 May followed by 6 days of 9,500 cfs , when outflow was reduced to 2,000 cfs for two days because of damage to the spillway gate seals. As a result, the reservoir refilled to full pool of 1,600 ft. on 13 May and at the request of the Fish Passage Center, outflows were increased to 24,000 cfs for 3 days, which drafted the reservoir 6.5 ft. to elevation 1,593.4 ft.. From 21 May - 4 June Dworshak released 9,500-11,800 cfs for Water Budget. in order to flush hatchery steelhead through Lower Granite reservoir, Dworshak released 25,000 cfs during the 5-10 June period, which used up the remaining balance of the 900 KAF of Water Budget storage. On 10 June Dworshak reservoir was at elevation 1,575.0 ft., 25 ft. from full pool. Outflow was reduced to 1,000 cfs for the remainder of June and the reservoir refilled slightly to elevation 1578.9 ft.

(b) Flow Augmentation and Temperature Control. From 5-20 July, Dworshak provided outflows of 10,000 cfs and 20,000 cfs, from an additional 270 KAF of Flow Augmentation Water, at the request of the Fish Passage Center for sub yearling chinook salmon outmigration. This operation lowered the reservoir elevation 1563.5 ft., 37 ft. from full pool and out flow water temperature was lowered from 54 degrees to 45 degrees Fahrenheit. Dworshak outflow was reduced to 1,200 cfs until early August when outflows were increased from 1,200 cfs to 2,500 cfs to provide the additional water needed to maintain the lower Snake River projects within their 1% peak efficiency limits. By Labor Day weekend Dworshak reservoir was at elevation 1559.0, 41 ft. from full pool. From 10-20 September, Dworshak outflow was maintained at 11,200 cfs in order to release an additional 200 KAF from storage for power and lower Snake River temperature control, then outflows were reduced to 1,200 cfs. Dworshak reservoir reached elevation 1,545.8 by 30 September, 54 ft. from full pool.

The peak inflow for the year was 14,600 cfs on 30 April while outflow at the time was 2,900 cfs. The April - July observed runoff was 1.3 million AF (49% of average).

(11) <u>1993 Operation</u>. The 1 April forecast of spring runoff for the Snake River at Lower Granite Dam was 15.9 million AF (73 percent of average). Based on that forecast, RCC committed to providing 1000 KAF of water from

Dworshak for the 1993 Water Budget and Flow Augmentation. The 1993 Coordinated Plan of Operation for the fish passage season started out to be similar to 1992 operation, however, "Target Flows" at Lower Granite Dam on the lower Snake River of (1) 85,000-cfs for 1 May-30 June and (2) 50,000 cfs 1-31 Julyas required by the biological opinion issued by the National Marine Fisheries services on 26 may 1993 were included in the Corps', Record of Decision dated 18 June 1993.

During the 15 April - 30 June period releases from Dworshak were adjusted as needed for local flood control at Lewiston, Idaho and enhanced juvenile fish outmigration flows at Lower Granite Dam. From 1-31 July releases from Dworshak were regulated for "Target Flow" at Lower Granite Dam. Releases above 1,200 cfs from Dworshak provided 1,904 KAF for juvenile fish outmigration during the 15 April-31 July period.

Dworshak's reservoir midnight elevation on 15 April was 1,582.78 ft. On 1 May Dworshak reservoir began to refill from elevation 1582.71 ft. to elevation 1595.13 ft. on 15 May and then gradually refilled to a maximum elevation of 1599.96 on 3 July. During July the Dworshak outflow was adjusted to provide a portion of the target flow (50 KCFS) at Lower Granite Dam and releases above 1,200 cfs provided 648 KAF. From 1 - 13 August releases from Dworshak above 1,200 cfs provided an additional 393 KAF of water from storage to encourage fall chinook juvenile salmon to migrate down the Clearwater River. This operation was requested by the National Marine Fisheries Services. Dworshak was drafted to elevation 1540.15, 60 ft. from full pool, by 13 August. Dworshak's release was reduced to 1,200 cfs to conserve the water supply after 14 August. Dworshak releases for fish and average monthly flows for Dworshak releases and Lower Granite regulated inflow for April through August are summarized as follows:

DWORSHAK RELEASE FOR FISH TARGET FLOWS

TIME	RELEASE
PERIOD	<u>(KAF)</u>
15-30 April	249
MAY	707
JUNE	300
JULY	648
AUGUST	<u>393</u>
S.	

TOTAL 2,297

AVERAGE OBSERVED FLOWS IN CUBIC FEET PER SECOND (CFS)

	APRIL	MAY	JUNE	JULY	AUGUST
DWORSHAK RELEASE	5,433	12,697	6,247	11,739	7,594
LOWER GRANITE INFLOW	66,600	131,665	98,520	50,126	33,377

MEMORANDUM OF UNDERSTANDING

BETWEEN THE CLEARWATER FISH HATCHERY, DWORSHAK NATIONAL FISH HATCHERY AND THE U.S. ARMY CORPS OF ENGINEERS DWORSHAK PROJECT FOR THE OPERATION AND ENTRANCE REQUIREMENTS FOR THE HATCHERY WATER SUPPLY SYSTEM.

Definition

Clearwater Fish Hatchery will be referred to as "Clearwater FH" or "CFH". Dworshak National Fish Hatchery will be referred to as the "Dworshak Hatchery" or "DNFH". The Dworshak project of the U.S. Army Corps of Engineers will be referred to as the "Dworshak project" or "project".

Purpose

This Memorandum of Understanding (MOU) describes the roles, responsibilities and safety requirements of the signatory parties for the operation, maintenance and emergency procedures related to the water supply line from Dworshak Reservoir to the Clearwater Fish Hatchery and Dworshak National Fish Hatchery. All parties agree to the responsibilities and procedures outlined in this MOU.

PART I PROJECT DESCRIPTION

I. Authorization and Location

The Clearwater Fish Hatchery Water Supply System is part of the Lower Snake River Compensation Plan (LSRCP) Program. The LSRCP was established by the Water Resources Development Act of 1976 (Public Law 94-587) to compensate for losses caused by the lower Snake River dams. The Clearwater Fish Hatchery water supply system delivers water from Dworshak Reservoir to the CFH and DNFH. The hatcheries are located near the confluence of the North Fork and the main stem of the Clearwater rivers near Ahsahka, Idaho.

II. Brief Description of Project

The CFH water supply system consists of primary and secondary pipelines. The primary pipeline is equipped with a selective withdraw intake screen that allows water at selectable tempatures to be withdrawn when available. A floating platform allows the intake screen to be adjusted from 5 to 50 feet below the water surface. The secondary pipeline has a fixed low level intake that provides water at a temperature that is consistently near 40°F. Both pipelines are

routed through Dworshak Dam and then down the face of the dam along the spillway training wall. The pipelines are then buried and follow the left bank of the North Fork Clearwater River to the distribution structure. The distribution structure is the transition between the incoming high pressure piping and outgoing low pressure piping. The distribution structure provides stilling wells for energy dissipation valves and distributes flow between the two fish hatcheries. Two lines from the distribution structure supply the DNFH with supplemental water. The distribution structure also provides a connection to the secondary pipeline for a potential future municipal and industrial (M&I) hookup for the City of Orofino.

III. Construction History

The Clearwater Fish Hatchery Water Supply System was constructed under one contract let by the U.S. Army corps of Engineers. A copy of the construction report is on file at the Walla Walla District Corps of Engineers library in Walla Walla, Washington. The construction contract number, contractor, construction start date, and beneficial occupancy date are shown below:

Project Title: Contract No.: Contractor:

Construction Start Date: 28 August 199 Beneficial Occupancy Date: 15 April 1992

Clearwater Fish Hatchery Water Supply DACW687-90-C-0030 Harcon Inc. and S.A. Gonzales Construction, Inc. A Joint Venture P.O. Box 2661 Pocatello, Idaho 83201 28 August 1990 15 April 1992

PART II

METHOD OF OPERATION CLEARWATER FISH HATCHERY PIPELINE

I. PRIMARY INTAKE STRUCTURE

Adjustments to the level of the primary intake screen will be determined by locating the seasonal thermocline in the reservoir of 56 to 58°F water temperature. The screen will be raised or lowered to this thermocline. These adjustments will be done by CFH staff.

The primary intake is located inside the log boom security area on the face of Dworshak Dam. Prior to entrance of this security area a 24 hour minimum notice is to be given to the operator at the Dworshak Dam. On the day of entry into the security area, prior to entrance, Clearwater FH staff will notify the on duty operator at Dworshak Dam. After the adjustments or cleaning has been performed on the primary intake screen and the boat has left the security area Dworshak Dam operator will be notified they have left the area.

The intake was modified under the following contracts.

		- 17	10.00	
Contract Number	Project	<u>Contractor</u>	Start	Date
DACW68-95-C-0011	Clearwater Hatchery	Knight Construction	12/94	5/30/95
	Emergency Isolation	& Supply Company		
.3	Valve			
DACW68-97-C-0017	Clearwater Hatchery	Advanced American	3/97	9/30/97
	Water Supply	Diving Service, Inc.		
	Modifications			

The CFH manager will schedule a diver to inspect the primary intake screen when determined to be necessary. (The screen was designed so that it would not clog but our experience shows that the algae in the reservoir will completely plug the primary intake screen).

II. PIPELINES FROM INTAKE TO CLEARWATER FISH HATCHERY

Routine inspections and maintenance of the pipelines will be the responsibility of the CFH. This approach has resulted from design review meetings conducted by the COE.

A. Maintenance

All maintenance of valves and pipeline from the intake to the distribution structure will be the responsibility of CFH.

III. DISTRIBUTION STRUCTURE

Any adjustments to the ported sleeve valves on the primary and secondary pipelines will be accomplished by the manager or CFH staff. Each supply line is equipped with two ported sleeve valves. Never at any time will more than one ported sleeve valve be operated unless it is during the switch over process from one valve to another. The manager of CFH will notify the manager of DNFH of any adjustments or maintenance work which may impact distribution to DNFH.

IV. DISTRIBUTION TO DWORSHAK NFH

The supply valves on the secondary and primary lines from distribution structure to the DNFH will remain at preadjusted levels. The amount of flow will be controlled by the DNFH manager or his staff. Prior to any adjustments, requiring more or less water from either pipeline, notification will be given to the CFH manager. This is to protect from damage to the distribution

structure and pipelines resulting from either hatchery calling for more water than available and causing cavitation in the supply pipelines.

A. Maintenance

All routine maintenance of valves and pipeline from the distribution structure to DNFH will be the responsibility of DNFH. The COE will assist with non-routine maintenance, if required.

V. DISTRIBUTION TO CLEARWATER FH

All adjustments for water flowing from the distribution structure to CFH will have prior approval from CFH manager or a designated representative and will be accomplished by the CFH staff under the managers direction.

PART III

OPERATION AND MAINTENANCE

I. GENERAL

A. Scope

This section describes the equipment and routine operation and maintenance procedures for the water supply system. It also describes procedures for various emergency situations. The value of this manual is dependent upon how it is used. For this reason, additional reference data and revised procedures and parameters should be inserted into the manual as dictated by changing conditions and operator experience with this particular facility.

B. Responsibility

The operation and maintenance of the Clearwater Fish Hatchery Water Supply System from Dworshak Dam to the distribution structure, including the intake screens and energy dissipation valves, is the responsibility of the CFH personnel. The CFH personnel are also responsible for the system from the distribution structure to the CFH. The DNFH personnel, with COE assistance, when required, are responsible for the system from the distribution structure to DNFH. The Dworshak Dam operator shall be notified when problems arise with the water supply system, and specifically during emergency situations.

C. Dworshak Project Entrance Requirement

Hatchery personnel shall abide by the Dworshak Project entrance requirement and safe clearance procedure while working in the secure project area. The secure project area includes the forebay protected intake area; the main dam and powerhouse; and the south abutment, hillside, and stilling basin wall.

II. CLEARWATER HATCHERY WATER SUPPLY

A. Annual Valve Exercise

This exercise will occur after steelhead are completely transported and released from DNFH and CFH in the spring of the year. Coordination and scheduling of exercises will be the responsibility of CFH Manager. CFH will provide six personnel, DNFH a maximum of 2 personnel and electric operator wrench. 1) All rearing areas will be converted to secondary pipeline water only.

2) Pipeline shutdown will start at CFH and DNFH on primary pipeline and proceed upstream to valves inside the dam. Once emergency closure valves are exercised, energizing of the pipeline will begin at emergency closure valves and proceed downstream to both hatcheries.

3) Both hatcheries will then convert to primary pipeline water only and proceed with shutdown of secondary pipeline at each hatchery and proceed upstream to emergency shutdown valve. When exercise is complete, energizing of pipeline will begin at emergency valve and proceed downstream to both hatcheries. Annual exercise is now completed and both pipelines are back in operation.

PART IV INTAKE FACILITIES

I. GENERAL

A. General Description

The primary intake consists of a tee-screen suspended on a cable from a floating platform. The cable is attached to a winch that allows the depth of the intake screen to be adjusted. The screen is attached to a 48-inch polyethylene pipe. The polyethylene pipe connects to a 24-inch steel pipe at the face of the dam. The secondary intake consists of a drum screen mounted on the face of the dam at elevation 1361.5 ms/l. The screen is connected to a 14-inch steel pipe. The 24-inch-diameter and 14-inch-diameter steel pipes pass through the upstream face of the dam and into the maintenance gallery in monolith 14. Inside the maintenance

gallery, intake valves are installed to serve as emergency shutoff valves and pressure gauges are installed to measure the pressure differential on the intake screens.

B. Primary Intake Screen

(1) Description

The primary intake screen is a 7.5-foot-diameter by 23-foot-long Johnson tee-screen. The screen is suspended from a floating platform that is anchored to the upstream face of the dam (see Sheet 57.1 of the contract drawing). Access to the floating platform is by use of a boat stored at the CFH. The primary intake screen can be adjusted from 5 to 50 feet below the water surface using the winch on the floating platform. The water surface can vary between a maximum pool level of 1,605 msl and minimum pool level of 1,455 msl. The proper depth to provide the desired temperature is determined by taking temperature measurements from the platform with a portable, hand-held temperature gauge.

(2) Operation and Maintenance

The intake screen is required to have a minimum submergence of 4 feet. A physical restraint is attached to the screen to prevent it from inadvertently being raised to less than 4 feet of submergence. The primary pipeline intake valve (V-1) must be closed before raising the primary screen out of the water for any maintenance procedures. Raising the screen out of the water prior to closing V-1 could cause failure of the pipeline. CAUTION! Follow the procedure described under Intake Value for closing V-1. To avoid potential freezing problems at the water surface, the primary screen should be lowered to at least 20 feet below the water surface each fall when the temperature is approximately uniform in the top 20 feet of the reservoir, which is typically from about October to March. The wedge wire design of the screen is nonclogging and somewhat self-cleaning; therefore, additional means of cleaning were not considered necessary during the original design. However, experience to date indicates that some cleaning may be required. The screen has air backflushing connections so that backflushing equipment can be added in the future if necessary. The pressure gauge should be checked every two weeks and the screen should be inspected by a diver, if the differential pressure is rising and approaching 60 inches, or at least twice a year to determine if cleaning or other maintenance is required. See next Section Pressure Gauge.

(3) Pressure Gauge

An ILT Barton differential pressure gauge is installed inside the maintenance gallery to measure the pressure differential across the primary intake screen. The pressure gauge is calibrated in inches of water and has a range between 0 and 60 inches. The maximum pressure differential allowed is 60 inches. Caution! Allowing more than 60 inches pressure differential could cause damage to the intake pipe and screen.

(4) Emergency Procedures

If the head differential across the primary screen exceeds 60 inches, perform the following procedures:

1. Contact CFH manager.

2. Contact DNFH manager.

3. Contact Dworshak Dam operator.

4. Throttle back the operating primary energy dissipation valve (V-9 or V-10) while monitoring the intake pressure differential to ensure that the pressure differential reduces to less than 60 inches. This will require personnel stationed at both locations with two-way radios to communicate.

5. Determine and correct the problem. Large pressure differentials could be caused by a plugged intake screen or pipeline flows greater than design capacity.

C. Secondary Intake Screen

(1) Description

The secondary intake screen is a 6.5 foot-diameter by 7.5 foot-long Johnson drum screen. The screen is wedge wire type having inwardly enlarging openings. The secondary screen is not adjustable and is mounted at elevation 1361.5/msl.

(2) Operation and Maintenance

The wedge wire design of the screen is nonclogging and somewhat selfcleaning. Therefore, additional means of cleaning were not considered necessary during the original design. However, experience to date indicates that some cleaning may be required. The screen has air backflushing connections so that backflushing equipment can be added in the future, if necessary. The pressure gauge should be checked every two

weeks and the screen should be inspected by a diver, if the differential pressure is rising and approaching 60 inches. See Section Pressure Gauge.

PART V

ENTRANCE REQUIREMENTS AND SAFE CLEARANCE PROCEDURE FOR NORMAL OPERATION AND MAINTENANCE AND EMERGENCY CONDITIONS FOR THE CLEARWATER FH

I. WATER SUPPLY SYSTEM

A. Purpose

The purpose of this section is to provide an understanding of the entrance requirements, Safe Clearance Procedure, and project personnel interaction with CFH and DNFH personnel during normal O&M and emergency conditions within the secure area of Dworshak Project. The secure project area includes the forebay protected intake area, the main dam and powerhouse, south abutment dam face, hillside, and stilling basin wall.

B. Conditions

(1) General

Activity requiring either CFH or DNFH personnel to enter Dworshak Project secure area will be coordinated with the powerhouse control room operator prior to entry into the secure area. Work requiring access to the floating platform in the intake area will require the requesting and issuance of a safe clearance on spillway machinery (safe clearance on regulating outlet machinery is not required unless diving operations are necessary). A clearance will be issued to the shift operator and then an identical clearance will be issued to an authorized hatchery person who has been trained in the Dworshak Project Hazardous Energy Control Program. A notice of intent will be provided to the control room operator a minimum of the day prior to issuing the clearances. Hatchery personnel will verify the safe clearances have been placed on the machinery before accessing the platform. Hatchery personnel that have been working in the secure area will immediately communicate to the shift operator the completion of their work and confirmation of exiting the secure area. They will then coordinate the release of their safe clearance.

(2) Normal operation and maintenance:

Scheduled inspections and adjustments of equipment within the secure area will be made entirely by hatchery personnel. Results of the inspections will be communicated to the Dworshak Operations and Maintenance Manager.

(3) Emergency Situation:

The shift operator will not normally be available to assist in operations outside the control room such as closing the intake valves, etc.. Hatchery personnel will immediately notify the shift operator of the emergency condition and describe any potential effect on the dam or powerhouse. If the emergency requires a boat to go into the protected intake forebay area, a safe clearance on the spillway must still be requested and implemented before entering the area. If hatchery personnel are required to go to the pipe penetration area they must notify the shift operator just prior to their entrance and immediately after their exit. The COE shift operator will contact supervisory personnel who will direct or make further communication as required. Under an acute emergency condition, COE personnel would be made available to assist hatchery personnel.

PART VI

RESPONSIBILITIES

I. Corps of Engineers

- A. To report to the CFH and DNFH managers any problems or suspected problems.
- B. To provide to CFH personnel two project entrance keys.
- C. To inform CFH personnel (and provide copy) of safe clearance procedures.
- D. To provide available help as allowable during an acute emergency.
- E. To provide an adequate access to the 1385 gallery and the 1360 pipe penetration gallery. To maintain lighting in these areas and reliable power to the control valves.

II. Clearwater Fish Hatchery

- A. Hatchery personnel will inform the shift operator before entering the project secure areas and renotify when leaving.
- B. The hatchery will provide Dworshak Project a copy of their inspection reports.
- C. The hatchery personnel will abide by the Dworshak Project Hazardous Energy Control Program while working in the secure project area.

- D. Hatchery personnel will secure Dworshak Project access keys and immediately report if lost or stolen. They will also ensure Dworshak Project security by keeping all doors, used for their access, secure.
- E. The hatchery will inform DNFH manager of any problems which could impact flow to DNFH.

III. Dworshak National Fish Hatchery

A. Hatchery personnel will coordinate any flow adjustments which may impact CFH with the CFH manager.

B. Hatchery will provide available help to CFH manager when requested in emergency, maintenance or water flow adjustments.

HATCHERY MANAGERS

U.S. ARMY CORPS OF ENGINEERS

1/93 11/2/98 Gregory A. Parker Jerry McGehee Date

Manager, Clearwater FH Idaho Department of Fish and Game Gregory A. Parker Date Operations & Maintenance Manager Dworshak Project

Bill Miller

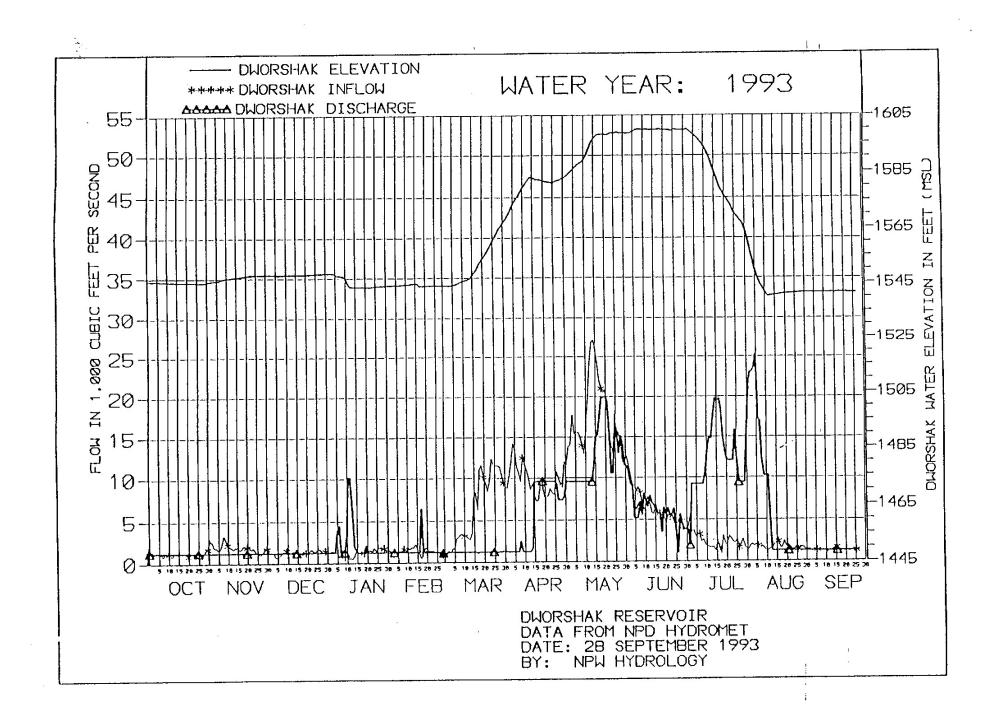
Date

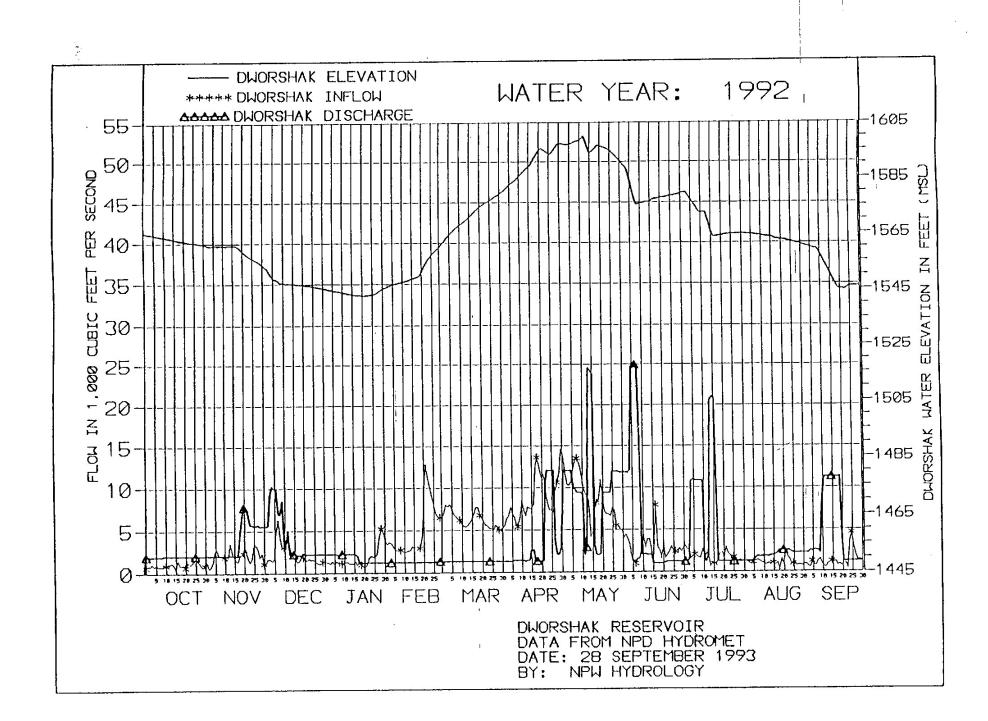
Manager, Dworshak NFH U.S. Fish and Wildlife Service

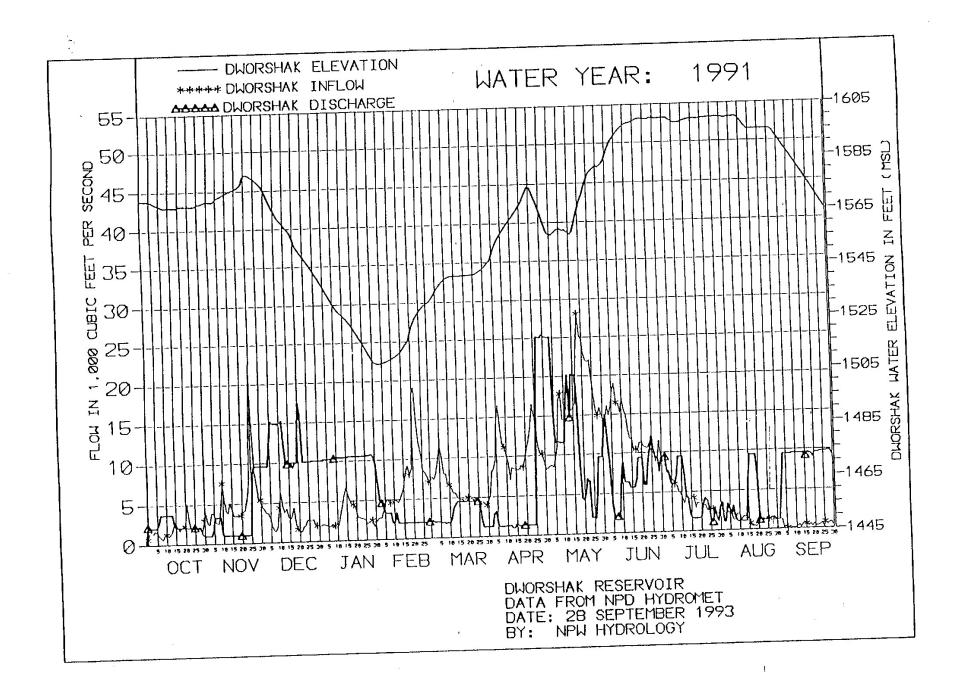
11/4/08 1 buch Charles R. Krahenbuhl Date

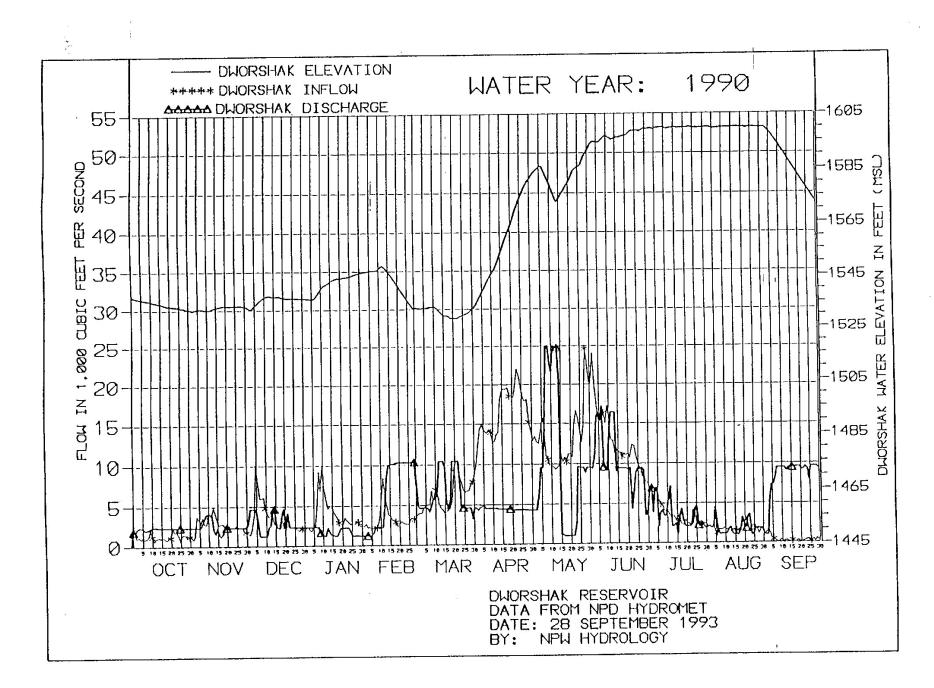
Charles R. Krahenbuhl Operations Manager Eastern Operating Projects Dworshak Project

Corps of Engineers, Walla Walla District Hydrology Branch, 7 January 1994

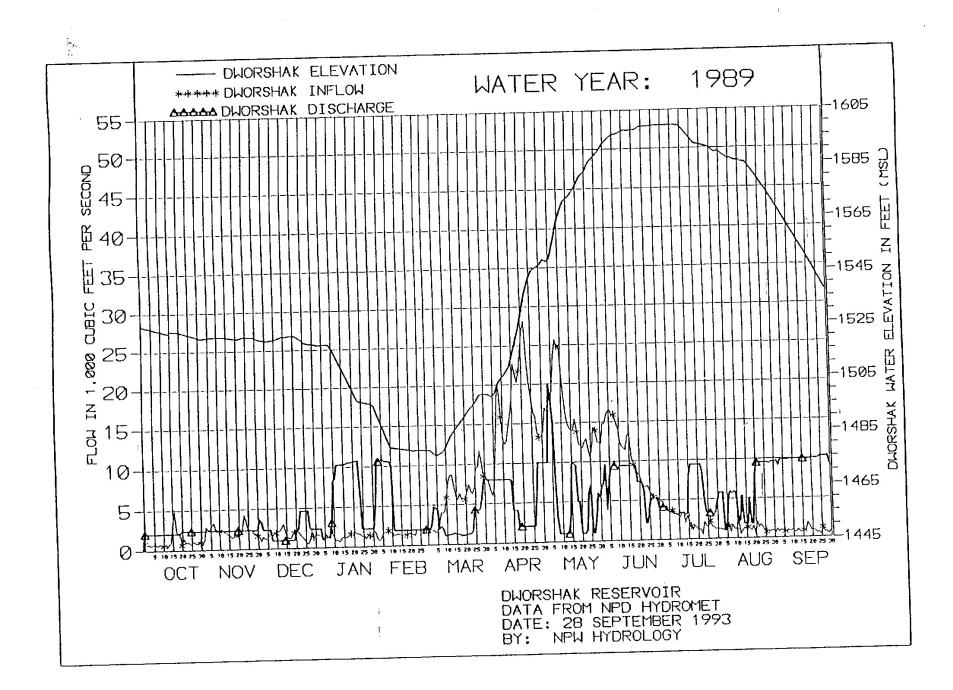

The peak inflow for the year was 27,100 cfs on 15 May while outflow at the time was 11,200-cfs. The April - July observed runoff was 2.2 million AF (81% of average).

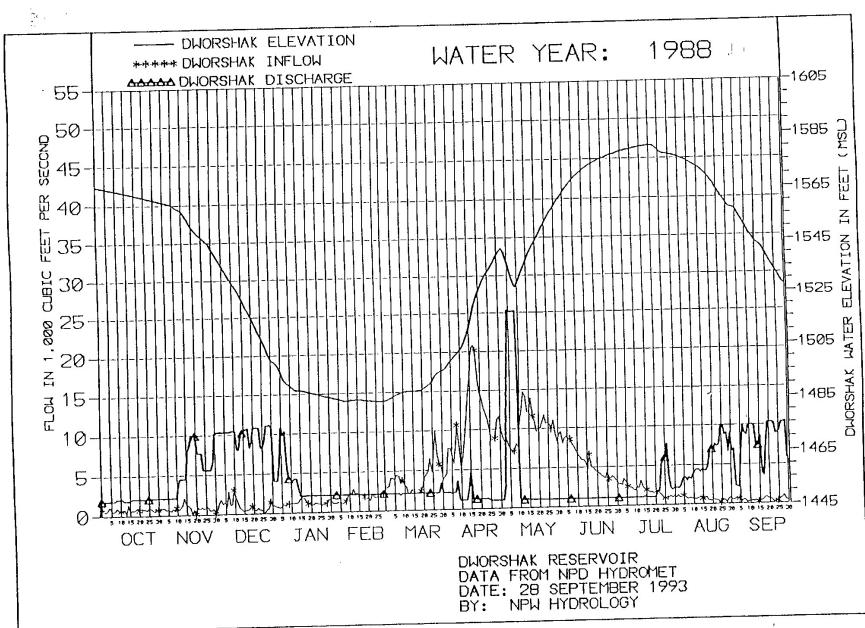

B. <u>Water Budget Operation Summary</u>. The use of Dworshak storage for Lower Granite Water Budget evolved as a result of PL 96-501, Pacific Northwest Electric Power Planning and Conservation Act (Dec. 1980), which contains provisions to protect, mitigate, and enhance conditions for fish and wildlife on the Columbia River and Tributaries. In November 1982, the Northwest Power Planning Council developed a comprehensive Columbia River Basin Fish and Wildlife program, which was amended in 1984 and 1987. The most significant part of the program established a "Water Budget" approach which recommended a total Water Budget of 20 kcfs-months (1.19 million AF) at Lower Granite Dam for flows in excess of firm power flows from April 15 to June 15. Dworshak's participation in the Water Budget operation at Lower Granite is summarized as follows:

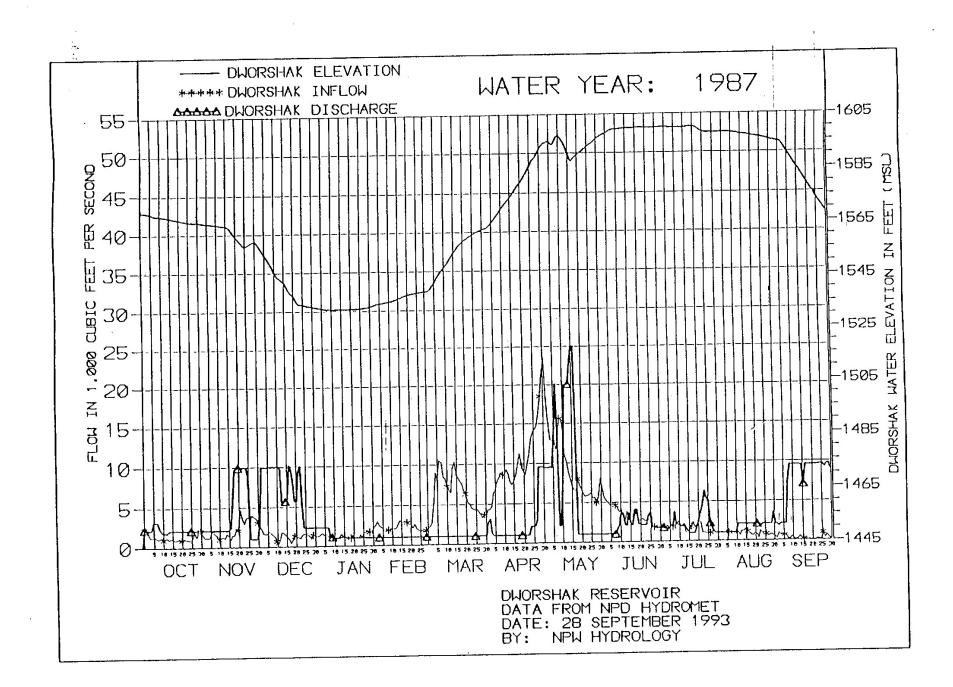

Dworshak Operation For Water Budget

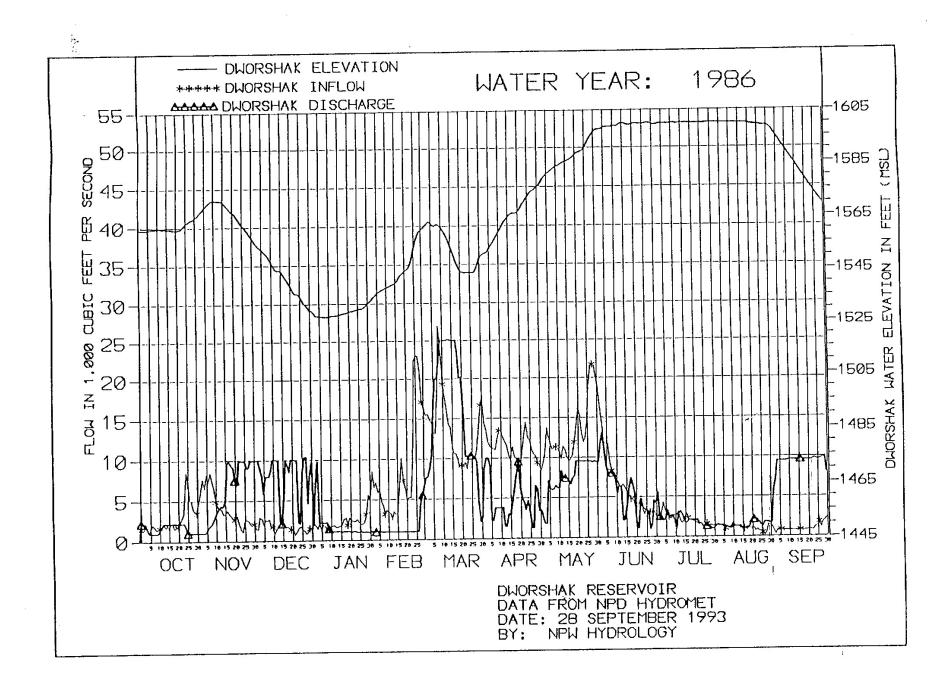

ă.	Lower Granite 1 April Runoff Forecast	Amount Available	15 April - 15 June Dworshak Total Releases
<u>Year</u>	<u>(KAF)</u>	<u>(KAF)</u>	<u>(KAF)</u>
1983	25.0	0	584.4
1984	21.6	197.4	1,134.7
1985	24.2	0	786.3
1986	19.6	413.8	831.0
1987	13.3	308.0	671.0
1988	13.3	308.0	435.0
1989	21.3	240.0	734.0
1990	14.8	308.0	1,153.0
1991	13.9	1,106.0 1/	1,235.7
1992	9.9	900.0	1,144.5
1993	15.9	1,000.0	1,289.1

NOTE: 1/ Includes 900KAF of Columbia River system flood control shifted to Grand Coulee and 100 KAF of Supplemental Water provided in the first week of June based on June runoff forecast.

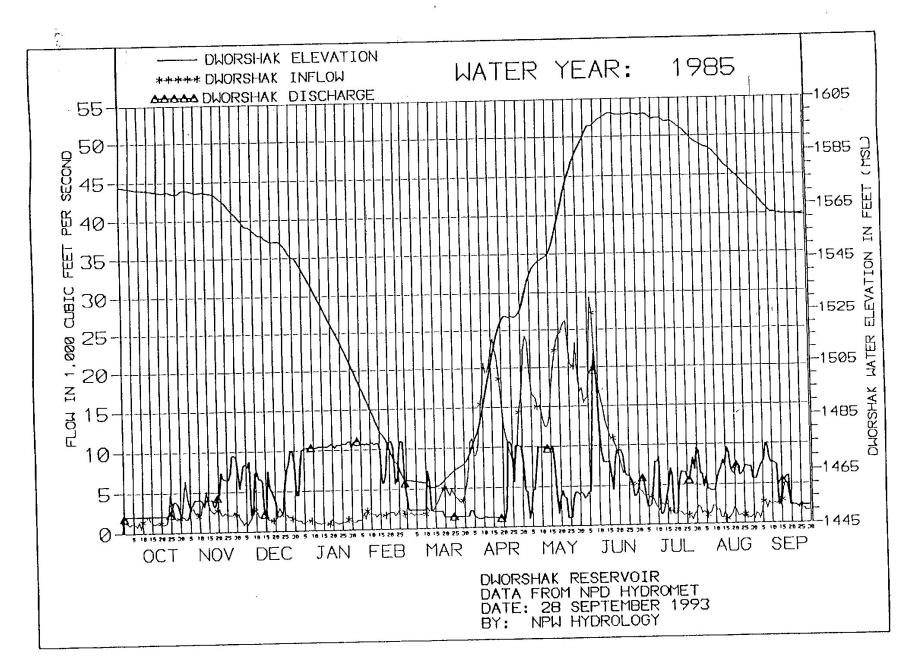


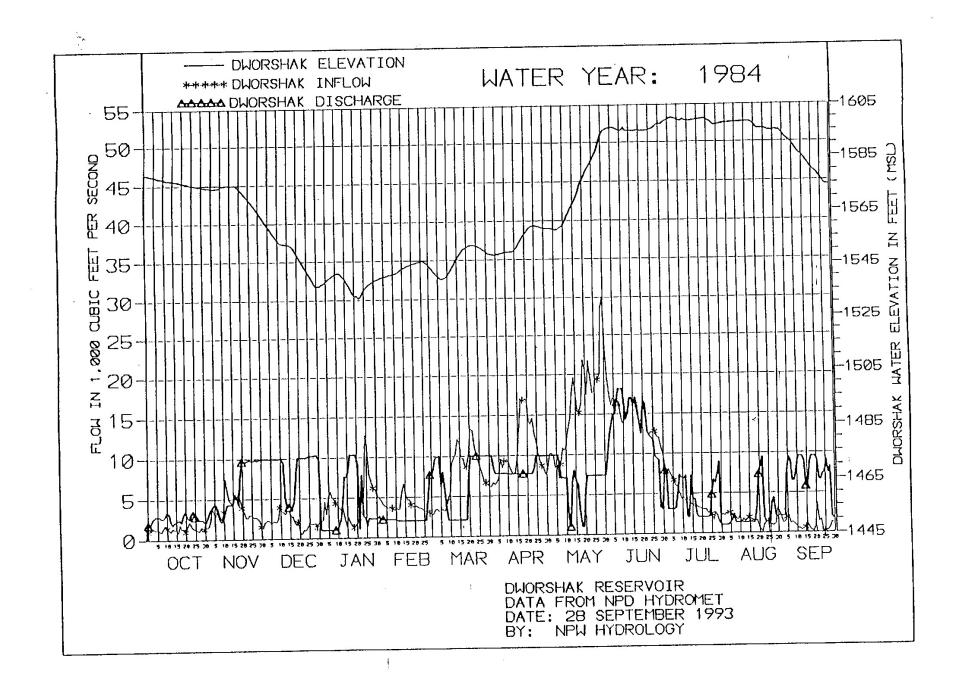


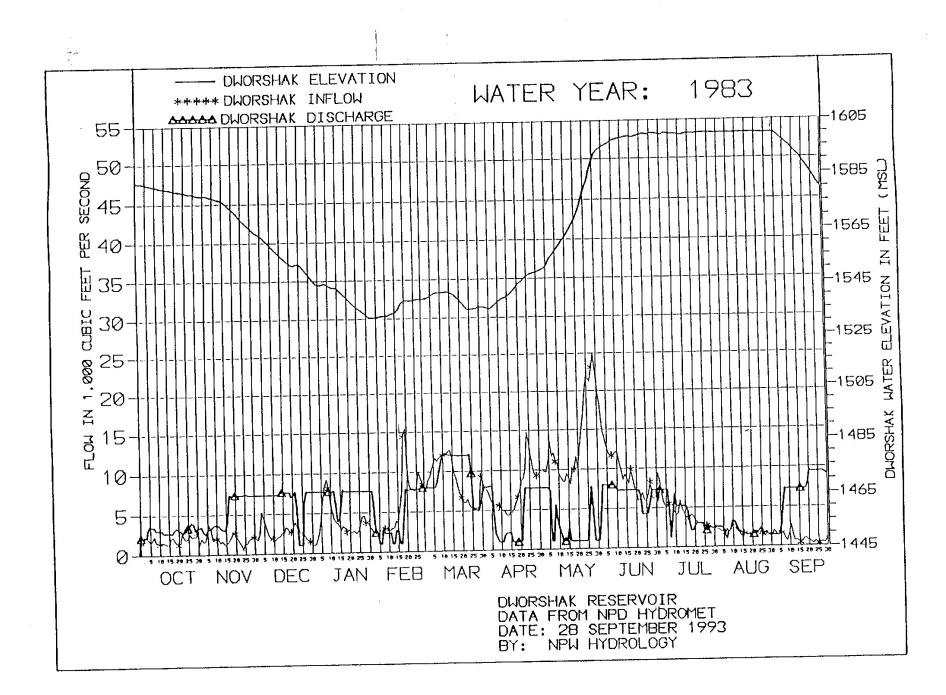


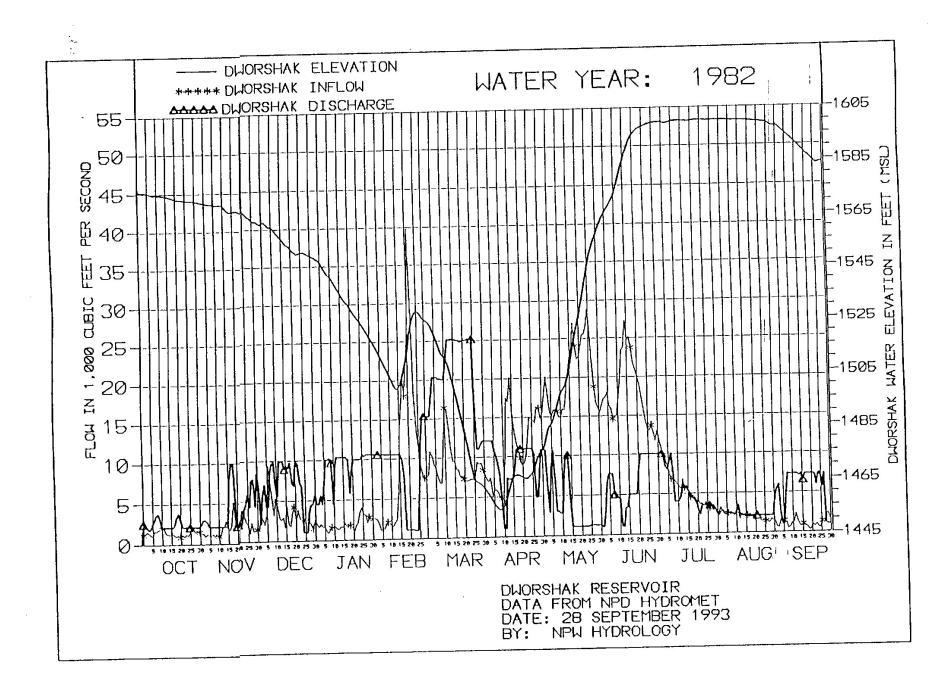


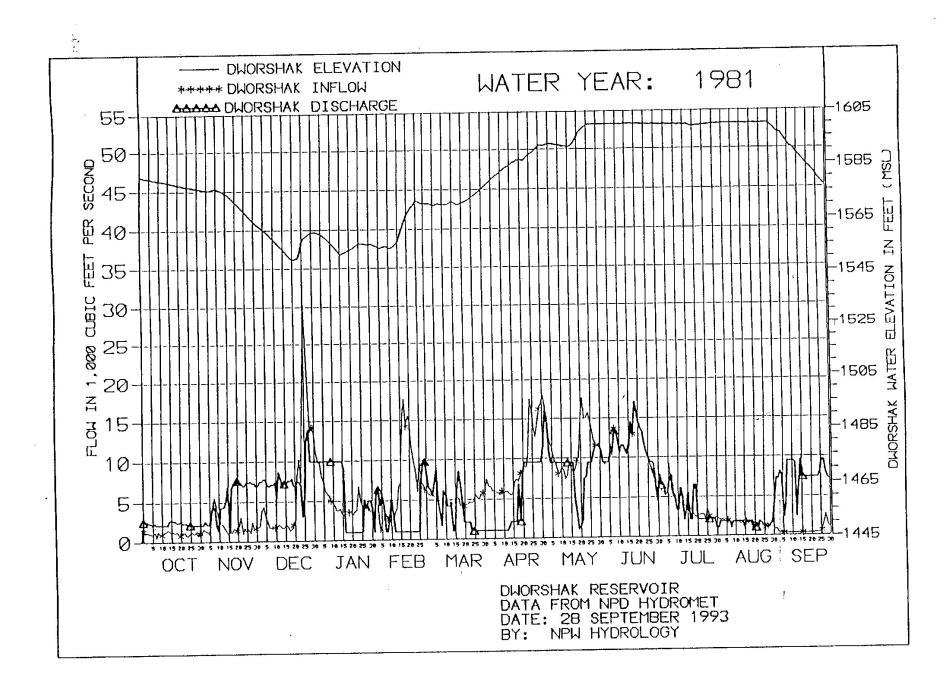
:

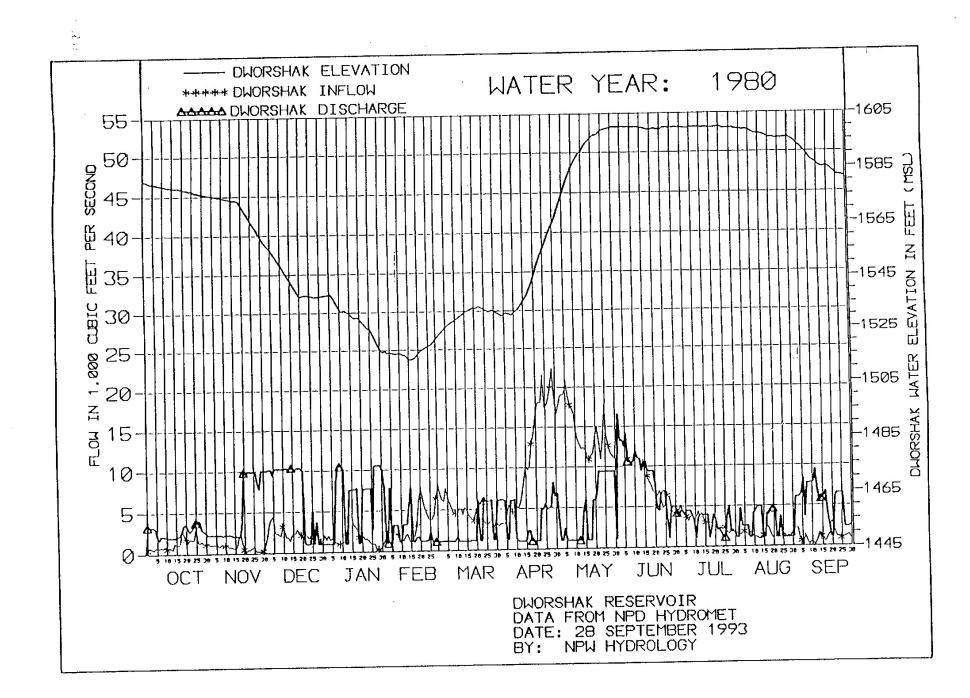


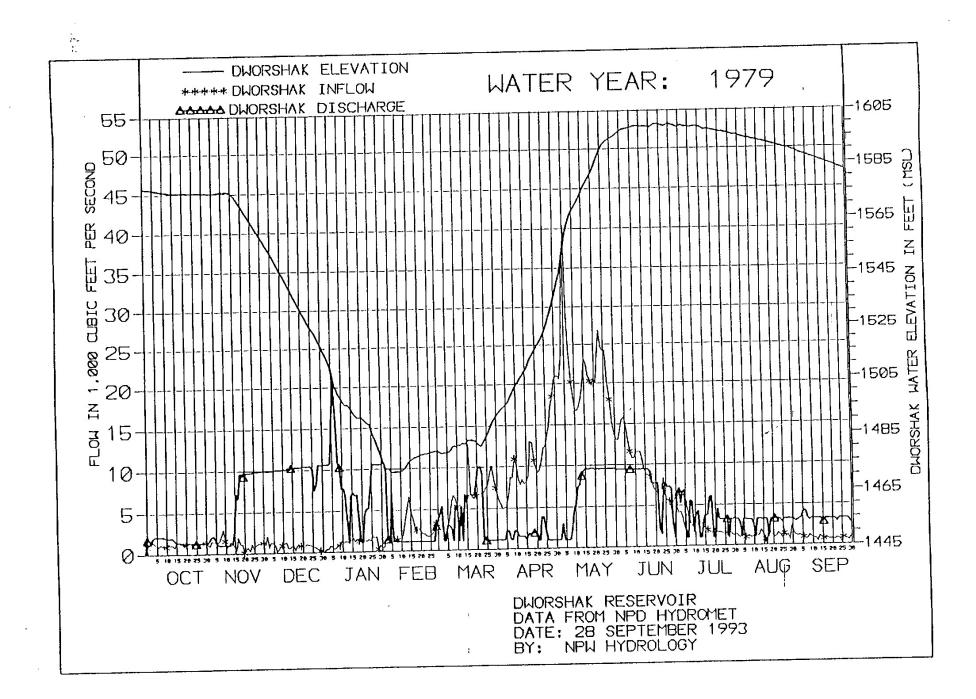


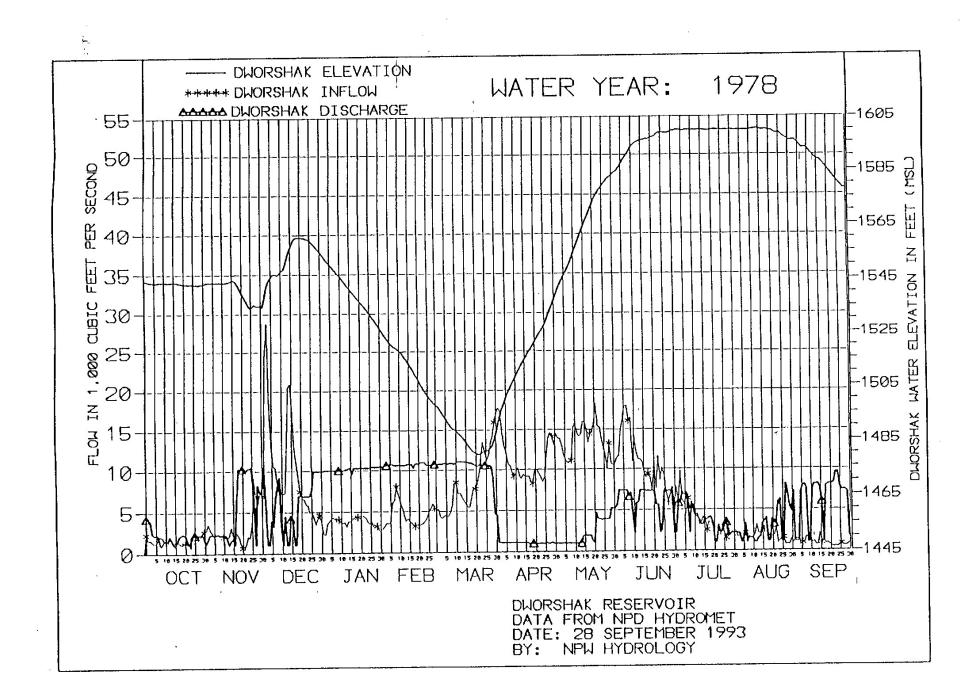


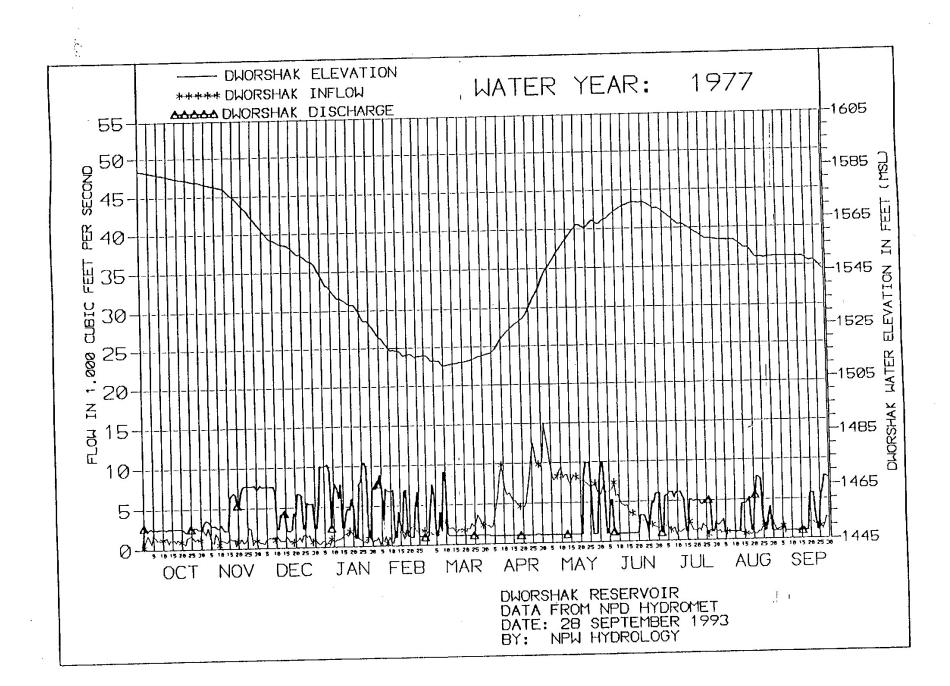


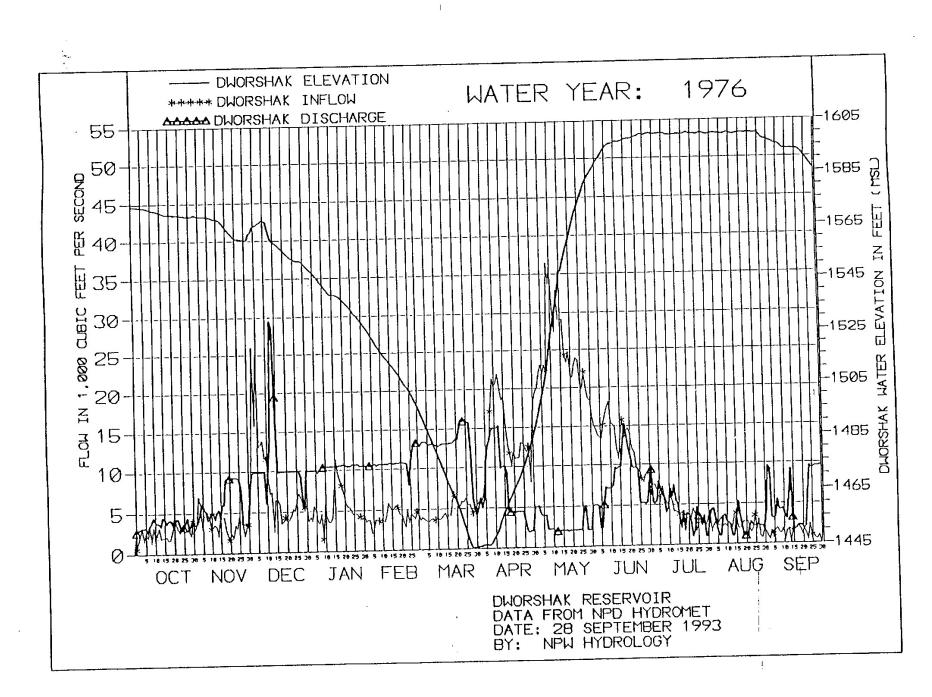

x

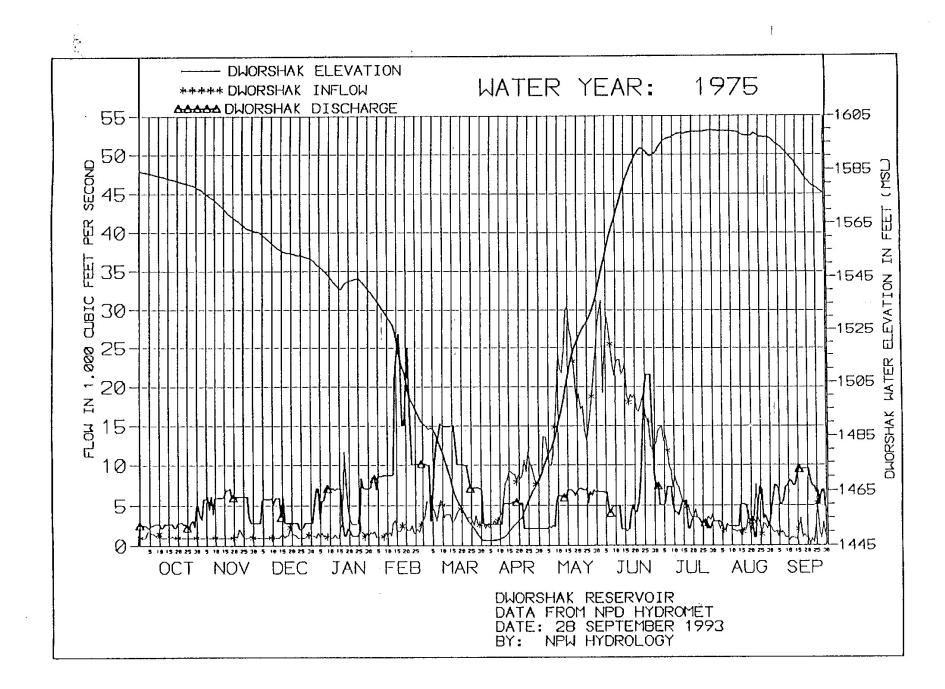


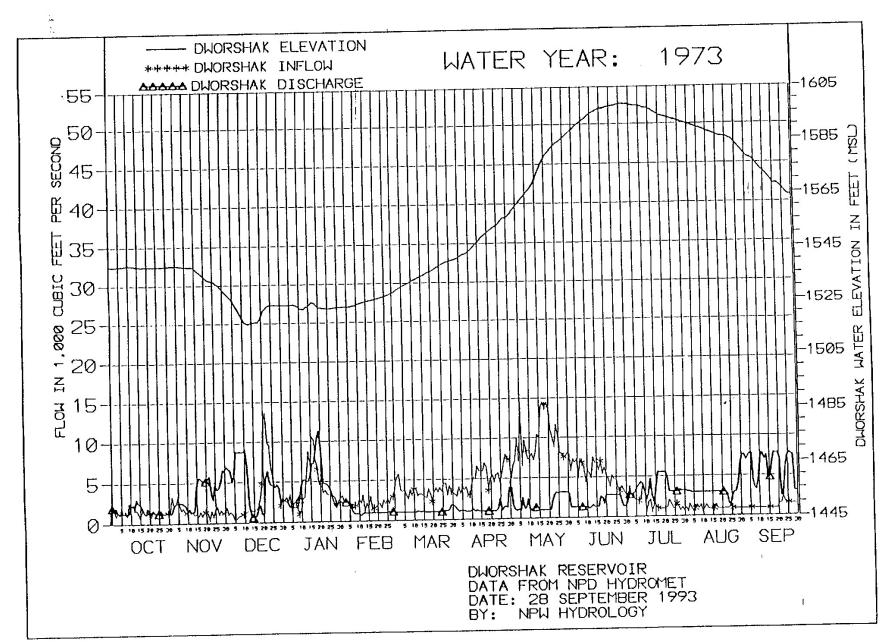












е_н,